Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Spectroelectrochemistry of the Devices
3.2. Device Performance Metrics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; 2018; in press; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 12 June 2020).
- Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar]
- Piccolo, A. Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy Build. 2010, 42, 1409–1417. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef]
- Byker, H.J. Variable Reflectance Motor Vehicle Mirror. U.S. Patent 5,128,799, 7 July 1992. [Google Scholar]
- Varaprasad, D.V.; Habibi, H.; Mccabe, I.A.; Lynam, N.R.; Zhao, M.; Dornan, C.A. Electrochromic Mirrors and Devices. U.S. Patent 5,724,187, 3 March 1995. [Google Scholar]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and device. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Mortimer, R.J.; Rosseinsky, D.R.; Monk, P.M.S. Electrochromic Materials and Devices; Wiley-VCH: Weinheim, Germany, 2015; p. 211. [Google Scholar]
- Cai, G.; Wang, J.; Lee, P.S. Next-Generation Multifunctional Electrochromic Devices. Acc. Chem. Res. 2016, 49, 1469–1476. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef]
- Yan, S.M.; Dong, Y.J.; Li, W.J.; Chen, L.; Dai, Y.Y.; Ren, N.; Wu, Y.Z.; Zhang, Y.J.; Zhang, C. Electrochemical and electrochromic properties of bilayer polymer films prepared by electrochemical polymerization based on star-shaped thiophene derivatives. New J. Chem. 2019, 43, 9566–9573. [Google Scholar] [CrossRef]
- Ding, J.J.; Liu, Z.; Wei, A.X.; Chen, T.P.; Zhang, H. Study of electrochromic characteristics in the nearinfrared region of electrochromic devices based on solution-processed amorphous WO3 films. Mater. Sci. Semicond. Process. 2018, 88, 73–78. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, M.; Xie, J.; Diao, G. Synergistically Enhanced Electrochemical Response of Host−Guest Recognition Based on Ternary Nanocomposites: Reduced Graphene Oxide-Amphiphilic Pillar [5] arene-Gold Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 11218–11224. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, C.; Xu, G.; Tan, S.; Zhang, J. Amorphous titanium dioxide film with improved electrochromism in nearinfrared region. Opt. Mater. 2019, 89, 191–196. [Google Scholar] [CrossRef]
- Shankar, S.; Lahav, M.; Van der Boom, M.E. Coordination-Based Molecular Assemblies as Electrochromic Materials: Ultra-High Switching Stability and Coloration Efficiencies. J. Am. Chem. Soc. 2015, 137, 4050–4053. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.-W.; Wu, S.-H.; Burkhardt, S.E.; Yao, C.-J.; Abruña, H.D. Mononuclear and Dinuclear Ruthenium Complexes of 2,3-Di-2-pyridyl-5,6-diphenylpyrazine: Synthesis and Spectroscopic and Electrochemical Studies. Inorg. Chem. 2011, 50, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tsai, C.-Y.; Abidin, T.; Jiang, J.-C.; Shie, W.-R.; Li, L.-J.; Liaw, D.-J. Transmissive-to-black fast electrochromic switching from a long conjugated pendant group and a highly dispersed polymer/SWNT. Polym. Chem. 2018, 9, 619–626. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Li, X.; Xu, G.; Dou, S.; Zhang, X.; Chen, X.; Zhao, J.; Zhang, K.; Li, Y. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. J. Mater. Chem. C 2019, 7, 9878–9891. [Google Scholar] [CrossRef]
- Teran, N.B.; Reynolds, J.R. Discrete Donor−Acceptor Conjugated Systems in Neutral and Oxidized States: Implications toward Molecular Design for High Contrast Electrochromics. Chem. Mater. 2017, 29, 1290–1301. [Google Scholar] [CrossRef]
- Beneduci, A.; Corrente, G.A.; Chidichimo, G. Electrochomic and Electrofluorescence Liquid Crystals. In Electrochromic Smart Materials: Fabrication and Application; Xu, J.W., Chua, M.H., Shah, K.W., Eds.; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 261–292. [Google Scholar]
- Corrente, G.A.; Fabiano, E.; Manni, F.; Chidichimo, G.; Gigli, G.; Beneduci, A.; Capodilupo, A.-L. Colorless to All-Black Full-NIR High-Contrast Switching in Solid Electrochromic Films Prepared with Organic Mixed Valence Systems Based on Dibenzofulvene Derivatives. Chem. Mater. 2018, 30, 5610–5620. [Google Scholar] [CrossRef]
