Non-Destructive and Micro-Invasive Techniques for Characterizing the Ancient Roman Mosaic Fragments
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Methods
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Wavelength Dispersion X-ray Fluorescence (WDXRF)
3.3. Field Emission Scanning Electron Microscopy with Energy Dispersive Spectroscopy (FE-SEM-EDS)
3.4. Raman Spectroscopy
3.5. The Chromatic Parameter Measurements
3.6. Neutron Diffraction
3.7. Neutron Tomography
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pedersen, O. Archives and Libraries in the Ancient Near East, 1500–300 B.C.; Bethesda: Rockville, MD, USA, 2006; p. 205. [Google Scholar]
- Fischer, P. Mosaic, History and Technique; McGraw-Hill: New York, NY, USA, 1971; p. 152. [Google Scholar]
- Von Saldern, A. Mosaic glass from Hasanlu, Marlik, and Tell Al-Rimah. J. Glass Stud. 1966, 8, 9–25. [Google Scholar]
- Verita, M. Technology and deterioration of vitreous mosaic tesserae. Stud. Conserv. 2000, 45, 65–76. [Google Scholar] [CrossRef]
- Redslob, G. Ueber den Ausdruck “Mosaïk”. Z. Dtsch. Morgenländischen Ges. 1860, 14, 663–678. [Google Scholar]
- Farneti, M. Technical-Historical Glossary of Mosaic Art: With an Historical Survey of Mosaic Art; Longo Editore: Ravenna, Italy, 1993; p. 236. [Google Scholar]
- Dunbabin, K.M.D. Mosaics of the Greek and Roman World; Cambridge University Press: Cambridge, UK, 1999; p. 357. [Google Scholar]
- Waywell, S. Roman Mosaics in Greece. Am. J. Archaeol. 1979, 83, 293–321. [Google Scholar] [CrossRef]
- Radulescu, C.; Stihi, C.; Ion, R.M.; Dulama, I.D.; Stanescu, S.G.; Stirbescu, R.M.; Teodorescu, S.; Gurgu, I.V.; Let, D.D.; Olteanu, L.; et al. Seasonal Variability in the Composition of Particulate Matter and the Microclimate in Cultural Heritage Areas. Atmosphere 2019, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Minchev, A. Ancient Theatres and Theatre Art of the Bulgarian Black Sea Coast and Thracian Hinterland. In Ancient Theatre and Performance Culture around the Black Sea; Braund, D., Hall, E., Wyles, R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 218–219. [Google Scholar]
- Bosneagu, R.; Voinea, V.; Ion, A. A First Approach to Navigation and Trade on the West—Pontic Coast, from Its Beginnings to the Roman Antiquity. J. Soc. Sci. Humanit. 2015, 1, 288–296. [Google Scholar]
- Brems, D.; Degryse, P.; Hasendoncks, F.; Gimeno, D.; Silvestri, A.; Vassilieva, E.; Luypaers, S.; Honings, J. Western Mediterranean sand deposits as raw material for Roman glass production. J. Archaeol. Sci. 2012, 39, 2897–2907. [Google Scholar] [CrossRef]
- Izzo, F.; Arizzi, A.; Cappelletti, P.; Cultrone, G.; De Bonis, A.; Germinario, C.; Graziano, S.; Grifa, C.; Guarino, V.; Mercurio, M.; et al. The art of building in the Roman period (89 B.C.—79 A.D.): Mortars, plasters and mosaic floors from ancient Stabiae (Naples, Italy). Constr. Build. Mater. 2016, 117, 129–143. [Google Scholar] [CrossRef]
- Ricciardi, P.; Colomban, P.; Tournié, A.; Macchiarola, M.; Ayed, N. A Non-Invasive Study of Roman Age Mosaic Glass Tesserae by Means of Raman Spectroscopy. J. Archaeol. Sci. 2009, 36, 2551–2559. [Google Scholar] [CrossRef]
- Boschetti, C.; Corradi, A.; Baraldi, P. Raman characterization of painted mortar in Republican Roman mosaics. J. Raman Spectrosc. 2008, 39, 1085–1090. [Google Scholar] [CrossRef]
- Witts, P. Mosaics in Roman Britain: Stories in Stone, 1st ed.; Tempus: Stroud, UK, 2005; p. 35. [Google Scholar]
- Treimer, W. Neutron Tomography. In Neutron Imaging and Applications; Bilheux, H.Z., McGreevy, R., Anderson, I.S., Eds.; Springer: Boston, MA, USA, 2009; pp. 81–108. [Google Scholar]
- Kardjilov, N.; Festa, G. (Eds.) Neutron Methods for Archaeology and Cultural Heritage; Springer: Basel, Switzerland, 2016; p. 350. [Google Scholar]
- Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Treimer, W.; Banhart, J. Industrial Applications at the New Cold Neutron Radiography and Tomography Facility of the HMI. Nucl. Instrum. Methods Phys. Res. A 2005, 542, 16–21. [Google Scholar] [CrossRef]
- Gorini, G. Ancient Charm: A Research Project for Neutron-Based Investigation of Cultural-Heritage Objects. Il Nuovo Cim. C 2007, 30, 47–58. [Google Scholar]
- Filabozzi, A.; Andreani, C.; Pascale, M.; Gorini, G.; Pietropaolo, A.; Perelli-Cippo, E.; Senesi, R.; Tardocchi, M.; Kockelmann, W. Texture and structure studies on marbles from Villa Adriana via neutron diffraction technique. J. Neutron Res. 2006, 14, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Czubek, J.A.; Drozdowicz, K.; Gabańska, B.; Igielski, A.; Krynicka, E.; Woźnicka, U. Thermal neutron macroscopic absorption cross section measurement applied for geophysics. Prog. Nucl. Energy 1996, 30, 295–303. [Google Scholar] [CrossRef]
- Bintintan, A.; Gligor, M.; Radulescu, C.; Dulama, I.D.; Olteanu, R.L.; Teodorescu, S.; Stirbescu, R.M.; Bucurica, I.A. Multielemental and Chemical Characterization of Eneolithic Petresti Painted Pottery from the Alba Iulia-Lumea Noua Archaeological Site, Romania. Anal. Lett. 2019, 52, 2348–2364. [Google Scholar] [CrossRef]
- Bintintan, A.; Gligor, M.; Dulama, I.D.; Radulescu, C.; Stihi, C.; Ion, R.M.; Teodorescu, S.; Stirbescu, R.M.; Bucurica, I.A.; Pehoiu, G. Analysis and Structural Investigations on Early Eneolithic Foeni Painted Pottery from Alba Iulia-Lumea Noua Archaeological Site. Rom. J. Phys. 2019, 64, 903. [Google Scholar]
- Bintintan, A.; Gligor, M.; Dulama, I.D.; Teodorescu, S.; Stirbescu, R.M.; Radulescu, C. ATR-FTIR and SEM-EDS Analyses of Lumea Nouă Painted Pottery from Alba Iulia-Lumea Nouă Neolithic Site. Rev. Chim. Buchar. 2017, 68, 847–852. [Google Scholar] [CrossRef]
- David, M.E.; Ion, R.M.; Andrei, E.R.; Grigorescu, R.M.; Iancu, L.; Filipescu, M.I. Superhydrophobic Coatings based on Cellulose Acetate for Pinewood Preservation. J. Sci. Arts 2020, 20, 171–182. [Google Scholar]
- Kozlenko, D.; Kichanov, S.; Lukin, E.; Savenko, B. The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale. Crystals 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Rutkauskas, A.V.; Belushkin, A.V.; Bokuchava, G.D.; Savenko, B.N. Neutron radiography and tomography facility at IBR-2 reactor. Phys. Part. Nucl. Lett. 2016, 13, 346–351. [Google Scholar] [CrossRef]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Brun, F.; Massimi, L.; Fratini, M.; Dreossi, D.; Billè, F.; Accardo, A.; Pugliese, R.; Cedola, A. SYRMEP Tomo Project: A graphical user interface for customizing CT reconstruction workflows. Adv. Struct. Chem. Imaging 2017, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Morillas, H.; Vázquez, P.; Maguregui, M.; Marcaida, I.; Silva, L. Composition and porosity study of original and restoration materials included in a coastal historical construction. Constr. Build. Mater. 2018, 178, 384–392. [Google Scholar] [CrossRef]
- Morillas, H.; García-Florentino, C.; Marcaida, I.; Maguregui, M.; Arana, G.; Silva, L.; Madariaga, J. In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques. Spectrochim. Acta B 2018, 146, 28–35. [Google Scholar] [CrossRef]
- Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J.; Cardell, C.; Močnik, G.; Arboledas, L.; Olmo, F. Monumental heritage exposure to urban black carbon pollution. Atmos. Environ. 2017, 170, 22–32. [Google Scholar] [CrossRef]
- Arjonilla, P.; Dominguez-Vidal, A.; Gómez, E.; Domene, R.; Lluveras, A.; Cañada, M.; Colombini, M. Characterization of organic materials in the decoration of ornamental structures in the Alhambra monumental ensemble using gas-chromatography/mass spectrometry (GC/MS). Microchem. J. 2018, 140, 14–23. [Google Scholar] [CrossRef]
- Ion, R.M.; Tincu, S.; Grigorescu, R.M.; Radulescu, C.; Teodorescu, S.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Minca, I.; Ion, M.L.; et al. Investigations of the new gate tower from Corvins’ Castle. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012088. [Google Scholar] [CrossRef]
