Application of Discontinuity Layout Optimization to Steel Parts and Steel Connections with a Single Bolt
Abstract
:1. Introduction
2. Discontinuity Layout Optimization
3. Case Studies on Tensile Specimens without Bolts
3.1. Tensile Specimen
3.2. Tensile Specimen with a Hole
3.3. Tensile Specimen with Notches
4. Case Studies on Tensile Specimens with a Single Bolt
4.1. Compression-Only Contact
4.2. Bearing Capacity for Smaller Edge Distances
4.3. Bearing Capacity from Codes
4.4. Parameter Study
5. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- EN 1993-1-8. Eurocode 3: Design of Steel Structures, Part 1-8: Design of Joints; CEN European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- Jaspart, J.-P.; Weynand, K. Design of Joints in Steel and Composite Structures; ECCS—European Convention for Constructional Steelwork and Ernst & Sohn: Berlin, Germany, 2016; ISBN 978-92-9147-132-4. [Google Scholar]
- Kaliszky, S. Plastizitätslehre: Theorie und technische Anwendungen; Akadémiai Kiadó: Budapest, Hungary, 1984; ISBN 963-05-3196-8. [Google Scholar]
- Feldmann, M.; Schäfer, D.; Eichler, B. Vorhersage duktilen Festigkeitsversagens von Stahlbauteilen mit Hilfe schädigungsmechanischer Methoden. Stahlbau 2009, 78, 784–794. [Google Scholar] [CrossRef]
- EN 1993-1-10. Eurocode 3: Design of Steel Structures, Part 1-10: Material Toughness and Through-Thickness Properties; CEN European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Timmers, R.; Lener, G. Collapse mechanisms and load–deflection curves of unstiffened and stiffened plated structures from bridge design. Thin-Walled Struct. 2016, 106, 448–458. [Google Scholar] [CrossRef]
- Yun, X.; Gardner, L. Stress-strain curves for hot-rolled steels. J. Constr. Steel Res. 2017, 133, 36–46. [Google Scholar] [CrossRef]
- Smith, C.; Gilbert, M. Application of discontinuity layout optimization to plane plasticity problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 2461–2484. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Gilbert, M. Evaluating Displacements at Discontinuities within a Body. UK Patent GB2442496A, 9 April 2008. [Google Scholar]
- Gilbert, M.; Tyas, A. Layout optimization of large-scale pin-jointed frames. Eng. Comput. 2003, 20, 1044–1064. [Google Scholar] [CrossRef]
- He, L.; Gilbert, M.; Song, X. A Python script for adaptive layout optimization of trusses. Struct. Multidiscip. Optim. 2019, 60, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.; Smith, C.; Pritchard, T.J. Masonry arch analysis using discontinuity layout optimisation. Proc. Inst. Civ. Eng. Eng. Comput. Mech. 2010, 163, 155–166. [Google Scholar] [CrossRef]
- Smith, C.; Gilbert, M.; He, L.; González-Castejón, J.; Ouakka, S. Recent advances in the application of discontinuity layout optimization to geotechnical analysis and design problems. In Proceedings of the XVII ECSMGE-2019; The Icelandic Geotechnical Society: Reykjavik, Iceland, 2019; ISBN 978-9935-9436-1-3. [Google Scholar]
- Smith, C.; González-Castejón, J.; Charles, J. Enhanced interpretation of geotechnical limit analysis solutions using Discontinuity Layout Optimization. In Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 17–22 September 2017; pp. 851–854. [Google Scholar]
- Zhang, Y.; Zhuang, X.; Lackner, R. Stability analysis of shotcrete supported crown of NATM tunnels with discontinuity layout optimization. Int. J. Numer. Anal. Methods Géoméch. 2018, 42, 1199–1216. [Google Scholar] [CrossRef]
- Zhang, Y. Multi-slicing strategy for the three-dimensional discontinuity layout optimization (3D DLO). Int. J. Numer. Anal. Methods Géoméch. 2016, 41, 488–507. [Google Scholar] [CrossRef] [PubMed]
- Hawksbee, S. 3D Ultimate Limit State Analysis Using Discontinuity Layout Optimization. Ph.D. Thesis, University of Sheffield, Department of Civil and Structural Engineering, Sheffield, UK, 2012. [Google Scholar]
- Bauer, S.; Lackner, R. Gradient-based adaptive discontinuity layout optimization for the prediction of strength properties in matrix–inclusion materials. Int. J. Solids Struct. 2015, 63, 82–98. [Google Scholar] [CrossRef]
- Gilbert, M.; He, L.; Smith, C.; Le, C. Automatic yield-line analysis of slabs using discontinuity layout optimization. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Gilbert, M. Automatic rationalization of yield-line patterns identified using discontinuity layout optimization. Int. J. Solids Struct. 2016, 84, 27–39. [Google Scholar] [CrossRef]
- He, L.; Gilbert, M.; Shepherd, M. Automatic Yield-Line Analysis of Practical Slab Configurations via Discontinuity Layout Optimization. J. Struct. Eng. 2017, 143, 04017036. [Google Scholar] [CrossRef]
- LimitState: Analysis & Design Software for Engineers; LimitState Ltd.: Sheffield, UK. Available online: http://limitstate.com (accessed on 5 April 2020).
