A Memetic Algorithm for the Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes
Abstract
1. Introduction
2. Mathematical Formulation
- N: Number of customers
 - K: Number of vehicles available
 
- : Maximum capacity of any of the vehicles
 - M: Maximum travel distance allowed (the same for all vehicles)
 
Reformulation Using Epsilon Constraint
3. Metaheuristic Algorithm
3.1. Proposed Memetic Algorithm
3.1.1. Constructive Procedure Based on Random Keys
| Algorithm 1: Memetic algorithm with random keys. | 
![]()  | 
| Algorithm 2: Constructive procedure (). | 
![]()  | 
3.1.2. Crossover Procedure with Local Search Strategies
| Algorithm 3: Crossover procedure. | 
![]()  | 
3.1.3. Local Search (LS) Procedure
- Intra-route swap. The procedure exchanges the positions of two customers belonging to the same route. For instance, if the customers to exchange belong to positions h and i, then arcs , , and are removed and replaced by arcs , , and . It is important to remark that these movements do not affect feasibility in terms of capacity.
 - Intra-route reallocation. This mechanism deletes a customer from its current position and reinserts it into another position on the same route.
 - Intra-route 2-opt. In this operator, two non-adjacent edges and in the path are deleted and replaced by and , resulting in the new path
 - Inter-routes interchange. This strategy exchanges two customers belonging to different routes, as long as the move keeps feasibility (in terms of capacity).
 - Inter-routes reallocation. For a given customer, the operator searches for the best position of the customer to move in any of the routes. If the best-identified position is different from the current one, the movement is performed.
 
| Algorithm 4: Local search (). | 
![]()  | 
4. Computational Results
4.1. Test Instances
4.2. Parameters Setting
Experimental Results
4.3. Experimental Results for Larger Instances
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
 - Ngueveu, S.U.; Prins, C.; Calvo, R.W. An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Operations. Res. 2010, 37, 1877–1885. [Google Scholar] [CrossRef]
 - Martínez-Salazar, I.; Angel-Bello, F.; Alvarez, A. A customer-centric routing problem with multiple trips of a single vehicle. J. Oper. Res. Soc. 2015, 66, 1312–1323. [Google Scholar] [CrossRef]
 - Rivera, J.C.; Afsar, H.M.; Prins, C. A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem. Comput. Optim. Appl. 2015, 61, 159–187. [Google Scholar] [CrossRef]
 - Gaur, D.R.; Mudgal, A.; Singh, R.R. Improved approximation algorithms for cumulative VRP with stochastic demands. Discret. Appl. Math. 2018. [Google Scholar] [CrossRef]
 - Lalla-Ruiz, E.; Voß, S. A POPMUSIC approach for the Multi-Depot Cumulative Capacitated Vehicle Routing Problem. Optim. Lett. 2020, 14, 671–691. [Google Scholar] [CrossRef]
 - Karagul, K.; Sahin, Y.; Aydemir, E.; Oral, A. A Simulated Annealing Algorithm Based Solution Method for a Green Vehicle Routing Problem with Fuel Consumption. In Lean and Green Supply Chain Management: Optimization Models and Algorithms; Paksoy, T., Weber, G.W., Huber, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 161–187. [Google Scholar] [CrossRef]
