On-Off Control Strategy in a BWRO System under Variable Power and Feedwater Concentration Conditions
Abstract
:1. Introduction
2. Methodology
2.1. Feedwater Characterization
2.2. Bwro Desalination System
2.3. Process Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Nomenclature | |
A | Average water permeability coefficient (m d bar cm) |
B | Average ion permeability coefficient (m d) |
BWRO | Brackish water reverse osmosis |
C | Concentration (mg L) |
Conductivity (S cm) | |
Flow factor | |
n | Number of membrane elements in series |
Input power (kW) | |
PID | Proportional-integral-derivative |
PV | Pressure vessel |
p | Pressure (bar) |
Q | Flow () |
R | Flow recovery (%) |
RO | Reverse osmosis |
Specific energy consumption () | |
Silt density index | |
SOW | Safe operating window |
SWMM | Spiral wound membrane module |
T | Temperature |
Temperature correction factor | |
Total dissolved solids | |
Y | Fraction recovery |
Greek letters | |
Osmotic pressure (bar) | |
Subscripts | |
b | Brine |
f | Feed |
i | Membrane element i |
j | Ion j |
max | Maximum |
min | Minimum |
p | Permeate |
r | Rejection |
Appendix A. Operating Conditions for Maximizing Qp Considering Three Bwro Configurations and Five Different Feedwater Samples
Sample 20 | Sample 5 | |||||||
---|---|---|---|---|---|---|---|---|
Configuration | (kW) | (bar) | (m3 d−1) | R (%) | (kW) | (bar) | (m3 d−1) | R (%) |
1:0 | 1.37 | 7.0 | 172 | 53.32 | 1.13 | 7.0 | 142 | 43.13 |
1.46 | 7.5 | 172 | 58.04 | 1.21 | 7.5 | 142 | 47.51 | |
1.65 | 8.0 | 182 | 59.26 | 1.38 | 8.0 | 152 | 49.05 | |
1.85 | 8.5 | 192 | 60.36 | 1.56 | 8.5 | 162 | 50.41 | |
2.06 | 9.0 | 202 | 61.34 | 1.66 | 9.0 | 162 | 54.10 | |
2.29 | 9.5 | 212 | 62.22 | 1.86 | 9.5 | 172 | 55.12 | |
2.63 | 10.0 | 232 | 60.22 | 2.07 | 10.0 | 182 | 56.05 | |
2.89 | 10.5 | 242 | 61.02 | 2.17 | 10.5 | 182 | 59.19 | |
3.15 | 11.0 | 252 | 61.76 | 2.40 | 11.0 | 192 | 59.88 | |
3.42 | 11.5 | 262 | 62.43 | 2.64 | 11.5 | 202 | 60.51 | |
3.84 | 12.0 | 282 | 60.61 | 2.75 | 12.0 | 202 | 63.24 | |
3.98 | 12.0 | 292 | 58.27 | 3.01 | 12.5 | 212 | 63.70 | |
3.28 | 13.0 | 222 | 64.13 | |||||
3.40 | 13.5 | 222 | 66.50 | |||||
3.69 | 14.0 | 232 | 66.81 | |||||
3.85 | 14.0 | 242 | 64.87 | |||||
4.01 | 14.0 | 252 | 62.93 | |||||
4.16 | 14.0 | 262 | 61.01 | |||||
4.32 | 14.0 | 272 | 59.11 | |||||
4.48 | 14.0 | 282 | 57.24 | |||||
4.64 | 14.0 | 292 | 55.42 | |||||
4.80 | 14.0 | 302 | 53.64 | |||||
4.96 | 14.0 | 312 | 51.90 | |||||
5.12 | 14.0 | 322 | 50.21 | |||||
5.28 | 14.0 | 332 | 48.57 | |||||
2:1 | 2.73 | 7.0 | 344 | 69.92 | 2.26 | 7.0 | 284 | 52.28 |
2.93 | 7.5 | 344 | 75.69 | 2.42 | 7.5 | 284 | 57.63 | |
3.31 | 8.0 | 364 | 77.24 | 2.76 | 8.0 | 304 | 59.60 | |
3.71 | 8.5 | 384 | 78.61 | 3.13 | 8.5 | 324 | 61.36 | |
4.13 | 9.0 | 404 | 79.83 | 3.31 | 9.0 | 324 | 65.45 | |
4.57 | 9.5 | 424 | 80.91 | 3.71 | 9.5 | 344 | 66.78 | |
5.27 | 10.0 | 464 | 78.96 | 4.13 | 10.0 | 364 | 67.98 | |
5.77 | 10.5 | 484 | 79.97 | 4.34 | 10.5 | 364 | 71.13 | |
6.29 | 11.0 | 504 | 80.89 | 4.80 | 11.0 | 384 | 72.06 | |
6.84 | 11.5 | 524 | 81.72 | 5.28 | 11.5 | 404 | 72.90 | |
7.68 | 12.0 | 564 | 79.76 | 5.50 | 12.0 | 404 | 75.36 | |
6.02 | 12.5 | 424 | 76.02 | |||||
6.55 | 13.0 | 444 | 76.63 | |||||
6.81 | 13.5 | 444 | 78.57 | |||||
7.38 | 14.0 | 464 | 79.06 | |||||
7.69 | 14.0 | 484 | 77.72 | |||||
8.01 | 14.0 | 504 | 76.21 | |||||
8.33 | 14.0 | 524 | 74.55 | |||||