- Pibiri, I.; Beneduci, A.; Carraro, M.; Causin, V.; Casella, G.; Corrente, G.A.; Chidichimo, G.; Pace, A.; Riccobono, A.; Saielli, G. Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended bent core. J. Mater. Chem. C 2019, 7, 7974–7983. [Google Scholar] [CrossRef]
- Veltri, L.; Cavallo, G.; Beneduci, A.; Metrangolo, P.; Corrente, G.A.; Ursini, M.; Romeo, R.; Terraneo, G.; Gabriele, B. Synthesis and thermotropic properties of new green electrochromic ionic liquid crystals. New J. Chem. 2019, 43, 18285–18293. [Google Scholar] [CrossRef]
- Cospito, S.; De Simone, B.C.; Beneduci, A.; Imbardelli, D.; Chidichimo, G. Novel electrochromic gel with high optical contrast in the visible and near-infrared. Mater. Chem. Phys. 2013, 140, 431–434. [Google Scholar] [CrossRef]
- Maltese, V.; Cospito, S.; Beneduci, A.; De Simone, B.C.; Russo, N.; Chidichimo, G.; Janssen, R.A.J. Electro-optical properties of neutral and radical ion thienosquaraines. Chem. Eur. J. 2016, 22, 10179–10186. [Google Scholar] [CrossRef]
- Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18. [Google Scholar] [CrossRef]
- Rosseinsky, D.R.; Mortimer, R.J. Electrochromic Systems and the Prospects for Devices. Adv. Mater. 2001, 13, 783–793. [Google Scholar] [CrossRef]
- Mortimer, R.J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147–156. [Google Scholar] [CrossRef]
- Monk, P.M.S. The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine; Wiley-VCH: New York, NY, USA; Weinheim, Germany, 1998. [Google Scholar]
- Yolanda, A.; Ana, V.; Javier, R.; Ramon, T.-Z. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments. Materials 2018, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Cospito, S.; La Deda, M.; Veltri, L.; Chidichimo, G. Electrofluorochromism in π-conjugated ionic liquid crystals. Nat. Commun. 2014, 5, 3105. [Google Scholar] [CrossRef]
- Cospito, S.; Beneduci, A.; Veltri, L.; Salamonczyk, M.; Chidichimo, G. Mesomorphism and electrochemistry of thienoviologen liquid crystals. Phys. Chem. Chem. Phys. 2015, 17, 17670–17678. [Google Scholar] [CrossRef]
- Thelakkat, M. Star–shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442–461. [Google Scholar] [CrossRef]
- Kurosawa, T.; Higashihara, T.; Ueda, M. Polyimide memory: A pithy guideline for future applications. Polym. Chem. 2013, 4, 16–30. [Google Scholar] [CrossRef]
- Chang, C.-W.; Yen, H.-J.; Huang, K.-Y.; Yeh, J.-M.; Liou, G.-S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: Synthesis, electrochromic, and gas separation properties. J. Polym. Sci. A Polym. Chem. 2008, 46, 7937–7949. [Google Scholar] [CrossRef]
- Yen, H.-J.; Guo, S.-M.; Yeh, J.-M.; Liou, G.-S. Triphenylamine-based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. J. Polym. Sci. A Polym. Chem. 2011, 49, 3637–3646. [Google Scholar] [CrossRef]
- Cai, J.W.; Niu, H.J.; Zhao, P.; Ji, Y.; Ma, L.; Wang, C.; Bai, X.; Wang, W. Multicolored near-infrared electrochromic polyimides: Synthesis, electrochemical, and electrochromic properties. Dyes Pigm. 2013, 99, 1124–1131. [Google Scholar] [CrossRef]
- Ma, L.N.; Niu, H.J.; Cai, J.W.; Zhao, P.; Wang, C.; Bai, X.; Lian, Y.; Wang, W. Photoelectrochemical and electrochromic properties of polyimide/graphene oxide composites. Carbon 2014, 67, 488–499. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Hsu, P.-N.; Chen, W.-H.; Lin, S.-L. High glass transitions of new polyamides, polyimides, and poly(amide-imide) s containing a triphenylamine group: Synthesis and characterization. Macromolecules 2002, 35, 4669–4676. [Google Scholar] [CrossRef]
- Heckmann, A.; Lambert, C. Organic Mixed-Valence Compounds: A Playground for Electrons and Holes. Angew. Chem. Int. Ed. 2012, 51, 326–392. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-W.; Yen, H.-J.; Wu, J.-H.; Liou, G.-S. Colorless Triphenylamine-Based Aliphatic Thermoset Epoxy for Multicolored and Near-Infrared Electrochromic Applications. ACS Appl. Mater. Interfaces 2014, 6, 3594–3599. [Google Scholar] [CrossRef]
