Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol
Abstract
:1. Introduction
2. Photometric and Melanopic Relationships among Different Standards
2.1. Theoretical Considerations
2.2. Radiometric and Photometric Characterization of LEDs
3. Indoor Lighting Simulations
3.1. Lighting Project
3.2. Lighting for Elderly Individuals
3.3. Example of Lighting Project
- Luminaires should have the most extensive spatial distribution curve possible, satisfying the UGR requirements characterized by the current normative for each area.
- Diffusive walls and ceiling with the highest reflectance values.
- LEDs with suitable CCT and CRI, correct price requisites and with the highest MAF possible.
- Substitute the simulated EV value obtained with the illumination program to obtain the minimum allowed MAF that can include LEDs in the luminaires. If the LEDs do not reach this value, another LED with a higher MAF must be selected.
- Modify the design of the luminaire; another luminaire with a more extensive profile should be used because it contributes higher EV.
- Increase the value of the reflectance in the walls and ceiling, which increases the EV.
4. Discussion
5. Conclusions
- Simple equations are proposed to calculate circadian lighting from values of photopic illuminance. The relationships are and with , which are calculated for a variety of lamps. The Rea proposal should be considered as it has previously been described. These equations can provide quick feedback for lighting manufacturers and designers regarding healthy circadian effects, and the correspondence between both metrics is easily determined.
- An example of our method’s application is provided using numerical simulation data obtained with DIAlux. Various lighting conditions are described, including different types of luminaire, various combinations of room surface reflectance, various orientations of the visual axis, and the observer’s age.
- Three ways are described to obtain the best photopic and melanopic illuminance levels in lighting projects:
- ○
- Substitute the simulated EV value obtained with the illumination program to obtain the minimum allowed MAF, CLA, and CS that can include LEDs in the luminaires. If the LEDs do not reach this value, other LEDs with a higher proportion must be selected.
- ○
- Modify the design of the luminaire; another luminaire with a more extensive profile should be used if it contributes a higher EV.
- ○
- Increase the value of the reflectance in the walls and ceiling, which will increase the EV.
- In this initial approximation, to perform a lighting project MAF, the CLA and CS parameters should be provided in the datasheet of the lamps. However, we have several limitations; the results reported in this study are based on a sample of SPDs, and our results could not be generalized to all LED spectra. In particular, these results should not be expected to have any predictive power for color-mixed LED solutions that employ arrays of narrow-emitting LEDs to generate nominally white light. It is assumed that the materials of the luminaires and walls of the rooms do not modify the SPD of the vertical illumination that reaches the corneal plane. In future research, these limitations should be considered.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CEN/TC 169-Light and lighting EN 12464-1:Lighting of Work Places-Part 1: Indoor Work Places; European Committee For Standardization: Brussels, Belgium, 2011.
- Illuminating Engineering Society of North America. The Lighting Handbook, 10th ed.; Illuminating Engineering Society of North America: New York, NY, USA, 2011. [Google Scholar]
- CEN/TC 169-Light and Lighting EN 15193-1: Energy Performance of Buildings-Energy Requirements for Lighting-Part 1: Specifications, Module M9; European Committee For Standardization: Brussels, Belgium, 2017.
- CIBSE SLL Lighting Guide 07: Offices; Chartered Institution of Building Services Engineers (CIBSE): London, UK, 2005.