8.65 | 14.0 | 544 | 72.74 | |||||
8.97 | 14.0 | 564 | 70.79 | |||||
9.28 | 14.0 | 584 | 68.72 | |||||
9.60 | 14.0 | 604 | 66.55 | |||||
3:2 | 4.34 | 7.0 | 546 | 71.22 | 3.39 | 7.0 | 426 | 55.68 |
4.91 | 7.5 | 576 | 73.38 | 3.63 | 7.5 | 426 | 60.78 | |
5.50 | 8.0 | 606 | 75.29 | 4.14 | 8.0 | 456 | 62.79 | |
6.14 | 8.5 | 636 | 76.98 | 4.69 | 8.5 | 486 | 64.58 | |
7.11 | 9.0 | 696 | 75.28 | 4.97 | 9.0 | 486 | 68.32 | |
7.83 | 9.5 | 726 | 76.79 | 5.57 | 9.5 | 516 | 69.67 | |
8.58 | 10.0 | 756 | 78.14 | 6.20 | 10.0 | 546 | 70.88 | |
9.37 | 10.5 | 786 | 79.36 | 6.87 | 10.5 | 576 | 71.99 | |
10.19 | 8.5 | 816 | 80.47 | 7.19 | 11.0 | 576 | 74.60 | |
11.05 | 11.5 | 846 | 81.48 | 7.91 | 11.5 | 606 | 75.45 | |
11.94 | 12.0 | 876 | 82.39 | 8.67 | 12.0 | 636 | 76.24 | |
12.34 | 12.0 | 906 | 79.77 | 9.45 | 12.5 | 666 | 76.97 | |
10.27 | 13.0 | 696 | 77.63 | |||||
11.13 | 13.5 | 726 | 78.25 | |||||
11.54 | 14.0 | 726 | 79.97 | |||||
12.02 | 14.0 | 756 | 78.82 | |||||
12.49 | 14.0 | 786 | 77.53 | |||||
12.97 | 14.0 | 816 | 76.09 | |||||
13.45 | 14.0 | 846 | 74.50 | |||||
13.92 | 14.0 | 876 | 72.77 | |||||
14.40 | 14.0 | 906 | 70.90 | |||||
14.88 | 14.0 | 936 | 68.92 | |||||
15.36 | 14.0 | 966 | 66.82 |
Sample 22 | Sample 3 | |||||||
---|---|---|---|---|---|---|---|---|
Configuration | (kW) | (bar) | (m3 d−1) | R (%) | (kW) | (bar) | (m3 d−1) | R (%) |
1:0 | 1.13 | 7.0 | 142 | 43.34 | 0.89 | 7.0 | 112 | 35.66 |
1.21 | 7.5 | 142 | 47.74 | 1.04 | 7.5 | 122 | 37.82 | |
1.38 | 8.0 | 152 | 49.28 | 1.20 | 8.0 | 132 | 39.72 | |
1.56 | 8.5 | 162 | 50.66 | 1.27 | 8.5 | 132 | 43.60 | |
1.66 | 9.0 | 162 | 54.35 | 1.45 | 9.0 | 142 | 45.05 | |
1.86 | 9.5 | 172 | 55.39 | 1.53 | 9.5 | 142 | 48.49 | |
2.07 | 10.0 | 182 | 56.32 | 1.73 | 10.0 | 152 | 49.60 | |
2.17 | 10.5 | 182 | 59.47 | 1.93 | 10.5 | 162 | 50.60 | |
2.40 | 11.0 | 192 | 60.17 | 2.02 | 11.0 | 162 | 53.51 | |
2.64 | 11.5 | 202 | 60.81 | 2.25 | 11.5 | 172 | 54.28 | |
2.75 | 12.0 | 202 | 63.52 | 2.34 | 12.0 | 172 | 56.90 | |
3.01 | 12.5 | 212 | 64.00 | 2.58 | 12.5 | 182 | 57.49 | |
3.28 | 13.0 | 222 | 64.43 | 2.69 | 13.0 | 182 | 59.85 | |
3.40 | 13.5 | 222 | 66.80 | 2.94 | 13.5 | 192 | 60.30 | |
3.56 | 13.5 | 232 | 64.83 | 3.05 | 14.0 | 192 | 62.43 | |
3.71 | 13.5 | 242 | 62.85 | 3.33 | 14.5 | 202 | 62.77 | |
3.86 | 13.5 | 252 | 60.89 | 3.61 | 15.0 | 212 | 63.08 | |
4.02 | 13.5 | 262 | 58.95 | 3.73 | 15.5 | 212 | 64.96 | |
4.17 | 13.5 | 272 | 57.05 | 3.91 | 15.5 | 222 | 63.36 | |
4.32 | 13.5 | 282 | 55.19 | 4.08 | 15.5 | 232 | 61.73 | |
4.48 | 13.5 | 292 | 53.38 | 4.26 | 15.5 | 242 | 60.10 | |
4.43 | 15.5 | 252 | 58.47 | |||||
4.61 | 15.5 | 262 | 56.84 | |||||
4.79 | 15.5 | 272 | 55.24 | |||||
4.96 | 15.5 | 282 | 53.65 | |||||
5.14 | 15.5 | 292 | 52.09 | |||||
5.31 | 15.5 | 302 | 50.56 | |||||
5.49 | 15.5 | 312 | 49.06 | |||||
5.67 | 15.5 | 322 | 47.59 | |||||
2:1 | 2.26 | 7.0 | 284 | 52.45 | 1.78 | 7.0 | 224 | 41.58 |
2.42 | 7.5 | 284 | 57.79 | 2.08 | 7.5 | 244 | 44.18 | |
2.76 | 8.0 | 304 | 59.78 | 2.40 | 8.0 | 264 | 46.51 | |
3.13 | 8.5 | 324 | 61.55 | 2.55 | 8.5 | 264 | 51.04 | |
3.31 | 9.0 | 324 | 65.62 | 2.90 | 9.0 | 284 | 52.85 | |
3.71 | 9.5 | 344 | 66.96 | 3.06 | 9.5 | 284 | 56.66 | |
4.13 | 10.0 | 364 | 68.17 | 3.45 | 10.0 | 304 | 58.08 | |
4.34 | 10.5 | 364 | 71.29 | 3.86 | 10.5 | 324 | 59.37 | |
4.80 | 11.0 | 384 | 72.23 | 4.05 | 11.0 | 324 | 62.40 | |
5.54 | 11.5 | 424 | 71.19 | 4.49 | 11.5 | 344 | 63.43 | |
