Research on Hierarchical Control Strategy of AC/DC Hybrid Microgrid Based on Power Coordination Control
Abstract
:1. Introduction
2. System Configuration of AC/DC Hybrid Microgrid
2.1. System Topology of AC/DC Hybrid Microgrid
2.2. Hierarchical Control Architecture of AC/DC Microgrid
3. Distribute Generation Unit Model and Lower Converter Control
3.1. Photovoltaic Power Generation Unit Model and Control Strategy
3.2. Battery Energy Storage Unit Model and Control
3.3. Interlinking Converter Model and Control
4. Higher-Level Power Coordination Control Strategy
4.1. Multi-System Mode Power Coordination Control Strategy in Grid-Connected Operation
4.2. Multi-System Mode Power Coordination Control Strategy in Isolated Island Operation
5. Simulation Analysis
5.1. Simulation of Power Control Strategy in Grid-Connected Operation
5.2. Simulation of Power Control Strategy in Isolate Island Operation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.L.; Li, Z.W.; Guo, L.; Huang, D.; Li, P.F.; Zhu, J.B.; Wang, C.S. Flexible Control and Stability Analysis of AC/DC Microgrids Clusters. Chin. Soc. Electr. Eng. 2019, 39, 5948–5961. [Google Scholar]
- Alrajhi Alsiraji, H.; El-Shatshat, R. Serious Operation Issues and Challenges Related to Multiple Interlinking Converters Interfacing a Hybrid AC/DC Microgrid. In Proceedings of the 2018 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Quebec City, QC, Canada, 13–16 May 2018; pp. 1–5. [Google Scholar]
- Wang, J.J.; Jin, C.; Wang, P. A Uniform Control Strategy for the Interlinking Converter in Hierarchical Controlled Hybrid AC/DC Microgrids. IEEE Trans. Ind. Electron. 2018, 65, 6188–6197. [Google Scholar] [CrossRef]
- Li, P.; Guo, T.Y.; Zhou, F.Q.; Yang, J.X.; Liu, Y. Nonlinear Coordinated Control of Parallel Bidirectional Power Converters in an AC/DC Hybrid Microgrid. Int. J. Electr. Power Energy Syst. 2020, 122, 106208. [Google Scholar] [CrossRef]
- Karlsson, P.; Svensson, J. DC Bus Voltage Control for a Distributed Power System. IEEE Trans. Power Electron. 2003, 18, 1405–1412. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, T.; Vasquez, J.C.; Guerrero, J.M.; Škrlec, D. Advanced LVDC Electrical Power Architectures and Microgrid: A Step Toward a New Generation of Power Distribution Networks. IEEE Electrif. Mag. 2014, 2, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Femandes, B.G.; Guerrero, J.M. Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-voltage DC Microgrid. IEEE Trans. Power Electron. 2013, 28, 1900–1913. [Google Scholar] [CrossRef] [Green Version]
- Prodanovic, M.; Green, T.C.; Mansir, H. Survey of Control Methods for Three-phase Inverters in Parallel Connection. IEEE Conf. Publ. 2000, 475, 472–477. [Google Scholar]
- Mazumder, S.K.; Tahir, M.; Acharya, K. Master-slave Current-sharing Control of a Parallel DC-DC Converter System Over an RF Communication Interface. IEEE Trans. Ind. Electron. 2008, 55, 59–66. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W.; Shafiee, Q.; Dörfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary Frequency and Voltage Control of Islanded Microgrids Via Distributed Averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhou, Z.C.; Yuan, Q.F.; Bao, W.; He, G.Q.; Li, G.H.; Feng, K.H. A hierarchical control of microgrid based on droop controlled voltage source converter. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Hong Kong, China, 8–11 December 2013; pp. 1–4. [Google Scholar]
- Pequito, S.; Kar, S.; Agbi, C.; Aguiar, A.P.; Popli, N.; Ilić, M. Designing Decentralized Control Systems Without Structural Fixed Modes: A Multilayer Approach*. In Proceedings of the 4th IFAC Workshop on Distributed Estimation and Control in Networked System, Koblenz, Germany, 25–26 September 2013; pp. 81–88. [Google Scholar]
- Kondratiev, L.; Dougal, R.; Veselov, G.; Kolesnikov, A. Hierarchical Control for Electromechanical Systems Based on Synergetic Control Theory. In Proceedings of the IEEE International Conference on Contrla Applications, Saint Petersburg, Russia, 8–10 July 2009; pp. 495–500. [Google Scholar]
- Marinovici, L.D.; Lian, J.; Kalsi, K.; Du, P.; Elizondo, M. Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power System. IEEE Trans. Power Syst. 2013, 28, 3065–3074. [Google Scholar] [CrossRef]