- Lewy, A.J.; Wehr, T.A.; Goodwin, F.K.; Newsome, D.A.; Markey, S.P. Light suppresses melatonin secretion in humans. Science 1980, 210, 1267–1269. [Google Scholar] [CrossRef]
- Benarroch, E.E. The melanopsin system: Phototransduction, projections, functions, and clinical implications. Neurology 2011, 76, 1422–1427. [Google Scholar] [CrossRef]
- LeGates, T.A.; Fernandez, D.C.; Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 2014, 15, 443–454. [Google Scholar] [CrossRef]
- Gaggioni, G.; Maquet, P.; Schmidt, C.; Dijk, D.; Vandewalle, G. Neuroimaging, cognition, light and circadian rhythms. Front. Syst. Neurosci. 2014, 8, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneault, V.; Dumont, M.; Masse, E.; Vandewalle, G.; Carrier, J. Light-sensitive brain pathways and aging. J. Physiol. Anthropol. 2016, 35, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, A.; Souman, J.L.; de Ruyter, B.; Heynderickx, I.; de Kort, Y.A. Lighting up the office: The effect of wall luminance on room appraisal, office workers’ performance, and subjective alertness. Build. Environ. 2018, 142, 534–543. [Google Scholar] [CrossRef]
- Aries, M.B.C.; Aarts, M.P.J.; Van Hoof, J. Daylight and health: A review of the evidence and consequences for the built environment. Light. Res. Technol. 2015, 47, 6–27. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Chen, S.; Hattar, S. Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends Neurosci. 2011, 34, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Rea, M.S.; Figueiro, M.G.; Bierman, A.; Hamner, R. Modelling the spectral sensitivity of the human circadian system. Light. Res. Technol. 2012, 44, 386–396, Corrigendum in 2012, 44, 516. [Google Scholar] [CrossRef]
- Rea, M.S.; Figueiro, M.G. Light as a circadian stimulus for architectural lighting. Light. Res. Technol. 2018, 50, 497–510. [Google Scholar] [CrossRef]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- CIE S 026/E:2018 CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light; CIE Central Bureau: Vienna, Austria, 2018.
- DIN SPEC 5031-100:2015-08. Optical Radiation Physics and Illuminating Engineering-Part 100: Melanopic Effects of Ocular Light on Human Beings-Quantities, Symbols and Action Spectra; Deutsches Institut für Normung (DIN): Berlin, Germany, 2015. [Google Scholar]
- Khademagha, P.; Aries, M.; Rosemann, A.; van Loenen, E.J. Implementing non-image-forming effects of light in the built environment: A review on what we need. Build. Environ. 2016, 108, 263–272. [Google Scholar] [CrossRef] [Green Version]
- WELL Building Standard. LIGHT. Feature 53. Visual Lighting Design; International WELL Building Institute: New York, NY, USA, 2020. [Google Scholar]
- ANSI/IES-TM-30-18 Method for Evaluating Light Source Colour Rendition; IESNA: New York, NY, USA, 2018.
- CIE 224:2017 Colour Fidelity Index for Accurate Scientific Use; CIE Central Bureau: Vienna, Austria, 2017.
- Knoop, M.; Broszio, K.; Diakite, A.; Liedtke, C.; Niedling, M.; Rothert, I.; Rudawski, F.; Weber, N. Methods to describe and measure lighting conditions in experiments on non-image-forming aspects. LEUKOS J. Illum. Eng. Soc. 2019, 15, 163–179. [Google Scholar] [CrossRef]
- Sánchez-Cano, A.; Pérez, O.L.; Aporta, J. Proposal to calculate the circadian component in lighting projects. Opt. Pura Apl. 2019, 52, 1–11. [Google Scholar] [CrossRef]
- Spitschan, M.; Stefani, O.; Blattner, P.; Gronfier, C.; Lockley, S.W.; Lucas, R.J. How to report light exposure in human chronobiology and sleep research experiments. Clocks Sleep 2019, 1, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Kort, Y.A.W. Tutorial: Theoretical considerations when planning research on human factors in lighting. LEUKOS J. Illum. Eng. Soc. 2019, 15, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Tähkämö, L.; Partonen, T.; Pesonen, A.-K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef] [Green Version]
- UL DG 24480: Design Guideline for Promoting Circadian Entrainment with Light for Day-Active People; Underwriters Laboratories (UL): Northbrook, IL, USA, 2020.
- Rea, M.S.; Figueiro, M.G.; Bullough, J.D.; Bierman, A. A model of phototransduction by the human circadian system. Brain Res. Rev. 2005, 50, 213–228. [Google Scholar] [CrossRef]
- Rea, M. Circadian Stimulus Calculator. Available online: https://www.lrc.rpi.edu/cscalculator/ (accessed on 6 November 2020).