6.05 | 12.0 | 444 | 72.03 | 4.69 | 12.0 | 344 | 66.01 | |
6.87 | 12.5 | 484 | 70.87 | 5.17 | 12.5 | 364 | 66.84 | |
7.44 | 13.0 | 504 | 71.64 | 5.37 | 13.0 | 364 | 69.03 | |
8.03 | 13.5 | 524 | 72.35 | 5.89 | 13.5 | 384 | 69.70 | |
8.34 | 13.5 | 544 | 70.38 | 6.10 | 14.0 | 384 | 71.58 | |
8.65 | 13.5 | 564 | 68.28 | 6.65 | 14.5 | 404 | 72.14 | |
8.95 | 13.5 | 584 | 66.08 | 7.22 | 15.0 | 424 | 72.66 | |
7.46 | 15.5 | 424 | 74.22 | |||||
7.81 | 15.5 | 444 | 73.14 | |||||
8.17 | 15.5 | 464 | 71.95 | |||||
8.52 | 15.5 | 484 | 70.66 | |||||
8.87 | 15.5 | 504 | 69.26 | |||||
9.22 | 15.5 | 524 | 67.76 | |||||
9.57 | 15.5 | 544 | 66.15 | |||||
9.93 | 15.5 | 564 | 64.46 | |||||
10.28 | 15.5 | 584 | 62.68 | |||||
10.63 | 15.5 | 604 | 60.82 | |||||
10.98 | 15.5 | 624 | 58.91 | |||||
3:2 | 3.39 | 7.0 | 426 | 55.82 | 2.67 | 7.0 | 336 | 43.99 |
3.63 | 7.5 | 426 | 60.91 | 3.12 | 7.5 | 366 | 46.70 | |
4.14 | 8.0 | 456 | 62.92 | 3.60 | 8.0 | 396 | 49.12 | |
4.69 | 8.5 | 486 | 64.73 | 3.82 | 8.5 | 396 | 53.51 | |
4.97 | 9.0 | 486 | 68.44 | 4.35 | 9.0 | 426 | 55.38 | |
5.57 | 9.5 | 516 | 69.79 | 4.60 | 9.5 | 426 | 58.99 | |
6.20 | 10.0 | 546 | 71.02 | 5.18 | 10.0 | 456 | 60.46 | |
6.87 | 10.5 | 576 | 72.13 | 5.79 | 10.5 | 486 | 61.79 | |
7.94 | 11.0 | 636 | 71.39 | 6.07 | 11.0 | 486 | 64.60 | |
8.70 | 11.5 | 666 | 72.39 | 6.74 | 11.5 | 516 | 65.67 | |
9.89 | 12.0 | 726 | 71.51 | 7.03 | 12.0 | 516 | 68.02 | |
10.73 | 12.5 | 756 | 72.41 | 7.75 | 12.5 | 546 | 68.89 | |
12.04 | 13.0 | 816 | 71.44 | 8.06 | 13.0 | 546 | 70.87 | |
12.97 | 13.5 | 846 | 72.26 | 8.83 | 13.5 | 576 | 71.58 | |
17.26 | 14.0 | 1086 | 58.11 | 9.16 | 14.0 | 576 | 73.25 | |
9.98 | 14.5 | 606 | 73.84 | |||||
10.83 | 15.0 | 636 | 74.40 | |||||
11.19 | 15.5 | 636 | 75.78 | |||||
11.72 | 15.5 | 666 | 74.92 | |||||
12.25 | 15.5 | 696 | 73.97 | |||||
12.78 | 15.5 | 726 | 72.93 | |||||
13.30 | 15.5 | 756 | 71.79 | |||||
13.83 | 15.5 | 786 | 70.55 | |||||
14.36 | 15.5 | 816 | 69.21 | |||||
14.89 | 15.5 | 846 | 67.77 | |||||
15.42 | 15.5 | 876 | 66.24 | |||||
15.94 | 15.5 | 906 | 64.62 | |||||
16.47 | 15.5 | 936 | 62.91 | |||||
17.00 | 15.5 | 966 | 61.13 |
Configuration | (kW) | (bar) | (m3 d−1) | R (%) |
---|---|---|---|---|
1:0 | 0.81 | 7.0 | 102 | 25.64 |
0.95 | 7.5 | 112 | 28.21 | |
1.02 | 8.0 | 112 | 32.38 | |
1.18 | 8.5 | 122 | 34.40 | |
1.25 | 9.0 | 122 | 38.10 | |
1.42 | 9.5 | 132 | 39.67 | |
1.50 | 10.0 | 132 | 42.96 | |
1.69 | 10.5 | 142 | 44.19 | |
1.77 | 11.0 | 142 | 47.12 | |
1.98 | 11.5 | 152 | 48.08 | |
2.07 | 12.0 | 152 | 50.71 | |
2.30 | 12.5 | 162 | 51.47 | |
2.39 | 13.0 | 162 | 53.83 | |
2.64 | 13.5 | 172 | 54.42 | |
2.73 | 14.0 | 172 | 56.56 | |
3.00 | 14.5 | 182 | 57.03 | |
3.10 | 15.0 | 182 | 58.97 | |
3.38 | 15.5 | 192 | 59.33 | |
3.49 | 16.0 | 192 | 61.10 | |
3.78 | 16.5 | 202 | 61.38 | |
3.90 | 17.0 | 202 | 63.00 | |
4.09 | 17.0 | 212 | 61.63 | |
4.29 | 17.0 | 222 | 60.24 | |
4.48 | 17.0 | 232 | 58.83 | |
4.67 | 17.0 | 242 | 57.41 | |
4.86 | 17.0 | 252 | 55.99 | |
5.06 | 17.0 | 262 | 54.58 | |
5.25 | 17.0 | 272 | 53.17 | |
5.44 | 17.0 | 282 | 51.78 | |
5.64 | 17.0 | 292 | 50.40 | |
5.83 | 17.0 | 302 | 49.04 | |
6.02 | 17.0 | 312 | 47.70 | |
6.22 | 17.0 | 322 | 46.39 | |
6.41 | 17.0 | 332 | 45.09 | |
6.60 | 17.0 | 342 | 43.83 | |
6.79 | 17.0 | 352 | 42.59 | |
2:1 | 1.62 | 7.0 | 204 | 29.41 |
1.91 | 7.5 | 224 | 32.27 | |
2.03 | 8.0 | 224 | 37.17 | |
2.35 | 8.5 | 244 | 39.48 | |
2.49 | 9.0 | 244 | 43.74 | |