 - Kara, İ.; Kara, B.Y.; Yetiş, M.K. Cumulative vehicle routing problems. In Vehicle Routing Problem; IntechOpen: Rijeka, Croatia, 2008. [Google Scholar]
 - Rivera, J.C.; Afsar, H.M.; Prins, C. Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem. Eur.J. Oper. Res. 2016, 249, 93–104. [Google Scholar] [CrossRef]
 - Nucamendi-Guillén, S.; Angel-Bello, F.; Martínez-Salazar, I.; Cordero-Franco, A.E. The cumulative capacitated vehicle routing problem: New formulations and iterated greedy algorithms. Expert Syst. Appl. 2018, 113, 315–327. [Google Scholar] [CrossRef]
 - Lysgaard, J.; Wøhlk, S. A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res. 2014, 236, 800–810. [Google Scholar] [CrossRef]
 - Ribeiro, G.M.; Laporte, G. An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 2012, 39, 728–735. [Google Scholar] [CrossRef]
 - Ozsoydan, F.B.; Sipahioglu, A. Heuristic solution approaches for the cumulative capacitated vehicle routing problem. Optimization 2013, 62, 1321–1340. [Google Scholar] [CrossRef]
 - Ke, L.; Feng, Z. A two-phase metaheuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 2013, 40, 633–638. [Google Scholar] [CrossRef]
 - Sbihi, A.; Eglese, R.W. Combinatorial optimization and Green Logistics. 4OR 2007, 5, 99–116. [Google Scholar] [CrossRef]
 - Kwon, Y.J.; Choi, Y.J.; Lee, D.H. Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp. Res. Part D Transp. Environ. 2013, 23, 81–89. [Google Scholar] [CrossRef]
 - Dewilde, T.; Cattrysse, D.; Coene, S.; Spieksma, F.C.; Vansteenwegen, P. Heuristics for the traveling repairman problem with profits. Comput. Oper. Res. 2013, 40, 1700–1707. [Google Scholar] [CrossRef]
 - Bruni, M.; Beraldi, P.; Khodaparasti, S. A heuristic approach for the k-traveling repairman problem with profits under uncertainty. Electron. Notes Discret. Math. 2018, 69, 221–228. [Google Scholar] [CrossRef]
 - Arellano-Arriaga, N.A.; Molina, J.; Schaeffer, S.E.; Álvarez-Socarrás, A.; Martínez-Salazar, I.A. A biobjective study of the minimum latency problem. J. Heuristics 2019, 25, 431–454. [Google Scholar] [CrossRef]
 - Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 2020, 140. [Google Scholar] [CrossRef]
 - Li, X.; Shi, X.; Zhao, Y.; Liang, H.; Dong, Y. SVND enhanced metaheuristic for plug-in hybrid electric vehicle routing problem. Appl. Sci. 2020, 10, 441. [Google Scholar] [CrossRef]
 - Zhang, K.; Cai, Y.; Fu, S.; Zhang, H. Multiobjective memetic algorithm based on adaptive local search chains for vehicle routing problem with time windows. Evol. Intell. 2019. [Google Scholar] [CrossRef]
 - He, L.; Guijt, A.; de Weerdt, M.; Xing, L.; Yorke-Smith, N. Order acceptance and scheduling with sequence-dependent setup times: A new memetic algorithm and benchmark of the state of the art. Comput. Ind. Eng. 2019, 138. [Google Scholar] [CrossRef]
 - Li, X.; Yin, M. A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem. Int. J. Prod. Res. 2013, 51, 4732–4754. [Google Scholar] [CrossRef]
 - Ghrayeb, O.; Damodaran, P. A hybrid random-key genetic algorithm to minimize weighted number of late deliveries for a single machine. Int. J. Adv. Manuf. Technol. 2013, 66, 15–25. [Google Scholar] [CrossRef]
