Journal Bearing: An Integrated CFD-Analytical Approach for the Estimation of the Trajectory and Equilibrium Position
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Computational Fluid Dynamics
3.2. Dynamics
4. Discussion
5. Performance Enhancements
6. Conclusions
Funding
Conflicts of Interest
References
- Sommerfeld, A. The hydrodynamic theory of lubrication friction. Z. Math. Phys. 1904, 97, 50. [Google Scholar]
- Swift, H.W. The full journal bearing. Proc. Inst. Mech. Eng. 1931, 233, 267. [Google Scholar]
- Gao, G.; Yin, Z.; Jiang, D.; Zhang, X. Numerical analysis of plain journal bearing under hydrodynamic lubrication by water. Tribol Int. 2014, 75, 31–38. [Google Scholar]
- Jakobsson, B.; Floberg, L. The finite journal bearing, considering vaporization ((Das Gleitlager von endlicher Breite mit Verdampfung). Mater. Sci. 1957, 130, 3. [Google Scholar]
- Gumbel, L. Monatsblatter Berlin Bezirksver. Berl. Bez. 1914, 5, 159–174. [Google Scholar]
- Dowson, D. A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 1962, 4, 159–170. [Google Scholar]
- Raimondi, A.A.; Boyd, J. A solution for the finite journal bearing and its application to analysis and design: I. ASLE Trans. 1958, 1, 159–174. [Google Scholar]
- Raimondi, A.A.; Boyd, J. A solution for the finite journal bearing and its application to analysis and design: II. ASLE Trans. 1958, 1, 175–193. [Google Scholar]
- Raimondi, A.A.; Boyd, J. A solution for the finite journal bearing and its application to analysis and design: III. ASLE Trans. 1958, 1, 194–209. [Google Scholar]
- Concli, F. Pressure distribution in small hydrodynamic journal bearings considering cavitation: A numerical approach based on the open-source CFD code OpenFOAM®. Lubr. Sci. 2016, 28, 329–347. [Google Scholar]
- Mane, R.M.; Soni, S. Analysis Hydrodynamic Plain Journal Bearing. Res. J. Appl. Sci. Eng. Technol. 2013, 13, 765–770. [Google Scholar]
- Chauhan, A.; Singla, A.; Panwar, N.; Jindal, P. CFD based thermo-hydrodynamic analysis of circular journal bearing. J. Adv. Mech. Eng. 2014, 4, 475–482. [Google Scholar]
- Gandjalikhan Nassab, S.A.; Sohi, H.; Zaim, E.H. Study of lubricant compressibility effect on hydrodynamic characteristics of heavily loaded journal bearings. Iran. J. Sci. Technol. Trans. B Eng. 2011, 35, 101–105. [Google Scholar]
- Pan, C.T.H.; Vohr, J.H. Super Laminar Flow Bear. Seals. Des. Nucl. Power Mach. 1967, 219–245. [Google Scholar]
- Heshmat, H. The mechanism of cavitation in hydrodynamic lubrication. Tribol. Trans. 1991, 34, 177–186. [Google Scholar]
- Sawicki, J.T.; Rao, T.V. Cavitation effects on the stability of a submerged journal bearing. Int. J. Rotating Mach. 2004, 10, 227–232. [Google Scholar]
- Riedel, M.; Schmidt, M.; Stuecke, P. Numerical Investigation cavitation flow. J. Bear. Geom. 2013. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, D.; Keith, T.G.J. Development and evaluation of a cavitation algorithm. Tribol. Trans. 1989, 32, 225–233. [Google Scholar]
- Aitken, M.B.; Mccallion, H. Elastohydrodynamic lubrication of big-end bearings Part 1: Theory. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 1991, 205, 99–106. [Google Scholar]
- Concli, F.; Schaefer, T.C.; Bohnert, C. Innovative meshing strategies for bearing lubrication simulations. Lubricants 2020, 8, 46. [Google Scholar]
- OpenFOAM User Guide. Available online: https://www.openfoam.org (accessed on 3 July 2020).
