Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles
Abstract
:1. Introduction
2. Rail Wheel Materials
3. Rail Wheel Design
4. Optimization Problem
4.1. Finite Element Model
Mesh Validation
4.2. Design and State Variables
4.3. Optimization Methods
4.3.1. Random Tool
4.3.2. Subproblem Approximation Method
4.3.3. First Order Method
4.4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Medwid, M.; Jakuszko, W.; Łukaszewski, K.; Bryk, K. Rail running gear with friction-drum drive. Pojazdy Szynowe 2018, 1, 35–44. [Google Scholar]
- Cichy, R.; Magnucka-Blandzi, M.; Nowicki, M. Durability tests of road-rail vehicles to receive operation admission. Pojazdy Szynowe 2018, 1, 45–54. [Google Scholar]
- Nielsen, J.C.O.; Fredö, C.R. Multi-disciplinary optimization of railway wheels. J. Sound Vib. 2006, 293, 510–521. [Google Scholar] [CrossRef]
- Choi, H.Y.; Lee, D.H.; Lee, J. Optimization of a railway wheel profile to minimize flange wear and surface fatigue. Wear 2013, 300, 225–233. [Google Scholar] [CrossRef]
- Liu, B.; Mei, T.X.; Bruni, S. Design and optimisation of wheel–rail profiles for adhesion improvement. Veh. Syst. Dyn. 2016, 54, 429–444. [Google Scholar] [CrossRef]
- Ignesti, M.; Innocenti, A.; Marini, L.; Meli, E.; Rindi, A. A numerical procedure for the wheel profile optimisation on railway vehicles. Proc. IMechE Part J J. Eng. Tribol. 2014, 228, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Gao, L.; Xin, T.; Cai, X.; Xiao, H. Study on the numerical optimization of rail profiles for heavy haul railways. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016. [Google Scholar] [CrossRef]
- Chen, R.; Hu, C.; Xu, J.; Wang, P.; Chen, J.; Gao, Y. An Innovative and Efficient Method for Reverse Design of Wheel-Rail Profiles. Appl. Sci. 2018, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Bracciali, A.; Masaggia, S.; Megna, G.; Veneri, E. Quiet and light spoked wheel centres made of Austempered Ductile Iron. In Proceedings of the XIX International Wheelset Congress, Venice, Italy, 16–20 June 2019. [Google Scholar]
- Romanowicz, P. Numerical assessment of fatigue load capacity of cylindrical crane wheel using multiaxial high-cycle fatigue criteria. Arch. Appl. Mech. 2017, 87, 1707–1726. [Google Scholar] [CrossRef]
- Jian, L.; Shi, Y.; Wei, J.; Zheng, Y.; Deng, Z. Design Optimization and Analysis of a Dual-Permanent-Magnet-Excited Machine Using Response Surface Methodology. Energies 2015, 8, 10127–10140. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qian, C.; Kong, L.; Zhou, Q.; Gong, J. Design Optimization for the Thin-Walled Joint Thread of a Coring Tool Used for Deep Boreholes. Appl. Sci. 2020, 10, 2669. [Google Scholar] [CrossRef] [Green Version]
- Zhong, G.; Liu, P.; Mei, X.; Wang, Y.; Xu, F.; Yang, S. Design Optimization Approach of a Large-Scale Moving Framework for a Large 5-Axis Machining Center. Appl. Sci. 2018, 8, 1598. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhu, D.; Liu, N.; Zhao, W. Multi-Objective Topology Optimization of a Compliant Parallel Planar Mechanism under Combined Load Cases and Constraints. Micromachines 2017, 8, 279. [Google Scholar] [CrossRef]
- Orme, M.; Madera, I.; Gschweitl, M.; Ferrari, M. Topology Optimization for Additive Manufacturing as an Enabler for Light Weight Flight Hardware. Designs 2018, 2, 51. [Google Scholar] [CrossRef] [Green Version]
- Sleesongsom, S.; Bureerat, S. Topology Optimisation Using MPBILs and Multi-Grid Ground Element. Appl. Sci. 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Slavov, S.; Konsulova-Bakalova, M. Optimizing Weight of Housing Elements of Two-stage Reducer by Using the Topology Management Optimization Capabilities Integrated in SOLIDWORKS: A Case Study. Machines 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Szybiński, B.; Romanowicz, P.J. Optimization of Flat Ends in Pressure Vessels. Materials 2019, 12, 4194. [Google Scholar] [CrossRef] [Green Version]
- Lisowski, F. Optimization of thread root undercut in the planetary roller screw. Tech. Trans. 2017, 9, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Lisowski, F. Optimization of a curvilinear thread profile in a planetary roller screw. Tech. Trans. 2015, 2-M, 149–156. [Google Scholar]
- Lisowski, F. Application of finite element method in the optimal design of the nut with a groove in the end-face. Tech. Trans. 2013, 1-M, 237–244. [Google Scholar]
- Railway-Research. Available online: http://railway-research.org/IMG/pdf/760.pdf (accessed on 20 May 2020).