 - Samanlioglu, F.; Ferrell, W.; Kurz, M. An interactive memetic algorithm for production and manufacturing problems modelled as a multiobjective travelling salesman problem. Int. J. Prod. Res. 2012, 50, 5671–5682. [Google Scholar] [CrossRef]
 - Gavish, B.; Graves, S.C. The Travelling Salesman Problem and Related Problems; Massachusetts Institute of Technology, Operations Research Center: Cambridge, MA, USA, 1978. [Google Scholar]
 - Mavrotas, G.; Florios, K. An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multiobjective integer programming problems. Appl. Math. Comput. 2013, 219, 9652–9669. [Google Scholar] [CrossRef]
 - Boudia, M.; Prins, C.; Reghioui, M. An effective memetic algorithm with population management for the split delivery vehicle routing problem. In International Workshop on Hybrid Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 16–30. [Google Scholar]
 - Karaoglan, I.; Altiparmak, F. A memetic algorithm for the capacitated location-routing problem with mixed backhauls. Comput. Oper. Res. 2015, 55, 200–216. [Google Scholar] [CrossRef]
 - Kechmane, L.; Nsiri, B.; Baalal, A. A memetic algorithm for the capacitated location-routing problem. Int. J. Adv. Comput. Sci. Appl. 2016, 7. [Google Scholar] [CrossRef][Green Version]
 - Nalepa, J.; Blocho, M. Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput. 2016, 20, 2309–2327. [Google Scholar] [CrossRef]
 - Sales, L.P.A.; Melo, C.S.; Bonates, T.O.; Prata, B.A. Memetic algorithm for the heterogeneous fleet school bus routing problem. J. Urban Plan. Dev. 2018, 144, 04018018. [Google Scholar] [CrossRef]
 - Decerle, J.; Grunder, O.; El Hassani, A.H.; Barakat, O. A memetic algorithm for a home health care routing and scheduling problem. Oper. Res. Health Care 2018, 16, 59–71. [Google Scholar] [CrossRef]
 - Peng, B.; Zhang, Y.; Gajpal, Y.; Chen, X. A Memetic Algorithm for the Green Vehicle Routing Problem. Sustainability 2019, 11, 6055. [Google Scholar] [CrossRef]
 - Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
 - Prins, C. A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 2004, 31, 1985–2002. [Google Scholar] [CrossRef]
 - Moscato, P.; Cotta, C. An accelerated int;roduction to memetic algorithms. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2019; pp. 275–309. [Google Scholar]
 - Martínez-Salazar, I.A.; Molina, J.; Ángel-Bello, F.; Gómez, T.; Caballero, R. Solving a biobjective transportation location routing problem by metaheuristic algorithms. Eur. J. Oper. Res. 2014, 234, 25–36. [Google Scholar] [CrossRef]
 - Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
 - Koulaeian, M.; Seidgar, H.; Kiani, M.; Fazlollahtabar, H. A Multi Depot Simultaneous Pickup and Delivery Problem with Balanced Allocation of Routes to Drivers. Int. J. Ind. Eng. Theory Appl. Pract. 2015, 22, 223–242. [Google Scholar]
 - Chunyu, R.; Xiaobo, W. Research on Multi-vehicle and Multi-Depot Vehicle Routing Problem with Time Windows for Electronic Commerce. In Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, 23–24 October 2010; Volume 1, pp. 552–555. [Google Scholar] [CrossRef]