2.85 | 9.5 | 264 | 45.59 | |
3.00 | 10.0 | 264 | 49.28 | |
3.39 | 10.5 | 284 | 50.76 | |
3.55 | 11.0 | 284 | 53.93 | |
3.97 | 11.5 | 304 | 55.13 | |
4.14 | 12.0 | 304 | 57.87 | |
4.60 | 12.5 | 324 | 58.85 | |
4.78 | 13.0 | 324 | 61.22 | |
5.27 | 13.5 | 344 | 62.03 | |
5.47 | 14.0 | 344 | 64.09 | |
5.99 | 14.5 | 364 | 64.77 | |
6.20 | 15.0 | 364 | 66.57 | |
6.76 | 15.5 | 384 | 67.15 | |
6.98 | 16.0 | 384 | 68.73 | |
7.57 | 16.5 | 404 | 69.22 | |
7.80 | 17.0 | 404 | 70.61 | |
8.18 | 17.0 | 424 | 69.67 | |
8.57 | 17.0 | 444 | 68.65 | |
8.96 | 17.0 | 464 | 67.54 | |
9.34 | 17.0 | 484 | 66.36 | |
9.73 | 17.0 | 504 | 65.10 | |
10.11 | 17.0 | 524 | 63.77 | |
10.50 | 17.0 | 544 | 62.36 | |
10.89 | 17.0 | 564 | 60.87 | |
11.27 | 17.0 | 584 | 59.32 | |
11.66 | 17.0 | 604 | 57.71 | |
12.04 | 17.0 | 624 | 56.05 | |
12.43 | 17.0 | 644 | 54.34 | |
3:2 | 2.43 | 7.0 | 306 | 31.26 |
2.86 | 7.5 | 336 | 34.26 | |
3.05 | 8.0 | 336 | 39.22 | |
3.53 | 8.5 | 366 | 41.63 | |
3.74 | 9.0 | 366 | 45.86 | |
4.27 | 9.5 | 396 | 47.77 | |
4.50 | 10.0 | 396 | 51.36 | |
5.08 | 10.5 | 426 | 52.90 | |
5.32 | 11.0 | 426 | 55.93 | |
5.95 | 11.5 | 456 | 57.18 | |
6.21 | 12.0 | 456 | 59.76 | |
6.90 | 12.5 | 486 | 60.80 | |
7.17 | 13.0 | 486 | 63.02 | |
7.91 | 13.5 | 516 | 63.87 | |
8.20 | 14.0 | 516 | 65.78 | |
8.99 | 14.5 | 546 | 66.50 | |
9.30 | 15.0 | 546 | 68.16 | |
10.14 | 15.5 | 576 | 68.77 | |
10.46 | 16.0 | 576 | 70.22 | |
11.35 | 16.5 | 606 | 70.75 | |
11.70 | 17.0 | 606 | 72.03 | |
12.28 | 17.0 | 636 | 71.24 | |
12.86 | 17.0 | 666 | 70.39 | |
13.43 | 17.0 | 696 | 69.47 | |
14.01 | 17.0 | 726 | 68.49 | |
14.59 | 17.0 | 756 | 67.43 | |
15.17 | 17.0 | 786 | 66.31 | |
15.75 | 17.0 | 816 | 65.11 | |
16.33 | 17.0 | 846 | 63.83 | |
16.91 | 17.0 | 876 | 62.48 | |
17.49 | 17.0 | 906 | 61.07 | |
18.07 | 17.0 | 936 | 59.59 | |
18.65 | 17.0 | 966 | 58.05 | |
19.22 | 17.0 | 996 | 56.44 |
References
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Karabelas, A.; Koutsou, C.; Kostoglou, M.; Sioutopoulos, D. Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination 2018, 431, 15–21. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Kurihara, M.; Takeuchi, H. SWRO-PRO System in “Mega-ton Water System” for Energy Reduction and Low Environmental Impact. Water 2018, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Park, H.G.; Kwon, Y.N. Long-Term Stability of Low-Pressure Reverse Osmosis (RO) Membrane Operation—A Pilot Scale Study. Water 2018, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.L.; Japip, S.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T.S. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res. 2020, 173, 115557. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I. Performance Assessment of SWRO Spiral-Wound Membrane Modules with Different Feed Spacer Dimensions. Processes 2020, 8, 692. [Google Scholar] [CrossRef]
- Okamoto, Y.; Lienhard, J.H. How RO membrane permeability and other performance factors affect process cost and energy use: A review. Desalination 2019, 470, 114064. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez Pestana, I. Feed Spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spriral-Wound Membrane Modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, S.; Zhang, K.; Bart Van der Bruggen. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics. Desalination 2019, 454, 48–58. [Google Scholar] [CrossRef]
