Water-Soluble Sugars of Pedigreed Sorghum Mutant Stalks and Their Recovery after Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compositional Analysis
2.2.1. Extractives
2.2.2. Structural Carbohydrates, Lignin, and Ash
2.3. Dilute Acid Pretreatment
2.4. Enzymatic Saccharification
2.5. Elemental Analysis
2.6. Heating Value
2.7. Statistics
3. Results and Discussion
3.1. Physical and Chemical Properties of Pedigreed Sorghum Mutant Stalks
3.2. Sugar Recovery after Dilute Acid Pretreatment
3.3. Chemical Composition of Pretreated Solid Biomass
3.4. Glucose Yield from Enzymatic Hydrolysis of Dilute Acid-Treated Solid Biomass
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agblevor, F.; Murden, A.; Hames, B. Improved method of analysis of biomass sugars using high-performance liquid chromatography. Biotechnol. Lett. 2014, 26, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, S.V.; Vassileva, C.G. Water-soluble fractions of biomass and biomass ash and their significance for biofuel application. Energy Fuels 2019, 33, 2763–2777. [Google Scholar] [CrossRef]
- Bower, S.; Wickramasinghe, R.; Nagle, N.J.; Schell, D.J. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresour. Technol. 2008, 99, 7354–7362. [Google Scholar] [CrossRef]
- Cao, W.; Sun, C.; Liu, R.; Yin, R.; Wu, X. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour. Technol. 2012, 111, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Cybulska, I.; Brudecki, G.P.; Zembrzuska, J.; Schmidt, J.E.; Lopez, C.G.; Thomsen, M.H. Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates. Appl. Energy 2017, 185, 1040–1050. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, M.; Wang, D. Modified simultaneous saccharification and fermentation to enhance bioethanol titers and yields. Fuel 2018, 215, 647–654. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, K.; Wang, D. High gravity enzymatic hydrolysis of hydrothermal and ultrasonic pretreated big bluestem with recycling prehydrolysate water. Renew. Energy 2017, 114, 351–356. [Google Scholar] [CrossRef]
- Raj, T.; Kapoor, M.; Gaur, R.; Christopher, J.; Lamba, B.; Tuli, D.K.; Kumar, R. Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energy Fuels 2015, 29, 3111–3118. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Pandey, P.; Cheng, J.J.; Li, R.; Qu, R. Improvement of sugar production from transgenic switchgrass with low-temperature alkali pretreatment. Energy Fuels 2012, 26, 3054–3061. [Google Scholar] [CrossRef]
- Godin, B.; Lamaudière, S.; Agneessens, R.; Schmit, T.; Goffart, J.P.; Stilmant, D.; Gerin, P.A.; Delcarte, J. Chemical composition and biofuel potentials of a wide diversity of plant biomasses. Energy Fuels 2013, 27, 2588–2598. [Google Scholar] [CrossRef]