- Rea, M.S.; Figueiro, M.G.; Bierman, A.; Bullough, J.D. Circadian light. J. Circad. Rhythm. 2010, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Wyszecki, G.; Stiles, W.S. Color Science; Wiley: New York, NY, USA, 1982; Volume 8. [Google Scholar]
- CEN/TR 16791: Quantifying Irradiance for Eye-Mediated Non-Image-Forming Effects of Light in Humans; European Committee for Standardization: Brussels, Belgium, 2017.
- Ochoa, C.E.; Aries, M.B.C.; Hensen, J.L.M. State of the art in lighting simulation for building science: A literature review. J. Build. Perform. Simul. 2012, 5, 209–233. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.; Cai, W.; Li, M.; Hu, Z.; Xue, P.; Dai, Q. Efficient circadian daylighting: A proposed equation, experimental validation, and the consequent importance of room surface reflectance. Energy Build. 2020, 210, 109784. [Google Scholar] [CrossRef]
- Cai, W.; Yue, J.; Dai, Q.; Hao, L.; Lin, Y.; Shi, W.; Huang, Y.; Wei, M. The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design. Build. Environ. 2018, 141, 288–297. [Google Scholar] [CrossRef]
- Dai, Q.; Huang, Y.; Hao, L.; Lin, Y.; Chen, K. Spatial and spectral illumination design for energy-efficient circadian lighting. Build. Environ. 2018, 146, 216–225. [Google Scholar] [CrossRef]
- Lowry, G.D. A comparison of metrics proposed for circadian lighting and the criterion adopted in the WELL Building Standard. In CIBSE Technical Symposium, Stretching the Envelope; London South Bank University: London, UK, 2018. [Google Scholar]
- Dai, Q.; Shan, Q.; Lam, H.; Hao, L.; Lin, Y.; Cui, Z. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting. Opt. Express 2016, 24, 20049–20059. [Google Scholar] [CrossRef]
- Nie, J.; Chen, Z.; Jiao, F.; Li, C.; Zhan, J.; Chen, Y.; Chen, Y.; Kang, X.; Wang, Y.; Wang, Q. Tunable LED lighting with five channels of RGCWW for high circadian and visual performances. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Aderneuer, T.; Stefani, O.; Fernández, O.; Cajochen, C.; Ferrini, R. Circadian tuning with metameric white light: Visual and non-visual aspects. Preprints 2019. [Google Scholar] [CrossRef]
- Dai, Q.; Cai, W.; Shi, W.; Hao, L.; Wei, M. A proposed lighting-design space: Circadian effect versus visual illuminance. Build. Environ. 2017, 122, 287–293. [Google Scholar] [CrossRef]
- Konis, K. A novel circadian daylight metric for building design and evaluation. Build. Environ. 2017, 113, 22–38. [Google Scholar] [CrossRef]