- Li, S.; Cai, Y.H.; Schäfer, A.I.; Richards, B.S. Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination. Appl. Energy 2019, 253, 113524. [Google Scholar] [CrossRef]
- Joseph, A.; Damodaran, V. Dynamic simulation of the reverse osmosis process for seawater using LabVIEW and an analysis of the process performance. Comput. Chem. Eng. 2019, 121, 294–305. [Google Scholar] [CrossRef]
- Rivas-Perez, R.; Sotomayor-Moriano, J.; Pérez-Zuñiga, G.; Soto-Angles, M.E. Real-Time Implementation of an Expert Model Predictive Controller in a Pilot-Scale Reverse Osmosis Plant for Brackish and Seawater Desalination. Appl. Sci. 2019, 9, 2932. [Google Scholar] [CrossRef] [Green Version]
- Alatiqi, I.; Ghabris, A.; Ebrahim, S. System identification and control of reverse osmosis desalination. Desalination 1989, 75, 119–140. [Google Scholar] [CrossRef]
- Robertson, M.; Watters, J.; Desphande, P.; Assef, J.; Alatiqi, I. Model based control for reverse osmosis desalination processes. Desalination 1996, 104, 59–68. [Google Scholar] [CrossRef]
- Assef, J.Z.; Watters, J.C.; Deshpande, P.B.; Alatiqi, I.M. Advanced control of a reverse osmosis desalination unit. J. Process Contr. 1997, 7, 283–289. [Google Scholar] [CrossRef]
- Abbas, A. Model predictive control of a reverse osmosis desalination unit. Desalination 2006, 194, 268–280. [Google Scholar] [CrossRef]
- Gambier, A.; Wellenreuther, A.; Badreddin, E. Control system design of reverse osmosis plants by using advanced optimization techniques. Desalin. Water Treat. 2009, 10, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Bartman, A.R.; Christofides, P.D.; Cohen, Y. Nonlinear Model-Based Control of an Experimental Reverse-Osmosis Water Desalination System. Ind. Eng. Chem. Res. 2009, 48, 6126–6136. [Google Scholar] [CrossRef]
- McFall, C.W.; Christofides, P.D.; Cohen, Y.; Davis, J.F. Fault-tolerant control of a reverse osmosis desalination process. IFAC Proc. Vol. 2007, 40, 161–166. [Google Scholar] [CrossRef]
- Kim, G.; Park, J.; Kim, J.; Lee, H.; Heo, H. PID control of Reverse Osmosis desalination plant using Immune-Genetic Algorithm. In Proceedings of the 2009 ICCAS-SICE, Fukuoka, Japan, 18–21 August 2009; pp. 2977–2981. [Google Scholar]
- Bartman, A.R.; McFall, C.W.; Christofides, P.D.; Cohen, Y. Model-predictive control of feed flow reversal in a reverse osmosis desalination process. J. Process Contr. 2009, 19, 433–442. [Google Scholar] [CrossRef]
- Bartman, A.R.; Zhu, A.; Christofides, P.D.; Cohen, Y. Minimizing energy consumption in reverse osmosis membrane desalination using optimization-based control. J. Process Contr. 2010, 20, 1261–1269. [Google Scholar] [CrossRef]
- Al-haj, M.A.; Ajbar, A.; Ali, E.; Alhumaizi, K. Robust model-based control of a tubular reverse-osmosis desalination unit. Desalination 2010, 255, 129–136. [Google Scholar] [CrossRef]
- Emad, A.; Ajbar, A.; Almutaz, I. Periodic control of a reverse osmosis desalination process. J. Process Contr. 2012, 22, 218–227. [Google Scholar] [CrossRef]
- Gambier, A. Control of a Reverse Osmosis plant by using a robust PID design based on multi-objective optimization. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 7045–7050. [Google Scholar]
- AlDhaifallah, M.; Sassi, K.; Mujtaba, I. PID Control of Reverse Osmosis Based Desalination Process. In Computer Aided Chemical Engineering, Proceedings of the 22nd European Symposium on Computer Aided Process Engineering; Bogle, I.D.L., Fairweather, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 30, pp. 812–816. [Google Scholar] [CrossRef]
