Design of Heterogenous Two-Element Array Antenna on an Electrically Thick Substrate for High Isolation and Low Pattern Correlation Using Modal Difference in Radiation Patterns
Abstract
1. Introduction
2. Proposed Array Antenna
3. Analysis
3.1. Spherical Mode Decomposition
3.2. Adaptive Null Steering Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ban, Y.-L.; Li, C.; Sim, C.-Y.-D.; Wu, G.; Wong, K.-L. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access 2016, 4, 2981–2988. [Google Scholar] [CrossRef]
- Hussain, R.; Alreshaid, A.T.; Podilchak, S.K.; Sharawi, M.S. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microw. Antennas Propag. 2017, 11, 271–279. [Google Scholar] [CrossRef]
- Lim, C.-H.; Wan, Y.; Ng, B.-P.; See, C.-M. A Real-time indoor wifi localization system utilizing smart antennas. IEEE Trans. Consum. Electron. 2007, 53, 618–622. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, M.; Nam, S. Cylindrical tightly coupled dipole array antenna. J. Electromagn. Eng. Sci. 2019, 19, 122–129. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Lee, J.-G.; Lee, J.-H. Null steering of circular array using array factor for GPS anti-jam. J. Electromagn. Eng. Sci. 2018, 18, 267–269. [Google Scholar] [CrossRef]
- Yoon, J.H.; Yoon, Y.J. Bandwidth enhancement of single-layer microstrip reflectarrays with multi-dipole elements. J. Electromagn. Eng. Sci. 2019, 19, 130–139. [Google Scholar] [CrossRef]
- Kim, J.; Song, S.C.; Shin, H.; Park, Y.B. Radiation from a millimeter-wave rectangular waveguide slot array antenna enclosed by a Von Karman radome. J. Electromagn. Eng. Sci. 2018, 18, 154–159. [Google Scholar] [CrossRef]
- Morton, Y.T.; Miller, M.; Tsui, J.; Lin, D.; Zhou, Q. GPS civil signal self-interference mitigation during weak signal acquisition. IEEE Trans. Signal Process. 2007, 55, 5859–5863. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, F.; Zhang, Z. Wideband interference mitigation in high-resolution airborne synthetic aperture radar data. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 74–87. [Google Scholar] [CrossRef]
- Lambert, J.R.; Balanis, C.A.; DeCarlo, D. Spherical cap adaptive antennas for GPS. IEEE Trans. Antennas Propag. 2009, 57, 406–413. [Google Scholar] [CrossRef]
- Byun, G.; Choo, H.; Kim, S. Improvement of pattern null depth and width using a curved array with two subarrays for CRPA systems. IEEE Trans. Antennas Propag. 2015, 63, 2824–2827. [Google Scholar] [CrossRef]
- Byun, G.; Choo, H.; Kim, S. Design of a small arc-shaped antenna array with high isolation for applications of controlled reception pattern antennas. IEEE Trans. Antennas Propag. 2016, 64, 1542–1546. [Google Scholar] [CrossRef]
- Lee, T.; Lee, D.-H.; Choo, H.; Byun, G. A method of substrate shaping to improve gain of active-element pattern for small arrays. Antennas Wirel. Propag. Lett. 2017, 16, 1601–1604. [Google Scholar] [CrossRef]
- Maloney, J.A.; Kwon, D.-H.; Keller, S.D.; Janaswamy, R. Realistic GPS coverage prediction for dual-polarized controlled reception pattern antennas. Antennas Wirel. Propag. Lett. 2017, 16, 1907–1910. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Shafai, L. A controlled reception pattern antenna array with dual-mode circular microstrip antenna elements for increased angular availability. IEEE Trans. Antennas Propag. 2018, 66, 2594–2598. [Google Scholar] [CrossRef]
- Li, Q.; Wang, W.; Xu, D.; Wang, X. A robust anti-jamming navigation receiver with antenna array and GPS/SINS. IEEE Commun. Lett. 2014, 18, 467–470. [Google Scholar] [CrossRef]