- Kunz, R.F.; Boger, D.A.; Stinebring, D.R.; Chyczewski, T.S.; Lindau, J.W.; Gibeling, H.J.; Venkateswaran, S.; Govindan, T.R. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 2000, 29, 849–875. [Google Scholar] [CrossRef]
- Merkle, C.L.; Feng, J.; Buelow, P.E.O. Computational modeling of the dynamics of sheet cavitation. In Proceedings of the 3rd Symposium on Cavitation, Université Joseph Fourier, Grenoble, France, 7–10 April 1998; pp. 307–311. [Google Scholar]
- Liebrecht, J.; Si, X.; Sauer, B.; Schwarze, H. Investigation of drag and churning losses on tapered roller bearings. Stroj. Vestn. J. Mech. Eng. 2015, 61, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Liebrecht, J.; Si, X.; Sauer, B.; Schwarze, H. Technical-mathematical approach for the calculation of the flow and churning losses in tapered roller bearings. [Technisch-mathematischer Ansatz zur Berechnung der Plansch-und Strömungsverluste am Kegelrollenlager]. Tribol. Schmier. 2016, 63, 5–13. [Google Scholar]
- Gonda, A.; Großberndt, D.; Sauer, B.; Schwarze, H. Experimental and numerical investigations of hydraulic losses in rolling bearings under practice-oriented conditions. [Experimentelle und numerische untersuchungen der hydraulischen verluste in Wälzlagern unter praxisrelevanten Bedingungen]. Tribol. Schmier. 2018, 65, 7–13. [Google Scholar]
- Concli, F.; Gorla, C.; Rosa, F.; Conrado, E. Effect of the static pressure on the power dissipation of gearboxes. Lubr. Sci. 2019, 31, 347–355. [Google Scholar] [CrossRef]
- Yang, J.; Palazzolo, A. Computational fluid dynamics based mixing prediction for tilt pad journal bearing TEHD modeling—Part I: TEHD-CFD model validation and improvements. J. Tribol. 2020, 143, 011801. [Google Scholar] [CrossRef]
- Yang, J.; Palazzolo, A. Computational fluid dynamics based mixing prediction for tilt pad journal bearing TEHD modeling—Part II: Implementation with machine learning. J. Tribol. 2020, 143, 011802. [Google Scholar] [CrossRef]
- Kyrkou, M.-E.; Nikolakopoulos, P.G. Simulation of thermo-hydrodynamic behavior of journal bearings, lubricating with commercial oils of different performance. Simul. Model. Pract. Theory 2020, 104, 102128. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Chen, G. Thermo-elastohydrodynamic study on textured journal bearing with high-speed and high-specific-pressure. [高速高比压织构滑动轴承热弹流润滑分析]. Xibei Gongye Daxue Xuebao J. Northwest. Polytech. Univ. 2019, 37, 751–756. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Wang, Y.; Xu, W.-W.; Wang, Z. Investigations of the three-dimensional temperature field of journal bearings considering conjugate heat transfer and cavitation. Ind. Lubr. Tribol. 2019, 71, 109–118. [Google Scholar] [CrossRef]
- Dhande, D.Y.; Lanjewar, G.H.; Pande, D.W. Implementation of CFD–FSI technique coupled with response surface optimization method for analysis of three-lobe hydrodynamic journal bearing. J. Inst. Eng. Ser. C 2019, 100, 955–966. [Google Scholar] [CrossRef]
- Liu, H.; Xu, H.; Ellison, P.J.; Jin, Z. Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system. Tribol. Lett. 2010, 38, 325–336. [Google Scholar] [CrossRef]
- Sadabadi, H.; Nezhad, A.S. Nanofluids for performance improvement of heavy machinery journal bearings: A simulation study. Nanomaterials 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jamalabadi, M.Y.A.; Alamian, R.; Yan, W.-M.; Li, L.K.B.; Leveneur, S.; Shadloo, M.S. Effects of nanoparticle enhanced lubricant films in thermal design of plain journal bearings at high Reynolds numbers. Symmetry 2019, 11, 1353. [Google Scholar] [CrossRef] [Green Version]
- Bompos, D.A.; Nikolakopoulos, P.G. CFD simulation of magnetorheological fluid journal bearings. Simul. Model. Pract. Theory 2011, 19, 1035–1060. [Google Scholar] [CrossRef]
- Cabrera, D.L.; Woolley, N.H.; Allanson, D.R.; Tridimas, Y.D. Film pressure distribution in water-lubricated rubber journal bearings. Proc. Inst. Mech. Eng. Part. J J. Eng. Tribol. 2005, 219, 125–132. [Google Scholar] [CrossRef]
- Gertzos, K.P.; Nikolakopoulos, P.G.; Papadopoulos, C.A. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant. Tribol. Int. 2008, 41, 1190–1204. [Google Scholar] [CrossRef]