- Li, D.; Yang, N.; Niu, R.; Qiu, H.; Xi, Y. FPGA based QDMC control for reverse-osmosis water desalination system. Desalination 2012, 285, 83–90. [Google Scholar] [CrossRef]
- Zhao, T.; Niu, R.; Su, M.; Anderson, T. Steady state and dynamic modeling of RO desalination modules and system using EES. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar]
- Sobana, S.; Panda, R. Modeling and control of reverse osmosis desalination process using centralized and decentralized techniques. Desalination 2014, 344, 243–251. [Google Scholar] [CrossRef]
- Phuc, B.D.H.; You, S.S.; Lim, T.W.; Kim, H.S. Modified PID control with H∞ loop shaping synthesis for RO desalination plants. Desalin. Water Treat. 2016, 57, 25421–25434. [Google Scholar] [CrossRef]
- Phuc, B.D.H.; You, S.S.; Lim, T.W.; Kim, H.S. Dynamical analysis and control synthesis of RO desalination process against water hammering. Desalination 2017, 402, 133–142. [Google Scholar] [CrossRef]
- Feliu-Batlle, V.; Rivas-Perez, R.; Linares-Saez, A. Fractional Order Robust Control of a Reverse Osmosis Seawater Desalination Plant. IFAC-PapersOnLine 2017, 50, 14545–14550. [Google Scholar] [CrossRef]
- Zebbar, M.; Messlem, Y.; Gouichiche, A.; Tadjine, M. Super-twisting sliding mode control and robust loop shaping design of RO desalination process powered by PV generator. Desalination 2019, 458, 122–135. [Google Scholar] [CrossRef]
- Khiari, W.; Turki, M.; Belhadj, J. Power control strategy for PV/Wind reverse osmosis desalination without battery. Control Eng. Pract. 2019, 89, 169–179. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Ruiz-Saavedra, E. 80,000 h operational experience and performance analysis of a brackish water reverse osmosis desalination plant. Assessment of membrane replacement cost. Desalination 2015, 375, 81–88. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I. Long-term intermittent operation of a full-scale BWRO desalination plant. Desalination 2020, 489, 114526. [Google Scholar] [CrossRef]
- Hasnain, S.M.; Alajlan, S.A. Coupling of PV-powered RO brackish water desalination plant with solar stills. Desalination 1998, 116, 57–64. [Google Scholar] [CrossRef]
- Gocht, W.; Sommerfeld, A.; Rautenbach, R.; Melin, T.; Eilers, L.; Neskakis, A.; Herold, D.; Horstmann, V.; Kabariti, M.; Muhaidat, A. Decentralized desalination of brackish water by a directly coupled reverse-osmosis-photovoltaic-system—A pilot plant study in Jordan. Renew. Energy 1998, 14, 287–292. [Google Scholar] [CrossRef]
- Schäfer, A.; Remy, C.; Richards, B. Performance of a small solar-powered hybrid membrane system for remote communities under varying feedwater salinities. Water Supply 2004, 4, 233–243. [Google Scholar] [CrossRef]
- Richards, B.; Capão, D.; Schäfer, A. Renewable Energy Powered Membrane Technology. 2. The Effect of Energy Fluctuations on Performance of a Photovoltaic Hybrid Membrane System. Environ. Sci. Technol. 2008, 42, 4563–4569. [Google Scholar] [CrossRef]
- Richards, B.S.; Masson, L.; Schäfer, A.I. Impact of Feedwater Salinity on Energy Requirements of a Small-Scale Membrane Filtration System. In Appropriate Technologies for Environmental Protection in the Developing World: Selected Papers from ERTEP 2007, July 17–19 2007, Ghana, Africa; Yanful, E.K., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 123–137. [Google Scholar] [CrossRef]
