Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement
Abstract
1. Introduction
2. Material and Methods
2.1. Multifrequency Impedance Measurement
2.2. Data Augmentation
2.3. Feature Selection
2.4. Neural Network Model
3. Results
3.1. Pre-Verification
3.1.1. Impedance Verification
3.1.2. Frequency Ratio Verification
3.2. Neural Network Training
3.3. Discussions Compared with EALs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, M.; Chandler, N.T. Electronic apex locators. Int. Endod. J. 2004, 37, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Minetti, E.; Palermo, A.; Ferrante, F.; Schmitz, J.H.; Lung Ho, H.K.; Hann, D.; Ng, S.; Giacometti, E.; Gambardella, U.; Contessi, M.; et al. Autologous Tooth Graft after Endodontical Treated Used for Socket Preservation: A Multicenter Clinical Study. Appl. Sci. 2019, 9, 5396. [Google Scholar] [CrossRef]
- Razumova, S.; Brago, A.; Howijieh, A.; Barakat, H.; Kozlova, Y.; Baykulova, M. Evaluation of Cross-Sectional Root Canal Shape and Presentation of New Classification of Its Changes Using Cone-Beam Computed Tomography Scanning. Appl. Sci. 2020, 10, 4495. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.H.; Hong, J.R.; Kum, K.Y.; Oh, S.; Al-Ghamdi, A.S.; Al-Ghamdi, F.A.; Mandorah, A.O.; Jang, J.H.; Chang, S.W. Three-Dimensional Analysis of Root Anatomy and Root Canal Curvature in Mandibular Incisors Using Micro-Computed Tomography with Novel Software. Appl. Sci. 2020, 10, 4385. [Google Scholar] [CrossRef]
- Yildirim, C.; Aktan, A.M.; Karataslioglu, E.; Aksoy, F.; Isman, O.; Culha, E. Performance of theWorking Length Determination using Cone Beam Computed Tomography, Radiography and Electronic Apex Locator, in Comparisons to Actual Length. Iran. J. Radiol. 2017, 14, 1. [Google Scholar]
- Marjanović, T.; Lacković, I.; Stare, Z. Comparison of electrical equivalent circuits of human tooth used for measuring the root canal length. Automatika 2011, 52, 39–48. [Google Scholar] [CrossRef]
- Meredith, N.; Gulabivala, K. Electrical impedance measurements of root canal length. Dent. Traumatol. 1997, 13, 126–131. [Google Scholar] [CrossRef]
- Ushiyama, J. New principle and method for measuring the root canal length. J. Endod. 1983, 9, 97–104. [Google Scholar] [CrossRef]
- Kobayashi, C. Electronic canal length measurement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1995, 79, 226–231. [Google Scholar] [CrossRef]
- Kobayashi, C.; Suda, H. New electronic canal measuring device based on the ratio method. J. Endod. 1994, 20, 111–114. [Google Scholar] [CrossRef]
- Ali, R.; Okechukwu, N.C.; Brunton, P.; Nattress, B. An overview of electronic apex locators: Part 2. Br. Dent. J. 2013, 214, 227–231. [Google Scholar] [CrossRef]
- Üstün, Y.; Aslan, T.; Şekerci, A.E.; Sağsen, B. Evaluation of the reliability of cone-beam computed tomography scanning and electronic apex locator measurements in working length determination of teeth with large periapical lesions. J. Endod. 2016, 42, 1334–1337. [Google Scholar] [CrossRef]
- Nekoofar, M.H.; Ghandi, M.M.; Hayes, S.J.; Dummer, P.M. The fundamental operating principles of electronic root canal length measurement devices. Int. Endod. J. 2016, 37, 595–609. [Google Scholar] [CrossRef]
- Stober, E.K.; Duran-Sindreu, F.; Mercade, M.; Vera, J.; Bueno, R.; Roig, M. An evaluation of root ZX and iPex apex locators: An in vivo study. J. Endod. 2011, 37, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Welk, A.R.; Baumgartner, J.C.; Marshall, J.G. An in vivo comparison of two frequency-based electronic apex locators. J. Endod. 2003, 29, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y. Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol. 2017, 10, 1–309. [Google Scholar] [CrossRef]
- Duan, F.; Dai, L. Recognizing the gradual changes in sEMG characteristics based on incremental learning of wavelet neural network ensemble. IEEE Trans. Ind. Electron. 2017, 64, 4276–4286. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, F.; Sole-Casals, J.; Dinares-Ferran, J.; Cichocki, A.; Yang, Z.; Sun, Z. A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 2019, 7, 15945–15954. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Tanner, M.A.; Wong, W.H. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 1987, 82, 528–540. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2015, 67, 301–320. [Google Scholar] [CrossRef]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Jan, J.; Krizaj, D. Accuracy of root canal length determination with the impedance ratio method. Int. Endod. J. 2009, 42, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Nam, K.C.; Lee, S.J. Development of a frequency-dependent-type apex locator with automatic compensation. Crit. Rev.TM Biomed. Eng. 2000, 28, 473–479. [Google Scholar] [CrossRef]
- Nam, K.C.; Kim, S.C.; Lee, S.J.; Kim, Y.J.; Kim, N.G.; Kim, D.W. Root canal length measurement in teeth with electrolyte compensation. Med. Biol. Eng. Comput. 2002, 40, 200. [Google Scholar] [CrossRef]
- Martins, J.N.; Marques, D.; Mata, A.; Carames, J. Clinical efficacy of electronic apex locators: Systematic review. J. Endod. 2014, 40, 759–777. [Google Scholar] [CrossRef]
- Vasconcelos, B.C.; Bueno Mde, M.; Luna-Cruz, S.M.; Duarte, M.A.; Fernandes, C.A. Accuracy of five electronic foramen locators with different operating systems: An ex vivo study. J. Appl. Oral Sci. 2013, 21, 132–137. [Google Scholar] [CrossRef]
- Nawab, S.; Rana, M.J.A.; Yar, A. Comparative evaluation of working length with digital radiography and third generation electronic apex locator. Pak. Oral Dent. J. 2016, 36, 308–311. [Google Scholar]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed]
Tooth Type | Incisor | Canine | Molar |
---|---|---|---|
Sample 1 | 1 | 0 | 0 |
Sample 2 | 0 | 1 | 0 |
Sample 3 | 0 | 0 | 1 |
Frequency Combination (kHz) | Group 1 | Group 2 | Group 3 | Total |
---|---|---|---|---|
5/0.5 | 66.67% | 83.33% | 100.00% | 85.71% |
10/0.5 | 50.00% | 83.33% | 100.00% | 80.95% |
10/1 | 50.00% | 83.33% | 89.89% | 76.19% |
Multifrequency | 83.33% | 100.00% | 100.00% | 95.24% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Zhang, Z.; Chen, X. Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement. Appl. Sci. 2020, 10, 7430. https://doi.org/10.3390/app10217430
Qiao X, Zhang Z, Chen X. Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement. Applied Sciences. 2020; 10(21):7430. https://doi.org/10.3390/app10217430
Chicago/Turabian StyleQiao, Xiaoyue, Zheng Zhang, and Xin Chen. 2020. "Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement" Applied Sciences 10, no. 21: 7430. https://doi.org/10.3390/app10217430
APA StyleQiao, X., Zhang, Z., & Chen, X. (2020). Multifrequency Impedance Method Based on Neural Network for Root Canal Length Measurement. Applied Sciences, 10(21), 7430. https://doi.org/10.3390/app10217430