- Matlab: Version: R2018a, Software; The MathWorks, Inc.: Natick, MA, USA. Available online: https://de.mathworks.com (accessed on 27 April 2020).
- Ansys: Version: 2019 R1, Engineering Simulation & 3D Design Software; ANSYS, Inc.: Canonsburg, PA, USA. Available online: www.ansys.com (accessed on 12 February 2020).
- Mang, H.; Hofstetter, G. Festigkeitslehre, 4th ed.; Springer Vieweg: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Može, P.; Beg, D. A complete study of bearing stress in single bolt connections. J. Constr. Steel Res. 2014, 95, 126–140. [Google Scholar] [CrossRef]
- Draganić, H.; Dokšanović, T.; Markulak, D. Investigation of bearing failure in steel single bolt lap connections. J. Constr. Steel Res. 2014, 98, 59–72. [Google Scholar] [CrossRef]
- Može, P.; Beg, D. Investigation of high strength steel connections with several bolts in double shear. J. Constr. Steel Res. 2011, 67, 333–347. [Google Scholar] [CrossRef]
Situation | Load | Deformation | Failure Modes and Proofs |
---|---|---|---|
Plates with a single bolt | In-plane | In-plane | Net section failure, Bearing resistance |
Plates with bolt groups | In-plane | In-plane | Bearing resistance for bolt groups, Block tearing |
Plates in compression/shear | In-plane | Out-of-plane | Local buckling problems |
Plates loaded out-of-plane | Out-of-plane | Out-of-plane | Bending capacity (T-stub model) |
Plates loaded in- and out-of-plane | In- and out-of-plane | In- and out-of-plane | Interaction criteria including local buckling |
Node Distribution | |||||
---|---|---|---|---|---|
Coarse | 93.1/97.8/8 | 82.7/84.1/8 | 72.0/72.2/8 | 63.3/63.3/8 | 62.55/62.55/8 |
Medium | 88.6/92.6/12 | 81.9/84.9/12 | 73.6/73.8/12 | 63.3/63.3/12 | 62.55/62.55/12 |
Fine | 84.7/88.1/12 | 77.6/79.9/16 | 73.9/75.4/16 | 63.3/63.3/24 | 62.55/62.55/24 |
Case | FEM | ||||||
---|---|---|---|---|---|---|---|
1 | 3.0 | 3.0 | 86.1 | 63.3 | 63.3 | 85.8 | 85.8 |
2 | 3.0 | 1.2 | 77.3 | 63.3 | 63.3 | 76.7 | 81.3 |
3 | 1.2 | 3.0 | 69.3 | 63.3 | 63.3 | 67.2 | 77.2 |
4 | 1.2 | 1.2 | 62.7 | 63.3 | 63.3 | 65.0 | 75.0 |
Case | EN 1993-1-8 | Moze [26] | ||||||
---|---|---|---|---|---|---|---|---|
1 | 156.8 | 310.5 | 169.3 | 345.0 | 135.7 | 154.2 | 135.7 | 156.6 |
2 | 104.1 | 86.9 | 169.3 | 96.6 | 80.0 | 88.4 | 80.0 | 88.6 |
3 | 62.7 | 310.5 | 67.7 | 345.0 | 67.2 | 77.6 | 67.3 | 77.7 |
4 | 41.6 | 86.9 | 67.7 | 96.6 | 65.0 | 75.1 | 65.0 | 75.1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timmers, R. Application of Discontinuity Layout Optimization to Steel Parts and Steel Connections with a Single Bolt. Appl. Sci. 2020, 10, 3783. https://doi.org/10.3390/app10113783
Timmers R. Application of Discontinuity Layout Optimization to Steel Parts and Steel Connections with a Single Bolt. Applied Sciences. 2020; 10(11):3783. https://doi.org/10.3390/app10113783
Chicago/Turabian StyleTimmers, Ralph. 2020. "Application of Discontinuity Layout Optimization to Steel Parts and Steel Connections with a Single Bolt" Applied Sciences 10, no. 11: 3783. https://doi.org/10.3390/app10113783
APA StyleTimmers, R. (2020). Application of Discontinuity Layout Optimization to Steel Parts and Steel Connections with a Single Bolt. Applied Sciences, 10(11), 3783. https://doi.org/10.3390/app10113783