- Khayet, M.; Essalhi, M.; Armenta-Déu, C.; Cojocaru, C.; Hilal, N. Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology. Desalination 2010, 261, 284–292. [Google Scholar] [CrossRef]
- Qiblawey, H.; Banat, F.; Al-Nasser, Q. Performance of reverse osmosis pilot plant powered by Photovoltaic in Jordan. Renew. Energy 2011, 36, 3452–3460. [Google Scholar] [CrossRef]
- Cherif, H.; Belhadj, J. Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit. Energy 2011, 36, 6058–6067. [Google Scholar] [CrossRef]
- Park, G.L.; Schäfer, A.I.; Richards, B.S. Renewable energy powered membrane technology: The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination. J. Membr. Sci. 2011, 370, 34–44. [Google Scholar] [CrossRef]
- Richards, B.S.; Park, G.L.; Pietzsch, T.; Schäfer, A.I. Renewable energy powered membrane technology: Brackish water desalination system operated using real wind fluctuations and energy buffering. J. Membr. Sci. 2014, 468, 224–232. [Google Scholar] [CrossRef]
- Richards, B.S.; Park, G.L.; Pietzsch, T.; Schäfer, A.I. Renewable energy powered membrane technology: Safe operating window of a brackish water desalination system. J. Membr. Sci. 2014, 468, 400–409. [Google Scholar] [CrossRef]
- Richards, B.S.; Capão, D.P.; Früh, W.G.; Schäfer, A.I. Renewable energy powered membrane technology: Impact of solar irradiance fluctuations on performance of a brackish water reverse osmosis system. Sep. Purif. Technol. 2015, 156, 379–390. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez-Pestana, I. A computational tool for designing BWRO systems with spiral wound modules. Desalination 2018, 426, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, A.; Carrascosa-Chisvert, M.D.; Mena, V.; Souto, R.M.; Santana, J.J.; Nuez, I. Groundwater Quality Assessment in a Volcanic Mountain Range (South of Gran Canaria Island, Spain). Water 2019, 11, 754. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, A.; Ruiz-Saavedra, E.; Báez, S.O.P. Evaluation of the first seven years operating data of a RO brackish water desalination plant in Las Palmas, Canary Islands, Spain. Desalin. Water Treat. 2015, 54, 3193–3199. [Google Scholar] [CrossRef]
- Wijmans, J.; Baker, R. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Al-Obaidi, M.; Kara-Zaitri, C.; Mujtaba, I. Scope and limitations of the irreversible thermodynamics and the solution diffusion models for the separation of binary and multi-component systems in reverse osmosis process. Comput. Chem. Eng. 2017, 100, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Kucera, J. Reverse Osmosis: Industrial Processes and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ruiz-García, A.; Feo-García, J. Estimation of maximum water recovery in RO desalination for different feedwater inorganic compositions. Desalin. Water Treat. 2017, 70, 34–45. [Google Scholar] [CrossRef]
- Solutions, D.W. Filmtec Reverse Osmosis Membranes Technical Manual; Dupont Water Solutions: Edina, MN, USA, 2020. [Google Scholar]
Sample | pH | HCO3− | Cl− | SO42− | NO3− | Na | K+ | Ca2+ | Mg2+ | Fe2+ | SiO2 | T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 7.05 | 175 | 2620 | 165 | 7.9 | 400 | 29 | 474 | 475 | 0.6 | 60.5 | 4407.00 | 25.20 |
2 | 6.94 | 155 | 2500 | 180 | 5.3 | 422 | 38 | 532 | 383 | 0.2 | 36 | 4251.50 | 25.60 |
3 | 7.37 | 175 | 2650 | 168 | 5.3 | 450 | 30 | 561 | 406 | 0.15 | 55.7 | 4501.15 | 25.00 |
