Anisotropic Yield Criterion of Rolled AZ31 Magnesium Alloy via Nanoindentation
Abstract
:1. Introduction
2. Materials and Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Del Valle, J.; Pérez-Prado, M.; Ruano, O. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater. Sci. Eng. A 2003, 355, 68–78. [Google Scholar] [CrossRef]
- Haghshenas, M.; Wang, Y.; Cheng, Y.-T.; Gupta, M. Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium. Mater. Sci. Eng. A 2018, 716, 63–71. [Google Scholar] [CrossRef]
- Hu, W. Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Mater. Sci. Eng. A 2003, 345, 139–144. [Google Scholar] [CrossRef]
- Masse, T.; Chastel, Y.; Montmitonnet, P.; Bobadilla, C.; Persem, N.; Foissey, S. Impact of mechanical anisotropy on the geometry of flat-rolled fully pearlitic steel wires. J. Mater. Process. Technol. 2011, 211, 103–112. [Google Scholar] [CrossRef]
- Basu, I.; Ocelík, V.; De Hosson, J.T.M. Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater. 2018, 150, 104–116. [Google Scholar] [CrossRef]
- Fischer-Cripps, A.; Johnsonm, K. Introduction to Contact Mechanics. Mechanical Engineering Series. Appl. Mech. Rev. 2002, 55, 3–13. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, E.; Jin, T.; Shu, X.; Wang, Z.; Yuan, G.; Yang, X. Mechanical properties of cured isotropic conductive adhesive (ICA) under hygrothermal aging investigated by micro-indentation. Int. J. Solids Struct. 2017, 122, 81–90. [Google Scholar] [CrossRef]
- Barnett, M.R.; Keshavarz, Z.; Beer, A.G. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Materialia 2004, 52, 5093–5103. [Google Scholar] [CrossRef]
- Xiao, G.S.; Yuan, G.Z.; Jia, C.N.; Yang, X.X.; Li, Z.G.; Shu, F.X. Strain rate sensitivity of Sn-3.0Ag-0.5Cusolder investigated by nanoindentation. Mater. Sci. Eng. A 2014, 613, 336. [Google Scholar] [CrossRef]
- Qiu, J.; Xiao, G.; Jin, T.; Su, B.; Shu, X.; Ma, S. Indentation Strain Rate Sensitivity of CoCrFeNiAl0.3 High-Entropy Alloy. Adv. Eng. Mater. 2019, 21, 21. [Google Scholar] [CrossRef]
- Vemuri V, K. Springer Science+Business Media. J. Inf. Technol. Cases Appl. 2019, 21, 109–112. [Google Scholar]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, X.; Qiu, J.; Chang, C.; Liu, E.; Duan, Q.; Shu, X.; Wang, Z.-H. Determination of power hardening elastoplastic constitutive relation of metals through indentation tests with plural indenters. Mech. Mater. 2019, 138, 103173. [Google Scholar] [CrossRef]
- Tabor, D. A simple theory of static and dynamic hardness. In Proceedings of the Royal Society of London; Series A, Containing Papers of a Mathematical and Physical Character; The Royal Society: London, UK, 1948; Volume 192, pp. 247–274. [Google Scholar]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. In Proceedings of the Royal Society of London; Series A, Containing Papers of a Mathematical and Physical Character; The Royal Society: London, UK, 1948; Volume 193, pp. 281–297. [Google Scholar]
- Wang, G.; Qian, X.; Li, X.; Hou, H.; Liu, Y.; Lou, Y. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling. Math. Probl. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
Angle (°) | 0° | 45° | 90° | ND |
H (GPa) | 0.45 | 0.46 | 0.48 | 0.42 |
Angle (°) | 0° | 45° | 90° | ND |
(GPa) | 0.35 | 0.36 | 0.42 | 0.28 |
Angle (°) | 0° | 45° | 90° | ND |
(MPa) | 116 | 120 | 137 | 94 |
0.406 | 1.184 | 0.468 | 0.723 | 0.723 | 0.723 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hao, X.; Qiu, J.; Jin, T.; Shu, X.; Li, X. Anisotropic Yield Criterion of Rolled AZ31 Magnesium Alloy via Nanoindentation. Appl. Sci. 2020, 10, 8997. https://doi.org/10.3390/app10248997
Wang Z, Hao X, Qiu J, Jin T, Shu X, Li X. Anisotropic Yield Criterion of Rolled AZ31 Magnesium Alloy via Nanoindentation. Applied Sciences. 2020; 10(24):8997. https://doi.org/10.3390/app10248997
Chicago/Turabian StyleWang, Zai, Xin Hao, Ji Qiu, Tao Jin, Xuefeng Shu, and Xin Li. 2020. "Anisotropic Yield Criterion of Rolled AZ31 Magnesium Alloy via Nanoindentation" Applied Sciences 10, no. 24: 8997. https://doi.org/10.3390/app10248997
APA StyleWang, Z., Hao, X., Qiu, J., Jin, T., Shu, X., & Li, X. (2020). Anisotropic Yield Criterion of Rolled AZ31 Magnesium Alloy via Nanoindentation. Applied Sciences, 10(24), 8997. https://doi.org/10.3390/app10248997