# | CCT (K) | x | y | CRI | Rf | Rg | Rcs,h1 (%) | Rf,h1 |
---|---|---|---|---|---|---|---|---|
1 | 6614 | 0.3114 | 0.3243 | 84 | 82 | 95 | −11.9 | 77.0 |
2 | 6486 | 0.3124 | 0.3335 | 99 | 98 | 99 | −1.3 | 97.0 |
3 | 6483 | 0.3130 | 0.3292 | 91 | 88 | 99 | −4.7 | 88.9 |
4 | 6243 | 0.3170 | 0.3360 | 98 | 96 | 99 | −0.8 | 96.8 |
5 | 5812 | 0.3255 | 0.3410 | 96 | 96 | 101 | −1.2 | 97.3 |
6 | 5767 | 0.3265 | 0.3391 | 98 | 98 | 101 | −0.5 | 98.3 |
7 | 5653 | 0.3290 | 0.3460 | 98 | 96 | 99 | −1.1 | 96.6 |
8 | 5113 | 0.3421 | 0.3509 | 87 | 87 | 95 | −11.5 | 77.8 |
9 | 4998 | 0.3460 | 0.3550 | 99 | 97 | 101 | −0.6 | 97.2 |
10 | 4956 | 0.3470 | 0.3600 | 91 | 89 | 99 | −5.0 | 89.5 |
11 | 4935 | 0.3470 | 0.3560 | 99 | 97 | 100 | −0.9 | 97.3 |
12 | 4884 | 0.3490 | 0.3590 | 99 | 98 | 100 | −1.4 | 97.4 |
13 | 4879 | 0.3496 | 0.3637 | 83 | 84 | 95 | −12.5 | 77.5 |
14 | 4832 | 0.3499 | 0.3545 | 99 | 98 | 101 | −0.9 | 98.1 |
15 | 4654 | 0.3571 | 0.3696 | 97 | 94 | 99 | −1.5 | 94.7 |
16 | 4051 | 0.3786 | 0.3767 | 98 | 97 | 101 | −0.1 | 98.2 |
17 | 4049 | 0.3810 | 0.3858 | 97 | 97 | 99 | 0.5 | 98.2 |
18 | 4048 | 0.3800 | 0.3800 | 99 | 96 | 99 | −1.1 | 96.8 |
19 | 3969 | 0.3836 | 0.3841 | 91 | 89 | 97 | −5.6 | 89.0 |
20 | 3929 | 0.3834 | 0.3779 | 82 | 82 | 96 | −11.8 | 79.8 |
21 | 3790 | 0.3901 | 0.3822 | 96 | 91 | 98 | −0.8 | 93.9 |
22 | 3456 | 0.4080 | 0.3940 | 99 | 97 | 100 | −0.9 | 97.6 |
23 | 3372 | 0.4126 | 0.3942 | 98 | 97 | 102 | −0.1 | 97.9 |
24 | 3081 | 0.4297 | 0.3988 | 86 | 87 | 94 | −10.2 | 81.1 |
25 | 3079 | 0.4350 | 0.4100 | 97 | 97 | 102 | 0.4 | 96.7 |
26 | 3058 | 0.4371 | 0.4116 | 91 | 91 | 98 | −5.5 | 89.6 |
27 | 3039 | 0.4330 | 0.4010 | 98 | 98 | 101 | −0.5 | 97.9 |
28 | 3024 | 0.4351 | 0.4031 | 84 | 85 | 97 | −10.6 | 81.1 |
29 | 2975 | 0.4390 | 0.4052 | 97 | 97 | 102 | −0.2 | 97.2 |
30 | 2946 | 0.4411 | 0.4060 | 96 | 94 | 103 | −0.7 | 96.5 |
31 | 2870 | 0.4529 | 0.4196 | 96 | 93 | 96 | −0.9 | 96.2 |
32 | 2749 | 0.4564 | 0.4105 | 82 | 84 | 97 | −11.4 | 79.5 |
33 | 2736 | 0.4562 | 0.4085 | 97 | 95 | 103 | −0.7 | 96.3 |
34 | 2727 | 0.4580 | 0.4100 | 98 | 97 | 102 | −1.0 | 96.9 |
35 | 2696 | 0.4624 | 0.4146 | 97 | 95 | 100 | 0.7 | 96.6 |
36 | 2684 | 0.4641 | 0.4161 | 93 | 91 | 96 | −5.0 | 89.3 |
37 | 2602 | 0.4719 | 0.4188 | 96 | 93 | 96 | −1.0 | 96.1 |
38 | 2449 | 0.4852 | 0.4200 | 96 | 94 | 96 | −1.4 | 95.9 |
39 | 2268 | 0.5030 | 0.4215 | 96 | 92 | 95 | −1.6 | 95.5 |
# | MAF | EDI (lux) | EML (lux) | Circadian Light (CLA) (lux) | Circadian Stimulus (CS) |
---|---|---|---|---|---|