- Jin, M.; Gunawan, C.; Uppugundla, N.; Balan, V.; Dale, B.E. A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy Environ. Sci. 2012, 5, 7168–7175. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Z.; Afzal, W.; Liu, Z.; Bell, A.T.; Prausnitz, J.M. Pretreatment of Miscanthus giganteus with Lime and Oxidants for Biofuels. Energy Fuels 2015, 29, 1743–1750. [Google Scholar] [CrossRef] [Green Version]
- Anitescu, G.; Bruno, T.J. Liquid biofuels: Fluid properties to optimize feedstock selection, processing, refining/blending, storage/transportation, and combustion. Energy Fuels 2012, 26, 324–348. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, J.; Chen, H.; Liu, D. The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production. Renew. Energy 2018, 128, 200–209. [Google Scholar] [CrossRef]
- Ramadoss, G.; Muthukumar, K. Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production. Renew. Energy 2016, 99, 1092–1102. [Google Scholar] [CrossRef]
- Ju, X.; Engelhard, M.; Zhang, X. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 2013, 132, 137–145. [Google Scholar] [CrossRef]
- Kim, M.; Day, D.F. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 2011, 38, 803–807. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Han, B.; Yu, M.; Li, G.; Jiang, Y. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnol. Biofuels 2013, 6, 174. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Feng, S.; Wu, L.; Li, Y.; Fan, C.; Zhang, R. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresour. Technol. 2014, 167, 14–23. [Google Scholar] [CrossRef]
- Mesa, L.; Martínez, Y.; Barrio, E.; González, E. Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. Appl. Energy 2017, 198, 299–311. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hamilton, S.K.; Barham, B.L.; Dale, B.E.; Izaurralde, R.C.; Jackson, R.D. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 2017, 356, 6345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohowsky, B.; Häßler, T.; Gladis, A.; Remmele, E.; Schieder, D.; Faulstich, M. Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Appl. Energy 2013, 102, 211–219. [Google Scholar] [CrossRef]
- Rooney, W.L.; Blumenthal, J.; Bean, B.; Mullet, J.E. Designing sorghum as a dedicated bioenergy feedstock. Biofuel. Bioprod. Biorefin. 2007, 1, 147–157. [Google Scholar] [CrossRef]
- Whitfield, M.B.; Chinn, M.S.; Veal, M.W. Processing of materials derived from sweet sorghum for biobased products. Ind. Crops Prod. 2012, 37, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Wirawan, F.; Cheng, C.; Kao, W.; Lee, D.; Chang, J. Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis. Appl. Energy 2012, 100, 19–26. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass, Laboratory Analytical Procedure (LAP); Technical Report; Midwest Research Institute: Kansas City, MO, USA, 2008. [Google Scholar]