- Lau, B.K.; Andersen, J.B. Simple and efficient decoupling of compact arrays with parasitic scatterers. IEEE Trans. Antennas Propag. 2012, 60, 464–472. [Google Scholar] [CrossRef]
- Mak, A.C.K.; Rowell, C.R.; Murch, R.D. Isolation enhancement between two closely packed antennas. IEEE Trans. Antennas Propag. 2008, 56, 3411–3419. [Google Scholar] [CrossRef]
- Li, Z.; Du, Z.; Takahashi, M.; Saito, K.; Ito, K. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Antennas Propag. 2012, 60, 473–481. [Google Scholar] [CrossRef]
- Ahn, D.; Park, J.-S.; Kim, C.-S.; Kim, J.; Qian, Y.; Itoh, T. A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans. Microw. Theory Tech. 2001, 49, 86–93. [Google Scholar] [CrossRef]
- Hur, J.; Choo, H.; Byun, G. Design of a small controlled reception pattern antenna array with a single-layer coupled feed structure for enhanced bore-sight gain and a matching bandwidth. Electromagnetics 2017, 37, 297–309. [Google Scholar] [CrossRef]
- Wang, K.; Mauermayer, R.A.M.; Eibert, T.F. Compact two-element printed monopole array with partially extended ground plane. Antennas Wirel. Propag. Lett. 2014, 13, 138–140. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, S.-H.; Jang, J.-H. Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Trans. Antennas Propag. 2015, 63, 4194–4198. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Zhang, L.; Broas, R.F.; Alexopolous, N.G.; Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef]
- Yang, F.; Rahmat-Samii, Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 2003, 51, 2936–2946. [Google Scholar] [CrossRef]
- Yang, S.; Gosling, I.G.; Tan, S.H.; Sorwar, M.G. TLM analysis of the mutual coupling of microstrip patch antenna arrays. IEE Proc. Microw. Antennas Propag. 2000, 147, 207–210. [Google Scholar] [CrossRef]
- Hur, J.; Byun, G.; Choo, H. Design of a planar periodic lossy magnetic surface to improve active array patterns with enhanced isolation. IET Microw. Antennas Propag. 2018, 12, 2383–2389. [Google Scholar] [CrossRef]
- Bell, J.M.; Iskander, M.F.; Lee, J.J. Ultrawideband hybrid EBG/ferrite ground plane for low-profile array antennas. IEEE Trans. Antennas Propag. 2007, 55, 4–12. [Google Scholar] [CrossRef]
- Labadie, N.R.; Sharma, S.K.; Rebeiz, G.M. A novel approach to beam steering using arrays composed of multiple unique radiating modes. IEEE Trans. Antennas Propag. 2015, 63, 2932–2945. [Google Scholar] [CrossRef]
- Narbudowicz, A.; Ammann, M.J. Low-cost multimode patch antenna for dual MIMO and enhanced localization use. IEEE Trans. Antennas Propag. 2018, 66, 405–408. [Google Scholar] [CrossRef]
- Herscovici, N.; Christodoulou, C.; Rajo-Iglesias, E.; Quevedo-Teruel, O.; Sanchez-Fernandez, M. Compact multimode patch antennas for mimo applications [Wireless Corner]. IEEE Antennas Propag. Mag. 2008, 50, 197–205. [Google Scholar] [CrossRef]
- Narbudowicz, A.; Ammann, M.J.; Plotka, M.; Kulas, L.; Nyka, K.; Rzymowski, M. Compact antenna for digital beamforming with software defined radios. In Proceedings of the 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, 30 October–2 November 2017; pp. 1–2. [Google Scholar]
- Labadie, N.R.; Sharma, S.K.; Rebeiz, G.M. A circularly polarized multiple radiating mode microstrip antenna for satellite receive applications. IEEE Trans. Antennas Propag. 2014, 62, 3490–3500. [Google Scholar] [CrossRef]
- Labadie, N.R.; Sharma, S.K.; Rebeiz, G.M. Investigations on the use of multiple unique radiating modes for 2-D beam steering. IEEE Trans. Antennas Propag. 2016, 64, 4659–4670. [Google Scholar] [CrossRef]