D65 (CIE) | 0.906 | 100.00 | 110.40 | 150.98 | 0.196 |
A (CIE) | 0.449 | 49.59 | 54.75 | 99.99 | 0.139 |
EQUAL-ENERGY | 0.821 | 90.58 | 100.01 | 134.11 | 0.178 |
1 | 0.812 | 89.69 | 99.02 | 139.36 | 0.184 |
2 | 0.905 | 99.96 | 110.36 | 145.43 | 0.19 |
3 | 0.832 | 91.84 | 101.39 | 136.47 | 0.181 |
4 | 0.897 | 99.00 | 109.30 | 139.92 | 0.184 |
5 | 0.809 | 89.33 | 98.62 | 130.24 | 0.174 |
6 | 0.846 | 93.36 | 103.07 | 131.21 | 0.175 |
7 | 0.840 | 92.77 | 102.42 | 123.36 | 0.166 |
8 | 0.746 | 82.38 | 90.94 | 105.42 | 0.145 |
9 | 0.769 | 84.93 | 93.76 | 108.80 | 0.149 |
10 | 0.701 | 77.37 | 85.42 | 93.53 | 0.131 |
11 | 0.759 | 83.80 | 92.51 | 103.76 | 0.143 |
12 | 0.752 | 83.00 | 91.63 | 102.23 | 0.141 |
13 | 0.660 | 72.91 | 80.49 | 86.78 | 0.122 |
14 | 0.744 | 82.11 | 90.65 | 103.83 | 0.143 |
15 | 0.720 | 79.51 | 87.78 | 87.28 | 0.123 |
16 | 0.652 | 71.94 | 79.42 | 73.32 | 0.104 |
17 | 0.650 | 71.76 | 79.22 | 70.56 | 0.101 |
18 | 0.641 | 70.72 | 78.07 | 69.60 | 0.099 |
19 | 0.583 | 64.32 | 71.01 | 59.42 | 0.085 |
20 | 0.537 | 59.30 | 65.47 | 58.59 | 0.084 |
21 | 0.633 | 69.90 | 77.17 | 64.29 | 0.092 |
22 | 0.549 | 60.61 | 66.92 | 123.67 | 0.166 |
23 | 0.535 | 59.07 | 65.21 | 120.54 | 0.163 |
24 | 0.493 | 54.38 | 60.04 | 110.40 | 0.151 |
25 | 0.466 | 51.41 | 56.75 | 103.37 | 0.143 |
26 | 0.439 | 48.46 | 53.50 | 97.61 | 0.136 |
27 | 0.484 | 53.44 | 59.00 | 108.25 | 0.149 |
28 | 0.418 | 46.12 | 50.92 | 93.98 | 0.131 |
29 | 0.462 | 51.02 | 56.33 | 103.05 | 0.142 |
30 | 0.435 | 47.98 | 52.97 | 96.85 | 0.135 |
31 | 0.459 | 50.68 | 55.96 | 101.05 | 0.140 |
32 | 0.362 | 39.93 | 44.08 | 80.77 | 0.114 |
33 | 0.416 | 45.87 | 50.64 | 92.23 | 0.129 |
34 | 0.416 | 45.90 | 50.67 | 92.02 | 0.129 |
35 | 0.409 | 45.17 | 49.87 | 89.97 | 0.126 |
36 | 0.394 | 43.52 | 48.05 | 86.78 | 0.122 |
37 | 0.410 | 45.30 | 50.01 | 90.01 | 0.126 |
38 | 0.373 | 41.13 | 45.41 | 81.36 | 0.115 |
39 | 0.336 | 37.08 | 40.94 | 72.68 | 0.104 |
Photopic Illuminance (lux) | 76 cm | 120 cm | |||||
---|---|---|---|---|---|---|---|
EH-MED | EH-MAX | EH-MIN | EH-MED | EH-MAX | EH-MIN | ||
0% | Intensive | 547 | 622 | 442 | 113 | 180 | 30 |
Lambertian | 427 | 464 | 414 | 123 | 169 | 71 | |
Extensive | 469 | 539 | 454 | 146 | 214 | 100 | |
30% | Intensive | 572 | 647 | 469 | 169 | 230 | 94 |
Lambertian | 460 | 492 | 450 | 204 | 259 | 149 | |
Extensive | 504 | 568 | 491 | 208 | 279 | 164 | |
50% | Intensive | 600 | 675 | 497 | 196 | 262 | 115 |
Lambertian | 510 | 524 | 491 | 242 | 289 | 197 | |