- Xu, Y.; Li, J.; Moore, C.; Xin, Z.; Wang, D. Physico-chemical characterization of pedigreed sorghum mutant stalks for biofuel production. Ind. Crops Prod. 2019, 124, 806–811. [Google Scholar] [CrossRef]
- Bals, B.; Dale, B.; Balan, V. Enzymatic hydrolysis of distiller’s dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energy Fuels 2006, 20, 2732–2736. [Google Scholar] [CrossRef]
- Dahadha, S.; Amin, Z.; Bazyar Lakeh, A.A.; Elbeshbishy, E. Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuels 2017, 31, 10335–10347. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D. Integrating starchy substrate into cellulosic ethanol production to boost ethanol titers and yields. Appl. Energy 2017, 195, 196–203. [Google Scholar] [CrossRef]
- Yan, Z.; Li, J.; Chang, S.; Cui, T.; Jiang, Y.; Yu, M. Lignin relocation contributed to the alkaline pretreatment efficiency of sweet sorghum bagasse. Fuel 2015, 158, 152–158. [Google Scholar] [CrossRef]
- Yan, Z.; Li, J.; Li, S.; Chang, S.; Cui, T.; Jiang, Y. Impact of lignin removal on the enzymatic hydrolysis of fermented sweet sorghum bagasse. Appl. Energy 2015, 160, 641–647. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, T.; Zhong, J.; Zhang, X.; Tan, T. Biorefinery of sweet sorghum stem. Biotechnol. Adv. 2012, 30, 811–816. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Li, S.; Du, R.; Jiang, Y.; Fan, G. A cost-effective integrated process to convert solid-state fermented sweet sorghum bagasse into cellulosic ethanol. Appl. Energy 2014, 115, 331–336. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Yu, J.; Zhang, X.; Tan, T. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour. Technol. 2011, 102, 4585–4589. [Google Scholar] [CrossRef]
Sample Identity | Water-Soluble Extractive (%) | Carbon (%) | Hydrogen (%) | Nitrogen (%) | Sulfur (%) | Oxygen (%) | Heating Value (J/g) |
---|---|---|---|---|---|---|---|
E18A | 17.6 ± 0.6a 1 | 40.3 ± 0.8a | 6.4 ± 0.2a | 0.96 ± 0.3a | 1.3 ± 0.3a | 51.1 ± 0.6a | 16,419.5 ± 21a |
E18B | 18.7 ± 0.8a | 41.4 ± 0.9a | 6.5 ± 0.3a | 0.91 ± 0.2a | 1.3 ± 0.2a | 49.9 ± 0.7a | 17,047.4 ± 31a |
E20A | 21.2 ± 0.9b | 38.9 ± 1.3b | 5.6 ± 0.2b | 0.64 ± 0.3b | 1.2 ± 0.2a | 53.6 ± 0.8a | 15,935.1 ± 26b |
E20B | 21.0 ± 0.8b | 37.4 ± 0.7b | 5.5 ± 0.4b | 0.73 ± 0.1b | 1.1 ± 0.1a | 55.3 ± 0.4b | 14,748.6 ± 19b |
E25A | 25.4 ± 1.3b | 39.4 ± 1.6a | 6.4 ± 0.1a | 0.77 ± 0.2b | 1.2 ± 0.1a | 52.2 ± 0.5a | 16,039.3 ± 21b |
E25B | 26.3 ± 1.6b | 39.4 ± 0.7a | 6.4 ± 0.2a | 0.73 ± 0.3b | 1.3 ± 0.2a | 52.2 ± 0.6a | 15,953.4 ± 18b |
E30A | 30.3 ± 1.8c | 39.5 ± 0.6a | 6.4 ± 0.3a | 1.10 ± 0.2c | 1.5 ± 0.2b | 51.5 ± 0.7a | 16,651.4 ± 25a |
E30B | 30.3 ± 1.6c | 41.1 ± 1.5a | 6.5 ± 0.4a | 1.83 ± 0.3c | 1.5 ± 0.2b | 49.2 ± 0.6c | 17,327.4 ± 24a |
E35A | 35.3 ± 2.2d | 38.9 ± 1.8b | 5.8 ± 0.5b | 0.72 ± 0.1b | 1.2 ± 0.1a | 53.4 ± 0.8a | 16,071.9 ± 29b |