- Barlow, S.; Risko, C.; Coropceanu, V.; Tucker, N.M.; Jones, S.C.; Levi, Z.; Khrustalev, V.N.; Antipin, M.Y.; Kinnibrugh, T.L.; Timofeeva, T.; et al. A mixed-valence bis(diarylamino)stilbene: Crystal structure and comparison of electronic coupling with biphenyl and tolane analogues. Chem. Commun. 2005, 6, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Corrente, G.A.; Fabiano, E.; Maltese, V.; Cospito, S.; Ciccarella, G.; Chidichimo, G.; Gigli, G.; Capodilupo, A.-L. Orthogonal electronic coupling in multicentre arylamine mixed-valence compounds based on a dibenzofulvene-thiophene conjugated bridge. Chem. Commun. 2017, 53, 8960–8963. [Google Scholar] [CrossRef]
- Takahashi, K.; Nihira, T.; Akiyama, K.; Ikegami, Y.; Fukuyo, E. Synthesis and Characterization of New Conjugation-extended Viologens Involving a Central Aromatic Linking Group. J. Chem. Soc. Chem. Commun. 1992, 8, 620–622. [Google Scholar] [CrossRef]
- Beneduci, A.; Cospito, S.; Crispini, A.; Gabriele, B.; Nicoletta, F.P.; Veltri, L.; Chidichimo, G. Switching from columnar to calamitic mesophases in a new class of rod-like thienoviologens. J. Mater. Chem. C 2013, 1, 2233–2240. [Google Scholar] [CrossRef]
- Corrente, G.A.; Fabiano, E.; La Deda, M.; Manni, F.; Gigli, G.; Chidichimo, G.; Capodilupo, A.L.; Beneduci, A. High-Performance Electrofluorochromic Switching Devices Using a Novel Arylamine-Fluorene Redox-Active Fluorophore. ACS Appl. Mater. Interfaces 2019, 11, 12202–12208. [Google Scholar] [CrossRef]
- Angiolini, L.; Giorgini, L.; Li, H.; Golemme, A.; Mauriello, F.; Termine, R. Synthesis, characterization and photoconductive properties of optically activemethacrylic polymers bearing side-chain 9-phenylcarbazole moieties. Polymer 2010, 51, 368–377. [Google Scholar] [CrossRef]
- Beneduci, A.; Cospito, S.; La Deda, M.; Chidichimo, G. Highly fluorescent thienoviologen-based polymer gels for single layer electrofluorochromic devices. Adv. Funct. Mater. 2015, 25, 1240–1247. [Google Scholar] [CrossRef]
- Alberto, M.E.; De Simone, B.C.; Cospito, S.; Imbardelli, D.; Veltri, L.; Chidichimo, G.; Russo, N. Experimental and theoretical characterization of a new synthesized extended viologen. Chem. Phys. Lett. 2012, 552, 141–145. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, W.; Guan, Z.; Jin, B.; Xiao, D. A novel bis(dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency. Electrochim. Acta 2019, 298, 533–540. [Google Scholar] [CrossRef]
- Fang, H.; Zheng, P.; Ma, R.; Xu, C.; Yang, G.; Wang, Q.; Wang, H. Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Mater. Horiz. 2018, 5, 1000–1007. [Google Scholar] [CrossRef]
- Li, X.; Perera, K.; He, J.; Gumyusenge, A.; Mei, J. Solution-processable electrochromic materials and devices: Roadblocks and strategies towards large-scale applications. J. Mater. Chem. C 2019, 7, 12761–12789. [Google Scholar] [CrossRef]
Sample-λμαξ | R2 | χ2 | ||
---|---|---|---|---|
TV/Fc-670 nm | 0.64 (0.02) | 1.160 (0.007) | 0.9880 | 0.000888 |
TV/FD-1240 nm | 0.08 (0.01) | 0.39 (0.02) | 0.9612 | 0.000709 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrente, G.A.; Cospito, S.; Capodilupo, A.L.; Beneduci, A. Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region. Appl. Sci. 2020, 10, 8372. https://doi.org/10.3390/app10238372
Corrente GA, Cospito S, Capodilupo AL, Beneduci A. Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region. Applied Sciences. 2020; 10(23):8372. https://doi.org/10.3390/app10238372
Chicago/Turabian StyleCorrente, Giuseppina Anna, Sante Cospito, Agostina Lina Capodilupo, and Amerigo Beneduci. 2020. "Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region" Applied Sciences 10, no. 23: 8372. https://doi.org/10.3390/app10238372
APA StyleCorrente, G. A., Cospito, S., Capodilupo, A. L., & Beneduci, A. (2020). Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region. Applied Sciences, 10(23), 8372. https://doi.org/10.3390/app10238372