 - Gillett, B.E.; Johnson, J.G. Multi-terminal vehicle-dispatch algorithm. Omega 1976, 4, 711–718. [Google Scholar] [CrossRef]
 - Augerat, P.; Belenguer, J.M.; Benavent, E.; Corberán, A.; Naddef, D.; Rinaldi, G. Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem; Technical Report; IMAG, Institut National Polytechnique: Grenoble, France, 1995. [Google Scholar]
 - Taillard, É.D. A heuristic column generation method for the heterogeneous fleet VRP. RAIRO-Oper. Res. 1999, 33, 1–14. [Google Scholar] [CrossRef]
 - Li, F.; Golden, B.; Wasil, E. A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Comput. Oper. Res. 2007, 34, 2734–2742. [Google Scholar] [CrossRef]
 - Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. In EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems; International Center for Numerical Methods in Engineering (CIMNE): Barcelona, Spain, 2002; pp. 95–100. [Google Scholar]
 - Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef]
 










| Instance Name  | n | k | Gurobi | MA-RK v1  | MA-RK v2  | 
|---|---|---|---|---|---|
| FNO1 | 12 | 5 | 17 | 9 | 15 | 
| FNO2 | 15 | 8 | 16 | 15 | 4 | 
| Instance Name  | Gurobi | MA-RK v1  | MA-RK v2  | 
|---|---|---|---|
| FNO1 | 3,641.179 | 0.177 | 0.125 | 
| FNO2 | 13,742.185 | 0.256 | 0.149 | 
| Instance Name  | Exact | MA-RK v1 | MA-RK v2 | |||
|---|---|---|---|---|---|---|
| Max | Avg | Max | Avg | Max | Avg | |
| FNO1 | 0.41624 | 0.117976 | 0.469738 | 0.211416 | 0.225514 | 0.106864 | 
| FNO2 | 0.180034 | 0.121934 | 0.167452 | 0.0844987 | 0.410824 | 0.320028 | 
| Instance Name  | Exact | MA-RK v1  | MA-RK v2  | 
|---|---|---|---|
| FNO1 | 0.821569 | 0.596382 | 0.64612 | 
| FNO2 | 0.799919 | 0.454889 | 0.432928 | 
| X’/X” | Exact | MA-RK v1  | MA-RK v2  | 
|---|---|---|---|
| Exact | 0 | 1 | 1 | 
| MA-RK v1 | 0 | 0 | 0.066 | 
| MA-RK v2 | 0 | 0.778 | 0 | 
| X’/X” | Exact | MA-RK v1  | MA-RK v2  | 
|---|---|---|---|
| Exact | 0 | 1 | 1 | 
| MA-RK v1 | 0 | 0 | 0.25 | 
| MA-RK v2 | 0 | 0.333 | 0 | 
| Instance Name  | n | k | MA-RK v1  | MA-RK v2  | 
|---|---|---|---|---|
| FNO3 | 20 | 3 | 8 | 5 | 
| FNO4 | 22 | 8 | 8 | 6 | 
| FNO5 | 75 | 4 | 9 | 11 | 
| FNO6 | 75 | 7 | 5 | 18 | 
| FNO7 | 75 | 10 | 7 | 13 | 
| FNO8 | 75 | 7 | 10 | 5 | 
| FNO9 | 75 | 8 | 13 | 11 | 
| FNO10 | 100 | 5 | 8 | 12 | 
| Instance Name  | Type of Objective  | MA-RK v1 | MA-RK v2 | ||
|---|---|---|---|---|---|
| Min | Max | Min | Max | ||
| FNO3 | Latency | 5327.35 | 7987.42 | 4852.72 | 7335.90 | 
| Tardiness | 4853.59 | 19,782.90 | 3296.29 | 11,060.70 | |
| FNO4 | Latency | 660.85 | 1102.98 | 759.182 | 975.53 | 
| Tardiness | 233.65 | 1159.62 | 290.55 | 2072.82 | |
| FNO5 | Latency | 8275.60 | 10,376.60 | 6788.84 | 10,460.50 | 
| Tardiness | 27,515.3 | 66,396.30 | 23,903.30 | 51,934.70 | |
| FNO6 | Latency | 7366.98 | 9251.54 | 6933.74 | 16,841.5 | 
| Tardiness | 20,883.80 | 31,319.70 | 11,558.3 | 16,063.70 | |
| FNO7 | Latency | 12,511.70 | 15,026.20 | 10,027.10 | 11,253.50 | 
| Tardiness | 82,739.9 | 124,013.00 | 67,365.4 | 144,892 | |
| FNO8 | Latency | 13,683.50 | 16,203.90 | 12,833.5 | 14,208.1 | 