E35B | 35.3 ± 2.1d | 39.9 ± 0.9a | 5.2 ± 0.2b | 0.92 ± 0.2a | 0.9 ± 0.1c | 53.0 ± 0.9a | 16,510.8 ± 28a |
E40A | 40.3 ± 2.3d | 38.6 ± 0.8a | 5.6 ± 0.3b | 1.07 ± 0.1a | 1.1 ± 0.2a | 53.6 ± 0.6a | 16,085.9 ± 28b |
E40B | 40.8 ± 1.9d | 38.3 ± 0.7a | 5.9 ± 0.5a | 0.68 ± 0.1b | 1.2 ± 0.1a | 53.9 ± 1.1d | 16,144.3 ± 22b |
E45A | 45.1 ± 2.3e | 37.6 ± 0.5a | 5.8 ± 0.4b | 1.01 ± 0.2a | 1.2 ± 0.2a | 54.4 ± 1.2d | 16,035.2 ± 17b |
E45B | 46.4 ± 2.1e | 39.0 ± 0.6a | 5.9 ± 0.6a | 1.00 ± 0.2a | 1.2 ± 0.1a | 52.9 ± 0.8a | 16,461.8 ± 26a |
E52A | 52.7 ± 2.5e | 39.7 ± 0.8b | 5.5 ± 0.3b | 0.78 ± 0.1b | 1.1 ± 0.1a | 52.9 ± 0.5a | 16,594.9 ± 25a |
E52B | 53.4 ± 2.6e | 40.0 ± 1.3b | 5.8 ± 0.4b | 0.70 ± 0.1b | 1.8 ± 0.2d | 51.8 ± 0.7a | 16,436.9 ± 21a |
Sample Identity | Raw Biomass | Pretreatment Hydrolysate | Glucose Recovery (%) | Fructose Recovery (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water-Soluble Sugars (g/L) | Water-Soluble Sugars (g/L) | Sugar Degradation (g/L) | |||||||||
Sucrose | Glucose | Fructose | Glucose | Fructose | Xylose | Arabinose | HMF | Furfural | |||
E18A | 0.13a 1 | 0.1a | 0.08a | 0.16a | 0.14a | 4.3a | 0.56a | 0a | 0.07a | 97.4a | 97.0a |
E18B | 0.16a | 0.16a | 0.07a | 0.23a | 0.14a | 4.42a | 0.51a | 0.04a | 0.06a | 96.2a | 93.9a |
E20A | 0.12a | 0.08a | 0.07a | 0.14a | 0.12a | 4.28a | 0.59a | 0.02a | 0.06a | 96.9a | 92.8a |
E20B | 0.26a | 0.11a | 0.09a | 0.23a | 0.20a | 3.9a | 0.52a | 0.03a | 0.05a | 96.4a | 91.5a |
E25A | 0.27a | 0.15a | 0.16a | 0.28a | 0.28a | 4.07a | 0.55a | 0.04a | 0.05a | 98.8a | 95.4a |
E25B | 0.28a | 0.17a | 0.19a | 0.3a | 0.31a | 3.99a | 0.81a | 0.07a | 0.06a | 97.3a | 94.4a |
E30A | 0.57b | 0.49a | 0.47a | 0.77b | 0.69b | 3.52b | 0.66a | 0.24a | 0.06a | 99.8a | 91.8a |
E30B | 0.77b | 0.4a | 0.42a | 0.73b | 0.68b | 4.12a | 0.75a | 0.23a | 0.06a | 93.5a | 84.9b |
E35A | 1.42b | 0.78b | 0.89b | 1.39b | 1.33b | 3.51b | 0.53a | 0.39b | 0.05a | 93.8a | 83.5b |
E35B | 0.82b | 0.83b | 1.07b | 1.21b | 1.29b | 3.49b | 0.54a | 0.38b | 0.05a | 97.9a | 87.4b |
E40A | 1.78b | 0.78b | 0.95b | 1.48b | 1.51b | 3.17b | 0.53a | 0.45b | 0.04a | 89.1b | 82.5b |
E40B | 1.63b | 1.23b | 1.44b | 1.82b | 1.52b | 3.11b | 0.44b | 0.48b | 0.04a | 89.4b | 67.7b |
E45A | 3.36b | 1.32b | 1.29b | 2.55b | 1.68b | 2.66b | 0.49b | 0.55b | 0.05a | 85.5b | 56.9b |
E45B | 3.05b | 1.24b | 1.40b | 2.39b | 1.78b | 2.52b | 0.40b | 0.66b | 0.04a | 87.0b | 61.2b |
E52A | 5.20b | 1.15b | 1.10b | 3.20b | 2.06b | 2.28b | 0.37b | 0.79b | 0.03b | 86.0b | 56.1b |
E52B | 4.75b | 1.17b | 1.08b | 2.85b | 2.06b | 2.39b | 0.34b | 0.72b | 0.04a | 81.0b | 60.1b |
Sample Identity | Raw Sorghum Stalk | Pretreated Sorghum Stalk | Mass Recovery (%) | Cellulose Recovery (%) | Hemicellulose Removal (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Cellulose (%) | Hemicellulose (%) | Lignin (%) | Cellulose (%) | Hemicellulose (%) | Lignin (%) | ||||