- Tauviqirrahman, M.; Pratama, A.; Jamari, J.; Muchammad, M. Hydrodynamic lubrication of textured journal bearing considering slippage: Two-dimensional CFD analysis using multiphase cavitation model. Tribol. Ind. 2019, 41, 401–415. [Google Scholar] [CrossRef]
- Concli, F. Low-loss gears precision planetary gearboxes: Reduction of the load dependent power losses and efficiency estimation through a hybrid analytical-numerical optimization tool. Forsch. Ing. Eng. Res. 2017, 81, 395–407. [Google Scholar] [CrossRef]
- Concli, F.; Cortese, L.; Vidoni, R.; Nalli, F.; Carabin, G. A mixed FEM and lumped-parameter dynamic model for evaluating the modal properties of planetary gearboxes. J. Mech. Sci. Technol. 2018, 32, 3047–3056. [Google Scholar] [CrossRef]
- Concli, F. Thermal and efficiency characterization of a low-backlash planetary gearbox: An integrated numerical-analytical prediction model and its experimental validation. Proc. Inst. Mech. Eng. Part. J J. Eng. Tribol. 2016, 230, 996–1005. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Cui, H. An ESA-CFD combined method for dynamic analysis of the aerostatic journal bearing. Lubr. Sci. 2020, 32, 387–403. [Google Scholar] [CrossRef]
- Concli, F.; Gorla, C. A CFD analysis of the oil squeezing power losses of a gear pair. Int. J. Comput. Methods Exp. Meas. 2014, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Concli, F.; Gorla, C.; Torre, A.D.; Montenegro, G. Windage power losses of ordinary gears: Different CFD approaches aimed to the reduction of the computational effort. Lubricants 2014, 2, 162–176. [Google Scholar] [CrossRef]
- Mastrone, M.N.; Hartono, E.A.; Chernoray, V.; Concli, F. Oil distribution and churning losses of gearboxes: Experimental and numerical analysis. Tribol. Int. 2020, 151, 106496. [Google Scholar] [CrossRef]
- Concli, F.; Gorla, C. CFD simulation of power losses and lubricant flows in gearboxes. In Proceedings of the American Gear Manufacturers Association Fall Technical Meeting, Columbus, OH, USA, 22–24 October 2017. [Google Scholar]
- Concli, F.; Gorla, C. Influence of lubricant temperature, lubricant level and rotational speed on the churning power loss in an industrial planetary speed reducer: Computational and experimental study. Int. J. Comput. Methods Exp. Meas. 2013, 1, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Concli, F.; Maccioni, L.; Gorla, C. Lubrication of gearboxes: CFD analysis of a cycloidal gear set. In WIT Transactions on Engineering Sciences; WIT Press: Southampton, UK, 2019; Volume 123, pp. 101–112. [Google Scholar]
- Yang-Wu Z A study of the viscosity-temperature relationship of synthetic lubricants. J. Synth. Lubr. 1991, 8, 103–114. [CrossRef]
- Scilab. Available online: http://www.scilab.org (accessed on 5 August 2020).
Journal Diameter D [mm] | Bearing Length L [mm] | Clearance e [µm] | Speed ω [rad/s] |
---|---|---|---|
4 | 13 | 10 | 328–3000 |
Oil Density (15 °C) [kg/m3] | Oil Viscosity (40 °C) [m2/s] | Oil Viscosity (100 °C) [m2/s] | |
1060 | 220 × 10−6 | 40 × 10−6 |
Volume Fraction | Pressure | Velocity | |
---|---|---|---|
Journal | ∇α = 0 | ∇p = 0 | ω = 0 |
Bearing | ∇α = 0 | ∇p = 0 | ω = U |
Sides | αv = 0 | p = 105 kg/ms2 | ∇u = 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concli, F. Journal Bearing: An Integrated CFD-Analytical Approach for the Estimation of the Trajectory and Equilibrium Position. Appl. Sci. 2020, 10, 8573. https://doi.org/10.3390/app10238573
Concli F. Journal Bearing: An Integrated CFD-Analytical Approach for the Estimation of the Trajectory and Equilibrium Position. Applied Sciences. 2020; 10(23):8573. https://doi.org/10.3390/app10238573
Chicago/Turabian StyleConcli, Franco. 2020. "Journal Bearing: An Integrated CFD-Analytical Approach for the Estimation of the Trajectory and Equilibrium Position" Applied Sciences 10, no. 23: 8573. https://doi.org/10.3390/app10238573
APA StyleConcli, F. (2020). Journal Bearing: An Integrated CFD-Analytical Approach for the Estimation of the Trajectory and Equilibrium Position. Applied Sciences, 10(23), 8573. https://doi.org/10.3390/app10238573