- Lin, P.; Jin, C.; Xiao, J.; Li, X.; Shi, D.; Tang, Y.; Wang, P. A Distributed Control Architecture for Global System Economic Operation in Autonomous Hybrid AC/DC Microgrids. IEEE Trans. Smart Grid 2019, 10, 2603–2617. [Google Scholar] [CrossRef]
- Feng, W.; Sun, K.; Guan, Y.; Guerrero, J.M.; Xiao, X. Active Power Quality Improvement Strategy for Grid-connected Microgrid Based on Hierarchical Control. IEEE Trans. Smart Grid 2018, 9, 3486–3495. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Gupta, R. Distributed Coordination Control of Hybrid Energy Resources for Power Sharing in Coupled Hybrid DC/AC Microgrid Using Paralleled IFCs/ILCs. IET Smart Grid 2019, 2, 89–105. [Google Scholar] [CrossRef]
- Peyghami, S.; Mokhtari, H.; Blaabjerg, F. Autonomous Operation of a Hybrid AC/DC Microgrid with Multiple Interlinking Converters. IEEE Trans. Smart Grid 2018, 9, 6480–6488. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Cintuglu, M.H.; Mohammed, O.A. Control of a Hybrid AC/DC Microgrid Involving Energy Storage and Pulsed Loads. IEEE Trans. Ind. Appl. 2017, 53, 567–575. [Google Scholar] [CrossRef]
- Panibase, V.R.; Nanavala, H.B. A Review of PV Technology Power Generation, PV Material, Performance and Its Applications. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–5. [Google Scholar]
- Zhou, D.J.; Zhao, Z.M.; Wu, L.B. Analysis characteristics of photovoltaic arrays using simulation. J. Tsinghua Univ. 2007, 47, 1109–1112, 1117. [Google Scholar]
- Yang, Y.P.; Yang, Y.; Wang, J.S.; Zhang, G.H. Simulation of Battery Maximum Power Tracking Control for Photovoltaic Power Generation System. Comput. Simul. 2018, 35, 116–121. [Google Scholar]
- Noor, S.Z.M.; Omar, A.M.; Radzi, M.A.M.; Mahzan, N.N. Signal Stage String Inverter for Grid-connection Photovoltaic System with Modified Perturb and Observe(P&O) Fuzzy Logic Control (FLC)-Based MPPT Technique. J. Electr. Syst. 2016, 12, 344–356. [Google Scholar]
- Ding, M.; Tian, L.G.; Pan, H.; Zhang, X.; Zhou, J. Research on control strategy of hybrid AC/DC microgrid. Power Syst. Prot. Control. 2015, 43, 1–8. [Google Scholar]
- Lei, M.Y.; Zhang, Y.; Meng, L.X.; Wang, Y.; Yang, Z.; Cao, D. A Novel Adaptive Model Predictive Control Based Three-phase Inverter Current Control Method. Appl. Sci. 2019, 9, 5413. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.F.; Cao, G.D.; Ren, C.G.; Wang, J.; Han, X. Autonomous Control Strategy of Bidirectional AC/DC Converter in Low Voltage Hybrid Microgrid. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), PhumKasekum, NR6, Siem Reap, Cambodia, 18–20 June 2017; pp. 1564–4569. [Google Scholar]
Parameter | Symbol | Value | Unit |
---|---|---|---|
AC bus rated line voltage | 380 | ||
AC bus rated line frequency | 50 | Hz | |
DC bus rated line voltage | 650 | ||
Battery #1 rated power | 20 | ||
Battery #1 maximum threshold of state of charge | 90% | - | |
Battery #1 minimum threshold of state of charge | 10% | - | |
Battery #1 capacity | 50 | ||
Battery #1 rated voltage | 200 | ||
Battery #1 droop control coefficient | 1.5 | ||
Reference power when battery #1 droops and discharges | 10 | ||
Maximum power under photovoltaic #1 standard condition | 18 | ||
Photovoltaic #1 droop control coefficient | 1.67 | ||
Reference power for photovoltaic #1 droop control | 9 | ||
Battery #2 rated power | 10 | ||
Maximum power under photovoltaic #2 standard condition | 29 | ||
Filter capacitor | 10 | ||
The capacity of a single interlinking converter | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, X.; Wang, F.; Han, Z. Research on Hierarchical Control Strategy of AC/DC Hybrid Microgrid Based on Power Coordination Control. Appl. Sci. 2020, 10, 7603. https://doi.org/10.3390/app10217603
Wang G, Wang X, Wang F, Han Z. Research on Hierarchical Control Strategy of AC/DC Hybrid Microgrid Based on Power Coordination Control. Applied Sciences. 2020; 10(21):7603. https://doi.org/10.3390/app10217603
Chicago/Turabian StyleWang, Guishuo, Xiaoli Wang, Fuan Wang, and Zhao Han. 2020. "Research on Hierarchical Control Strategy of AC/DC Hybrid Microgrid Based on Power Coordination Control" Applied Sciences 10, no. 21: 7603. https://doi.org/10.3390/app10217603
APA StyleWang, G., Wang, X., Wang, F., & Han, Z. (2020). Research on Hierarchical Control Strategy of AC/DC Hybrid Microgrid Based on Power Coordination Control. Applied Sciences, 10(21), 7603. https://doi.org/10.3390/app10217603