4 | 7.48 | 100 | 2420 | 192 | 5.7 | 307 | 30 | 512 | 409 | 0.11 | 53.4 | 4029.21 | 25.10 |
5 | 7.24 | 122 | 1715 | 150 | 6.9 | 257 | 28 | 368 | 292 | 0.09 | 52.5 | 2991.49 | 24.90 |
6 | 7.27 | 216 | 2230 | 323 | 9.6 | 369 | 30 | 480 | 399 | 0.1 | 65 | 4121.70 | 25.50 |
7 | 7.05 | 190 | 3180 | 306 | 3 | 458 | 17 | 783 | 483 | 0.35 | 57 | 5477.35 | 25.30 |
8 | 7.05 | 167 | 2418 | 175 | 6 | 451 | 29 | 660 | 264 | 0.5 | 57 | 4227.50 | 25.00 |
9 | 7.03 | 92 | 2680 | 166 | 4.3 | 339 | 35 | 605 | 428 | 0.13 | 30 | 4379.43 | 24.80 |
10 | 7.46 | 287 | 2684 | 196 | 1 | 720 | 48 | 432 | 370 | 0.09 | 59 | 4797.09 | 25.40 |
11 | 7.10 | 304 | 3362 | 180 | 2.2 | 830 | 85 | 566 | 453 | 1 | 32 | 5815.20 | 25.70 |
12 | 7.10 | 305 | 3360 | 180 | 2 | 828 | 83 | 570 | 450 | 0.8 | 30 | 5808.80 | 25.00 |
13 | 7.40 | 184 | 2420 | 182 | 1.4 | 324 | 32 | 570 | 390 | 0.27 | 56.3 | 4159.97 | 25.20 |
14 | 7.10 | 185 | 2872 | 200 | 5 | 383 | 28.9 | 594 | 505 | 0.48 | 55.8 | 4829.18 | 25.10 |
15 | 7.80 | 155 | 2610 | 209 | 0.5 | 399 | 38.1 | 645 | 405 | 0.21 | 92.9 | 4554.71 | 25.00 |
16 | 7.40 | 152 | 2966 | 273 | 12.9 | 469 | 33.6 | 600 | 504 | 0.19 | 54.5 | 5065.19 | 24.80 |
17 | 6.90 | 260 | 3023 | 218 | 5 | 425 | 36.9 | 632 | 552 | 0.08 | 54.7 | 5206.68 | 24.60 |
18 | 7.70 | 173 | 2930 | 253 | 6.8 | 410 | 17 | 620 | 504 | 0.14 | 46 | 4959.94 | 25.70 |
19 | 7.00 | 170 | 2758 | 232 | 7.2 | 363 | 38.2 | 669 | 546 | 0.15 | 50.8 | 4834.35 | 25.50 |
20 | 7.60 | 215 | 484 | 85.6 | 13.6 | 208 | 11.7 | 76.8 | 78.1 | 0.094 | 45.9 | 1218.79 | 25.00 |
21 | 8.04 | 193 | 1831 | 150 | 8.36 | 468 | 22.5 | 395 | 323 | 0.17 | 52.1 | 3443.13 | 25.50 |
22 | 8.19 | 197 | 1715 | 148 | 8.1 | 622 | 28.6 | 423 | 308 | 0.11 | 34.2 | 3484.01 | 25.20 |
23 | 7.72 | 227 | 654 | 108 | 6.73 | 214 | 15.6 | 120 | 88.5 | 1.21 | 66.6 | 1501.64 | 25.10 |
24 | 7.58 | 196 | 2259 | 152 | 74.8 | 354 | 35.1 | 465 | 418 | 1.22 | 62.3 | 4017.42 | 25.00 |
(g L−1) | |||||
---|---|---|---|---|---|
Configuration | 1.2 | 2.99 | 3.48 | 4.5 | 5.82 |
1.37–2.89 | 1.13–2.4 | 1.13–2.4 | 0.89–1.93 | 0.81–2.07 | |
2.73–4.57 | 2.26–3.71 | 2.26–3.71 | 1.78–2.90 | 1.91–3.39 | |
4.34–12.34 | 3.39–15.36 | 3.39–17.26 | 2.67–17 | 3.05–19.22 |
(g L−1) | |||||
---|---|---|---|---|---|
Configuration | 1.2 | 2.99 | 3.48 | 4.5 | 5.82 |
53.32–61.02 | 43.13–59.88 | 43.34–60.17 | 35.66–50.60 | 25.64–50.71 | |
69.92–80.91 | 52.28–66.78 | 52.45–66.96 | 41.58–52.85 | 32.27–50.76 | |
71.22–79.77 | 55.68–66.82 | 55.82–58.11 | 43.99–61.13 | 39.22–56.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-García, A.; Nuez, I. On-Off Control Strategy in a BWRO System under Variable Power and Feedwater Concentration Conditions. Appl. Sci. 2020, 10, 4748. https://doi.org/10.3390/app10144748
Ruiz-García A, Nuez I. On-Off Control Strategy in a BWRO System under Variable Power and Feedwater Concentration Conditions. Applied Sciences. 2020; 10(14):4748. https://doi.org/10.3390/app10144748
Chicago/Turabian StyleRuiz-García, A., and I. Nuez. 2020. "On-Off Control Strategy in a BWRO System under Variable Power and Feedwater Concentration Conditions" Applied Sciences 10, no. 14: 4748. https://doi.org/10.3390/app10144748
APA StyleRuiz-García, A., & Nuez, I. (2020). On-Off Control Strategy in a BWRO System under Variable Power and Feedwater Concentration Conditions. Applied Sciences, 10(14), 4748. https://doi.org/10.3390/app10144748