E18A | 31.3 ± 0.2a 1 | 26.5 ± 0.6a | 13.8 ± 0.2a | 53.4 ± 0.3a | 6.4 ± 0.1a | 29.1 ± 0.6a | 53.7a | 91.6a | 87.0a |
E18B | 29.3 ± 0.3b | 26.6 ± 0.7a | 13.9 ± 0.3a | 52.0 ± 0.2a | 7.6 ± 0.2a | 29.6 ± 0.5a | 52.1a | 92.5a | 85.2b |
E20A | 28.0 ± 0.1b | 24.6 ± 0.9b | 12.8 ± 0.2a | 50.0 ± 0.4a | 5.9 ± 0.3a | 28.3 ± 0.4a | 50.8b | 90.9a | 87.9a |
E20B | 29.8 ± 0.2b | 22.6 ± 1.2b | 12.2 ± 0.1a | 52.0 ± 0.9a | 5.8 ± 0.2a | 25.7 ± 0.6b | 53.0a | 92.3a | 86.3a |
E25A | 30.2 ± 0.5b | 23.9 ± 0.6b | 11.9 ± 0.1b | 55.8 ± 1.4b | 6.9 ± 0.4a | 27.2 ± 1.1c | 48.8c | 90.4a | 85.9b |
E25B | 28.0 ± 0.7c | 24.0 ± 0.5b | 11.8 ± 0.2b | 50.3 ± 0.6a | 5.8 ± 0.2a | 27.4 ± 0.8c | 48.5c | 86.9b | 88.3a |
E30A | 27.7 ± 0.8c | 21.0 ± 0.3c | 11.0 ± 0.5b | 52.2 ± 0.7a | 5.0 ± 0.3b | 27.5 ± 0.9c | 43.6d | 82.3c | 89.6a |
E30B | 25.7 ± 0.2d | 23.2 ± 0.2b | 11.6 ± 0.6b | 50.9 ± 0.5a | 6.9 ± 0.6a | 30.6 ± 0.8a | 42.4d | 84.0c | 87.4a |
E35A | 24.2 ± 0.4e | 19.3 ± 0.5d | 9.6 ± 0.6c | 49.6 ± 0.5a | 5.4 ± 0.2b | 26.9 ± 0.6d | 42.5d | 87.3b | 88.0a |
E35B | 24.3 ± 0.3e | 19.5 ± 0.1d | 10.0 ± 0.5c | 49.5 ± 0.6a | 4.8 ± 0.3c | 29.1 ± 0.7a | 40.7f | 83.1c | 90.0a |
E40A | 19.8 ± 0.2f | 18.0 ± 0.2d | 9.5 ± 0.4c | 47.0 ± 0.8c | 5.2 ± 0.2b | 29.5 ± 0.5a | 36.8e | 87.4b | 89.3a |
E40B | 21.2 ± 0.5f | 18.1 ± 0.3d | 8.9 ± 0.3c | 50.3 ± 0.3a | 5.3 ± 0.2b | 27.0 ± 0.6c | 36.9e | 87.5b | 89.2a |
E45A | 18.6 ± 0.8f | 15.2 ± 0.5e | 8.5 ± 0.2c | 47.1 ± 0.2c | 5.3 ± 0.5b | 28.8 ± 0.5a | 35.5e | 89.7a | 87.6a |
E45B | 19.2 ± 0.6f | 14.9 ± 0.4e | 8.1 ± 0.4d | 48.5 ± 0.4c | 4.3 ± 0.3c | 28.9 ± 0.8a | 32.9g | 83.1c | 90.5a |
E52A | 18.3 ± 0.4f | 14.9 ± 0.3e | 6.6 ± 0.2d | 51.5 ± 0.5a | 5.5 ± 0.4b | 27.2 ± 0.3c | 29.3h | 82.3c | 89.2a |
E52B | 18.1 ± 0.5f | 14.7 ± 0.2e | 6.7 ± 0.3d | 51.3 ± 0.7a | 5.3 ± 0.2b | 28.1 ± 0.4c | 29.9h | 84.5c | 89.3a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, J.; Xin, Z.; Bean, S.R.; Tilley, M.; Wang, D. Water-Soluble Sugars of Pedigreed Sorghum Mutant Stalks and Their Recovery after Pretreatment. Appl. Sci. 2020, 10, 5472. https://doi.org/10.3390/app10165472
Xu Y, Li J, Xin Z, Bean SR, Tilley M, Wang D. Water-Soluble Sugars of Pedigreed Sorghum Mutant Stalks and Their Recovery after Pretreatment. Applied Sciences. 2020; 10(16):5472. https://doi.org/10.3390/app10165472
Chicago/Turabian StyleXu, Youjie, Jun Li, Zhanguo Xin, Scott R. Bean, Michael Tilley, and Donghai Wang. 2020. "Water-Soluble Sugars of Pedigreed Sorghum Mutant Stalks and Their Recovery after Pretreatment" Applied Sciences 10, no. 16: 5472. https://doi.org/10.3390/app10165472
APA StyleXu, Y., Li, J., Xin, Z., Bean, S. R., Tilley, M., & Wang, D. (2020). Water-Soluble Sugars of Pedigreed Sorghum Mutant Stalks and Their Recovery after Pretreatment. Applied Sciences, 10(16), 5472. https://doi.org/10.3390/app10165472