- Han, T.-Y.; Huang, C.-T. Reconfigurable monopolar patch antenna. Electron. Lett. 2010, 46, 199–200. [Google Scholar] [CrossRef]
- Labadie, N.R.; Sharma, S.K.; Rebeiz, G. Multimode antenna element with hemispherical beam peak and null steering. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (APSURSI), Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Narbudowicz, A.; Ammann, M.J.; Heberling, D. Electrically small antenna with switchless pattern reconfiguration. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1201–1202. [Google Scholar]
- Niroo-Jazi, M.; Denidni, T.A. A new triple-band circular ring patch antenna with monopole-like radiation pattern using a hybrid technique. IEEE Trans. Antennas Propag. 2011, 59, 3512–3517. [Google Scholar] [CrossRef]
- Narbudowicz, A.; Ammann, M.J.; Heberling, D. Switchless reconfigurable antenna with 360° steering. Antennas Wirel. Propag. Lett. 2016, 15, 1689–1692. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Cheng, C.-H.; Murch, R.D.; Rowell, C.R. Reduction of mutual coupling between closely-packed antenna elements. IEEE Trans. Antennas Propag. 2007, 55, 1732–1738. [Google Scholar] [CrossRef]
- Chattha, H.T. 4-port 2-element MIMO antenna for 5G portable applications. IEEE Access 2019, 7, 96516–96520. [Google Scholar] [CrossRef]
- WIPL-D Pro CAD 2019. Available online: http://www.wipl-d.com (accessed on 3 March 2020).
- Chen, Y.; Simpson, T. Radiation pattern analysis of arbitrary wire antennas using spherical mode expansions with vector coefficients. IEEE Trans. Antennas Propag. 1991, 39, 1716–1721. [Google Scholar] [CrossRef]
- Hallbjorner, P. The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas. Antennas Wirel. Propag. Lett. 2005, 4, 97–99. [Google Scholar] [CrossRef]
- Compton, R.T. The power-inversion adaptive array: Concept and performance. IEEE Trans. Aerosp. Electron. Syst. 1979, AES-15, 803–814. [Google Scholar] [CrossRef]
- Lang, R.; Xiao, H.; Li, Z.; Yu, L. A anti-jamming method for satellite navigation system based on multi-objective optimization technique. PLoS ONE 2017, 12, e0180893. [Google Scholar] [CrossRef] [PubMed]
- Byun, G.; Hyun, J.-C.; Seo, S.M.; Choo, H. Optimum Array Configuration to Improve Null Steering Time for Mobile CRPA Systems. J. Electromagn. Eng. Sci. 2016, 16, 74–79. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, T.H.; Jang, B.-J.; Choo, H. Design of Heterogenous Two-Element Array Antenna on an Electrically Thick Substrate for High Isolation and Low Pattern Correlation Using Modal Difference in Radiation Patterns. Appl. Sci. 2020, 10, 3916. https://doi.org/10.3390/app10113916
Lim TH, Jang B-J, Choo H. Design of Heterogenous Two-Element Array Antenna on an Electrically Thick Substrate for High Isolation and Low Pattern Correlation Using Modal Difference in Radiation Patterns. Applied Sciences. 2020; 10(11):3916. https://doi.org/10.3390/app10113916
Chicago/Turabian StyleLim, Tae Heung, Byung-Jun Jang, and Hosung Choo. 2020. "Design of Heterogenous Two-Element Array Antenna on an Electrically Thick Substrate for High Isolation and Low Pattern Correlation Using Modal Difference in Radiation Patterns" Applied Sciences 10, no. 11: 3916. https://doi.org/10.3390/app10113916
APA StyleLim, T. H., Jang, B.-J., & Choo, H. (2020). Design of Heterogenous Two-Element Array Antenna on an Electrically Thick Substrate for High Isolation and Low Pattern Correlation Using Modal Difference in Radiation Patterns. Applied Sciences, 10(11), 3916. https://doi.org/10.3390/app10113916