- European Standard. Railway Applications. Wheelsets and Bogies—Wheels—Product Requirements; EN 13262: 2004+A2:2011; CEN: Brussels, Belgium, 2011. [Google Scholar]
- European Standard. Steels for Quenching and Tempering. Technical Delivery Conditions for Alloy Steels; EN 10083-3:2006; CEN: Brussels, Belgium, 2006. [Google Scholar]
- Bayrak, M.; Ozturk, F.; Demirezen, M.; Evis, Z. Analysis of Tempering Treatment on Material Properties of DIN 41Cr4 and DIN 42CrMo4 Steels. J. Mater. Eng. Perform. 2007, 16, 597–600. [Google Scholar] [CrossRef]
- The Engineering ToolBox. Available online: https://www.engineeringtoolbox.com/friction-coefficients-d_778.html (accessed on 20 May 2020).
- European Standard. Railway Applications. Wheelsets and Bogies. Monobloc Wheels. Technical Approval Procedure Forged and Rolled Wheels; EN 13979-1:2003+A2:2011; CEN: Brussels, Belgium, 2011. [Google Scholar]
- Ansys Academic Research Mechanical, Release 13, Help System, Design Optimization; ANSYS Europe, Ltd.
- Fedorik, F.; Kala, J.; Haapala, A.; Malaska, M. Use of design optimization techniques in solving typical structural engineering related design optimization problems. Struct. Eng. Mech. 2015, 55, 1121–1137. [Google Scholar] [CrossRef]
Maximum Content in% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Steel grade | C | Si | Mn | P | S | Cr | Cu | Mo | Ni | V | Cr + Mo + Ni |
ER8 | 0.56 | 0.40 | 0.80 | 0.020 | 0.015 | 0.30 | 0.30 | 0.08 | 0.30 | 0.06 | 0.50 |
42CrMo4 | 0.45 | 0.40 | 0.09 | 0.025 | 0.035 | 1.2 | – | 0.30 | – | – | – |
Steel Grade | Yield Strength Re (MPa) | Tensile Strength Rm (MPa) | Elongation A (% ) |
---|---|---|---|
ER8 | min. 540 | 860–980 | min. 13 |
42CrMo4 | min. 900 | 1100–1300 | min. 10 |
Design Variables | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
---|---|---|---|---|---|---|---|---|
Constrains | 145< <175 | 110< <135 | 105< <175 | 105< <175 | 92< <105 | 5< <10 | 5< <10 | 1°< <20° |
State Variables | Dynamic Stress Δσ [MPa] | Safety Factor k = max (σvm)/Re * |
---|---|---|
Constrains | <360 | ≥2.0 |
R5 + Sub | subproblem approximation method preceded by the use of random tool with 5 iterations |
R15 + Sub | subproblem approximation method preceded by the use of random tool with 15 iterations |
R30 + Sub | subproblem approximation method preceded by the use of random tool with 30 iterations |
First | first-order method with an initial point at the upper limit of the design variables |
Design Variables | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
---|---|---|---|---|---|---|---|---|
ER8 | 165.6 | 134.9 | 105.4 | 175.0 | 92.3 | 9.9 | 9.9 | 19.5° |
42CrMo4 | 174.9 | 124.8 | 105.3 | 174.9 | 93.4 | 5.6 | 7.4 | 1.1° |
State Variables | Dynamic Stress Δσ [MPa] | Safety Factor k |
---|---|---|
ER8 | 249 | 2.0 |
42CrMo4 | 358 | 3.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowski, F.; Lisowski, E. Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles. Appl. Sci. 2020, 10, 4717. https://doi.org/10.3390/app10144717
Lisowski F, Lisowski E. Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles. Applied Sciences. 2020; 10(14):4717. https://doi.org/10.3390/app10144717
Chicago/Turabian StyleLisowski, Filip, and Edward Lisowski. 2020. "Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles" Applied Sciences 10, no. 14: 4717. https://doi.org/10.3390/app10144717
APA StyleLisowski, F., & Lisowski, E. (2020). Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles. Applied Sciences, 10(14), 4717. https://doi.org/10.3390/app10144717