Energy Absorption Strategies in the Lower Extremities during Double-Leg Landings in Knee Valgus Alignment
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeVita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Pollard, C.D.; Sigward, S.M.; Powers, C.M. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin. Biomech. 2010, 25, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Garrett, W.E.; Gross, M.T.; Padua, D.A.; Queen, R.M.; Yu, B. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks. Am. J. Sports Med. 2015, 43, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Konow, N.; Azizi, E.; Roberts, T.J. Muscle power attenuation by tendon during energy dissipation. Proc. Biol. Sci. 2012, 279, 1108–1113. [Google Scholar] [CrossRef]
- Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I.; Richard Steadman, J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin. Biomech. 2003, 18, 662–669. [Google Scholar] [CrossRef]
- Derrick, T.R. The effects of knee contact angle on impact forces and accelerations. Med. Sci. Sports Exerc. 2004, 36, 832–837. [Google Scholar] [CrossRef]
- Brown, T.N.; O’Donovan, M.; Hasselquist, L.; Corner, B.; Schiffman, J.M. Lower limb flexion posture relates to energy absorption during drop landings with soldier-relevant body borne loads. Appl. Ergon. 2016, 52, 54–61. [Google Scholar] [CrossRef]
- Dargel, J.; Gotter, M.; Mader, K.; Pennig, D.; Koebke, J.; Schmidt-Wiethoff, R. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strateg. Trauma Limb Reconstr. 2007, 2, 1–12. [Google Scholar]
- Buckwalter, J.A.; Anderson, D.D.; Brown, T.D.; Tochigi, Y.; Martin, J.A. The roles of mechanical stresses in the pathogenesis of osteoarthritis implications for treatment of joint injuries. Cartilage 2013, 4, 286–294. [Google Scholar] [CrossRef]
- Arendt, E.A.; Agel, J.; Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J. Athl. Train. 1999, 34, 86–92. [Google Scholar]
- Agel, J.; Arendt, E.A.; Bershadsky, B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: A 13-year review. Am. J. Sports Med. 2005, 33, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Kanamura, T.; Koshida, S.; Miyashita, K.; Okado, T.; Shimizu, T.; Yokoe, K. Mechanisms of the anterior cruciate ligament injury in sports activities: A twenty-year clinical research of 1700 athletes. J. Sports Sci. Med. 2010, 9, 669–675. [Google Scholar] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball, Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef]
- Ameer, M.A.; Muaidi, Q.I. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: A pilot study on male handball players to prevent ACL injury. Phys. Sportsmed. 2017, 45, 337–343. [Google Scholar] [CrossRef]
- DeMorat, G.; Weinhold, P.; Blackburn, T.; Chudik, S.; Garrett, W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2004, 32, 477–483. [Google Scholar] [CrossRef]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Non-contact ACL injuries, mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef]
- Berns, G.S.; Hull, M.L.; Patterson, H.A. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 1992, 10, 167–176. [Google Scholar] [CrossRef]
- Verniba, D.; Vescovi, J.D.; Hood, D.A.; Gage, W.H. The analysis of knee joint loading during drop landing from different heights and under different instruction sets in healthy males. Sports Med. Open 2017, 3, 6. [Google Scholar] [CrossRef]
- Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during noncontact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009, 43, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Imwalle, L.E.; Myer, G.D.; Ford, K.R.; Hewett, T.E. Relationship between hip and knee kinematics in athletic women during cutting maneuvers: A possible link to noncontact anterior cruciate ligament injury and prevention. J. Strength Cond. Res. 2009, 23, 2223–2230. [Google Scholar] [CrossRef]
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic load at baseline can predict radiographic diseaseprogression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef]
- Bennell, K.L.; Bowles, K.; Wang, Y.; Cicuttini, F.; Davies-Tuck, M.; Hinman, R.S. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann. Rheum. Dis. 2011, 70, 1770–1774. [Google Scholar] [CrossRef]
- Itoh, H.; Takiguchi, K.; Shibata, Y.; Okubo, S.; Yoshiya, S.; Kuroda, R. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping. J. Phys. Ther. Sci. 2016, 28, 2461–2467. [Google Scholar] [CrossRef]