Extensive | 542 | 600 | 531 | 246 | 310 | 212 | |
80% | Intensive | 671 | 749 | 561 | 260 | 343 | 166 |
Lambertian | 596 | 600 | 594 | 334 | 374 | 288 | |
Extensive | 643 | 684 | 635 | 340 | 393 | 315 | |
80% up and 0% down | Intensive | 616 | 691 | 517 | 181 | 242 | 110 |
Lambertian | 529 | 549 | 524 | 233 | 288 | 185 | |
Extensive | 572 | 626 | 563 | 236 | 309 | 188 | |
0% up and 80% down | Intensive | 613 | 683 | 525 | 211 | 276 | 133 |
Lambertian | 452 | 503 | 435 | 175 | 242 | 100 | |
Extensive | 534 | 618 | 512 | 246 | 315 | 203 |
Wall Reflectance 80%, Rotation around a Vertical Axis Photopic Illuminance (lux) | EH-MED | EH-MAX | EH-MIN | |
---|---|---|---|---|
0° | Intensive | 260 | 339 | 169 |
Lambertian | 332 | 373 | 305 | |
Extensive | 330 | 391 | 299 | |
45° | Intensive | 252 | 409 | 178 |
Lambertian | 280 | 317 | 248 | |
Extensive | 335 | 367 | 289 | |
90° | Intensive | 260 | 343 | 168 |
Lambertian | 334 | 307 | 262 | |
Extensive | 340 | 393 | 293 |
Wall Reflectance 80%, Rotation around a Horizontal Axis Photopic Illuminance (lux) | Table | Table | |||
---|---|---|---|---|---|
(Reflectance 60%) | (Reflectance 0%) | ||||
EV-MAX | EV-MIN | EV-MAX | EV-MIN | ||
0° | Intensive | 330 | 269 | 276 | 216 |
Lambertian | 407 | 401 | 357 | 348 | |
Extensive | 430 | 429 | 373 | 370 | |
45° | Intensive | 291 | 284 | 95 | 92 |
Lambertian | 318 | 312 | 124 | 120 | |
Extensive | 336 | 324 | 124 | 121 | |
60° | Intensive | 319 | 309 | 82 | 80 |
Lambertian | 329 | 318 | 94 | 88 | |
Extensive | 353 | 336 | 95 | 90 |
# | kmel,trans | kmel,trans | kmel,trans | kmel,trans |
---|---|---|---|---|
(10 Years) | (32 Years) | (45 Years) | (75 Years) | |
4 | 1.118 | 1.000 | 0.889 | 0.598 |
15 | 1.111 | 1.000 | 0.895 | 0.615 |
24 | 1.103 | 1.000 | 0.901 | 0.635 |
32 | 1.099 | 1.000 | 0.906 | 0.653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Cano, A.; Aporta, J. Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. Appl. Sci. 2020, 10, 8068. https://doi.org/10.3390/app10228068
Sánchez-Cano A, Aporta J. Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. Applied Sciences. 2020; 10(22):8068. https://doi.org/10.3390/app10228068
Chicago/Turabian StyleSánchez-Cano, Ana, and Justiniano Aporta. 2020. "Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol" Applied Sciences 10, no. 22: 8068. https://doi.org/10.3390/app10228068
APA StyleSánchez-Cano, A., & Aporta, J. (2020). Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. Applied Sciences, 10(22), 8068. https://doi.org/10.3390/app10228068