| Tardiness | 116,976.00 | 199,977.00 | 101,302 | 154,659 | |
| FNO9 | Latency | 9617.94 | 14,949.70 | 9150.29 | 11,955.2 | 
| Tardiness | 69,126.70 | 130,754.00 | 58,969.5 | 123,515.00 | |
| FNO10 | Latency | 31,092.50 | 40,164.90 | 26,484.2 | 35,107.6 | 
| Tardiness | 343,722.00 | 530,071.00 | 272,748.00 | 335,684.00 | |
| Instance Name  | MA-RK v1  | MA-RK v2  | 
|---|---|---|
| FNO3 | 0.262 | 0.817 | 
| FNO4 | 0.768 | 1.087 | 
| FNO5 | 6.415 | 6.586 | 
| FNO6 | 9.919 | 11.837 | 
| FNO7 | 62.262 | 70.162 | 
| FNO8 | 47.039 | 47.819 | 
| FNO9 | 48.816 | 54.017 | 
| FNO10 | 96.541 | 97.29 | 
| Instance Name  | MA-RK v1  | MA-RK v2  | 
|---|---|---|
| FNO3 | 0.680387 | 0.836718 | 
| FNO4 | 0.752206 | 0.648306 | 
| FNO5 | 0.397265 | 0.823822 | 
| FNO6 | 0.642281 | 0.929850 | 
| FNO7 | 0.472473 | 0.646997 | 
| FNO8 | 0.433841 | 0.847476 | 
| FNO9 | 0.527335 | 0.836342 | 
| FNO10 | 0.390825 | 0.959196 | 
| Instance Name  | MA-RK v1 | MA-RK v2 | ||
|---|---|---|---|---|
| Max | Avg | Max | Avg | |
| FNO3 | 0.579687 | 0.308544 | 0.503147 | 0.389821 | 
| FNO4 | 0.418041 | 0.256448 | 0.643338 | 0.344496 | 
| FNO5 | 0.483586 | 0.166288 | 0.742506 | 0.168127 | 
| FNO6 | 0.516558 | 0.298917 | 0.483949 | 0.107271 | 
| FNO7 | 0.342773 | 0.179116 | 0.628917 | 0.176940 | 
| FNO8 | 0.371050 | 0.212086 | 0.386249 | 0.248088 | 
| FNO9 | 0.606253 | 0.161301 | 0.574856 | 0.179261 | 
| FNO10 | 0.387176 | 0.187895 | 0.221685 | 0.0603717 | 
| Instance Name  | X’/X” | Exact | |
|---|---|---|---|
| MA-RK v1  | MA-RK v2  | ||
| FNO3 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 0.875 | 0 | |
| FNO4 | MA-RK v1 | 0 | 0.333 | 
| MA-RK v2 | 0.500 | 0 | |
| FNO5 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 0.889 | 0 | |
| FNO6 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 0.800 | 0 | |
| FNO7 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 1 | 0 | |
| FNO8 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 1 | 0 | |
| FNO9 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 1 | 0 | |
| FNO10 | MA-RK v1 | 0 | 0 | 
| MA-RK v2 | 1 | 0 | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nucamendi-Guillén, S.; Flores-Díaz, D.; Olivares-Benitez, E.; Mendoza, A. A Memetic Algorithm for the Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes. Appl. Sci. 2020, 10, 3943. https://doi.org/10.3390/app10113943
Nucamendi-Guillén S, Flores-Díaz D, Olivares-Benitez E, Mendoza A. A Memetic Algorithm for the Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes. Applied Sciences. 2020; 10(11):3943. https://doi.org/10.3390/app10113943
Chicago/Turabian StyleNucamendi-Guillén, Samuel, Diego Flores-Díaz, Elias Olivares-Benitez, and Abraham Mendoza. 2020. "A Memetic Algorithm for the Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes" Applied Sciences 10, no. 11: 3943. https://doi.org/10.3390/app10113943
APA StyleNucamendi-Guillén, S., Flores-Díaz, D., Olivares-Benitez, E., & Mendoza, A. (2020). A Memetic Algorithm for the Cumulative Capacitated Vehicle Routing Problem Including Priority Indexes. Applied Sciences, 10(11), 3943. https://doi.org/10.3390/app10113943
        