- Paz, G.A.; Maia Mde, F.; Farias, D.; Santana, H.; Miranda, H.; Lima, V.; Herrington, L. Kinematic analysis of knee valgus during drop vertical jump and forward step-up in young basketball players. Int. J. Sports Phys. Ther. 2016, 11, 212–219. [Google Scholar]
- Sharma, L.; Dunlop, D.D.; Cahue, S.; Song, J.; Hayes, K.W. Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Ann. Intern. Med. 2003, 138, 613–619. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Wojtys, E.M.; Ashton-Miller, J.A. Association between preparatory muscle activation and peak valgus knee angle. J. Electromyogr. Kinesiol. 2008, 18, 973–979. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; McLean, S.G.; Ashton-Miller, J.A.; Wojtys, E.M. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J. Athl. Train. 2009, 44, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Wernli, K.; Ng, L.; Phan, X.; Davey, P.; Grisbrook, T. The relationship between landing sound, vertical ground reaction force, and kinematics of the lower limb during drop landings in healthy men. J. Orthop. Sports Phys. Ther. 2016, 46, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Urabe, Y.; Kobayashi, R.; Sumida, S.; Tanaka, K.; Yoshida, N.; Nishiwaki, G.A.; Tsutsumi, E.; Ochi, M. Electromyographic analysis of the knee during jump landing in male and female athletes. Knee 2005, 12, 129–134. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.G.; Huang, X.; van den Bogert, A.J. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clin. Biomech. 2005, 20, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Lucci, S.; Cortes, N.; Van Lunen, B.; Ringleb, S.; Onate, J. Knee and hip sagittal and transverse plane changes after two fatigue protocols. Med. Sci. Sports Exerc. 2011, 14, 453–459. [Google Scholar] [CrossRef]
- Yu, B.; Lin, C.F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 2009. [Google Scholar]
- Hollman, J.H.; Galardi, C.M.; Lin, I.H.; Voth, B.C.; Whitmarsh, C.L. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin. Biomech. 2014, 29, 468–474. [Google Scholar] [CrossRef]
- Norcross, M.F.; Blackburn, J.T.; Goerger, B.M.; Padua, D.A. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury. Clin. Biomech. 2010, 25, 1031–1036. [Google Scholar] [CrossRef]
- Hollman, J.H.; Ginos, B.E.; Kozuchowski, J.; Vaughn, A.S.; Krause, D.A.; Youdas, J.W. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J. Sport Rehabil. 2009, 18, 104–117. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.A.; Palmieri, R.M.; Zinder, S.M.; Ingersoll, C.D. Sex differences in valgus knee angle during a single-leg drop jump. J. Athl. Train. 2006, 41, 166–171. [Google Scholar] [PubMed]
Valgus Group | Varus Group | P | ES | |
---|---|---|---|---|
n = 10 | n = 7 | |||
vGRF impulse (N/kg) a | 0.111 (0.020) | 0.110 (0.018) | 0.93 | 0.00 |
Hip joint | ||||
Extensor angular impulse (Nm∙s/kg∙m) | 0.030 (0.026) | 0.082 (0.032) | <0.01 a | 0.48 |
Negative mechanical work (J/kg) | −0.128 (0.128) | −0.364 (0.194) | <0.01 a | 0.38 |
Knee joint | ||||
Extensor angular impulse (Nm∙s/kg∙m) | 0.119 (0.020) | 0.099 (0.025) | 0.04 b | 0.35 |
Negative mechanical work (J/kg) | −1.025 (0.233) | −0.745 (0.209) | 0.02 b | 0.30 |
Ankle joint | ||||
Extensor angular impulse (Nm∙s/kg∙m) | 0.139 (0.019) | 0.165 (0.025) | 0.02 b | 0.20 |
Negative mechanical work (J/kg) | −1.022 (0.139) | −0.957 (0.260) | 0.51 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamura, A.; Akasaka, K.; Otsudo, T. Energy Absorption Strategies in the Lower Extremities during Double-Leg Landings in Knee Valgus Alignment. Appl. Sci. 2020, 10, 8742. https://doi.org/10.3390/app10238742
Tamura A, Akasaka K, Otsudo T. Energy Absorption Strategies in the Lower Extremities during Double-Leg Landings in Knee Valgus Alignment. Applied Sciences. 2020; 10(23):8742. https://doi.org/10.3390/app10238742
Chicago/Turabian StyleTamura, Akihiro, Kiyokazu Akasaka, and Takahiro Otsudo. 2020. "Energy Absorption Strategies in the Lower Extremities during Double-Leg Landings in Knee Valgus Alignment" Applied Sciences 10, no. 23: 8742. https://doi.org/10.3390/app10238742
APA StyleTamura, A., Akasaka, K., & Otsudo, T. (2020). Energy Absorption Strategies in the Lower Extremities during Double-Leg Landings in Knee Valgus Alignment. Applied Sciences, 10(23), 8742. https://doi.org/10.3390/app10238742