- Ion, R.M.; Iancu, L.; Vasilievici, G.; Grigore, M.E.; Andrei, R.E.; Radu, G.I.; Grigorescu, R.M.; Teodorescu, S.; Bucurica, I.A.; Ion, M.L.; et al. Ion-Substituted Carbonated Hydroxyapatite Coatings for Model Stone Samples. Coatings 2019, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Ion, R.M.; Tincu, S.; Ion, N.; Bucurica, I.A.; Teodorescu, S.; Dulama, I.D.; Stirbescu, R.M.; Gheboianu, A.I.; Radulescu, C.; Ion, M.L.; et al. Archaeometric Studies of Mural Paints from Matia Loggia (Corvins’ Castle). Rom. Rep. Phys. 2019, 71, 804. [Google Scholar]
- Ion, R.M.; Iancu, L.; Grigorescu, R.M.; Tincu, S.; Vasilievici, G.; Ion, N.; Bucurica, I.A.; Teodorescu, S.; Dulama, I.D.; Stirbescu, R.M.; et al. Arhaeometric Investigations on Ceramic Materials from Hunedoara—The Court Area. J. Sci. Arts 2018, 2, 471–480. [Google Scholar]
- Oliveira, M.L.S.; Tutikian, B.F.; Milanes, C.; Silva, L.F.O. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 2020, 248, 119250. [Google Scholar]
- Hamarneh, C.; Abu-Jaber, N. Mosaic pavement mortar production in Gerasa in the Byzantine period. Archaeol. Res. Asia 2017, 9, 22–33. [Google Scholar] [CrossRef]
- Galli, S.; Mastelloni, M.; Ponterio, R.; Sabatino, G.; Triscari, M. Raman and scanning electron microscopy and energy-dispersive x-ray techniques for the characterization of colouring and opaquening agents in Roman mosaic glass tesserae. J. Raman Spectrosc. 2004, 35, 622–627. [Google Scholar] [CrossRef]
- Forchhammer, G. On the Composition of Sea-Water in the Different Parts of the Ocean. Philos. Trans. R. Soc. Lond. 1865, 155, 203–262. [Google Scholar]
- Buzgar, N.; Apopei, A.; Buzatu, A. Characterization and source of Cucuteni black pigment (Romania): Vibrational spectrometry and XRD study. J. Archaeol. Sci. 2013, 40, 2128–2135. [Google Scholar]
- Hernanz, A.; Gavira-Vallejo, J.; Ruiz, J.; Edwards, H. A Comprehensive Micro-Raman Spectroscopic Study of Prehistoric Rock Paintings from the Sierra de las Cuerdas, Cuenca, Spain. J. Raman Spectrosc. 2008, 39, 972–984. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Goler, S.; Hagadorn, A.; Ratzan, D.M.; Bagnall, R.; Cacciola, A.; McInerney, J.; Yardleya, J.T. Using Raman spectroscopy to estimate the dates of carbon-based inks from Ancient Egypt. J. Cult. Herit. 2019, 38, 106–117. [Google Scholar] [CrossRef]
- Gulrajani, M.L. (Ed.) Colour Measurement: Principles, Advances and Industrial Applications; Woodhead Publishing: Philadelphia, PA, USA, 2010; p. 62. [Google Scholar]
- Bikiaris, D.; Sister, D.; Sotiropoulou, S.; Katsibiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta A 2000, 56, 3–18. [Google Scholar] [CrossRef]
- Alberghina, M.F.; Barraco, R.; Basile, S.; Brai, M.; Pellegrino, L.; Prestileo, F.; Schiavone, S.; Tranchina, L. Mosaic floors of roman Villa del Casale: Principal component analysis on spectrophotometric and colorimetric data. J. Cult. Herit. 2014, 15, 92–97. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar]
Sample | Photo | Optical Microscopy * | Color |
---|---|---|---|
1 | | | White |
2 | | | Red-dark |
3 | | | Blue |
4 | | | Grey |
5 | | | Red-light |
6 | | | Black and white |
Component | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
---|---|---|---|---|---|---|
Na2O | nd 2 | 0.724 ± 0.067 | nd 2 | 1.186 ± 0.135 | nd 2 | 1.146 ± 0.107 |
MgO | 1.097 ± 0.248 | 1.485 ± 0.122 | 1.752 ± 0.154 | 25.119 ± 1.280 | 2.709 ± 0.224 | 3.444 ± 0.213 |
Al2O3 | 0.986 ± 0.072 | 1.461 ± 0.092 | 1.803 ± 0.064 | 7.149 ± 0.594 | 3.959 ± 0.072 | 4.891 ± 0.283 |
SiO2 | 2.915 ± 0.049 | 4.806 ± 0.039 | 4.462 ± 0.058 | 13.780 ± 0.799 | 11.436 ± 0.872 | 13.403 ± 0.902 |
P2O5 | 0.269 ± 0.021 | 0.398 ± 0.026 | 0.243 ± 0.022 | 0.680 ± 0.038 | 0.221 ± 0.028 | 0.217 ± 0.021 |
SO3 | 0.362 ± 0.023 | 0.412 ± 0.018 | 0.459 ± 0.022 | 1.290 ± 0.089 | 0.376 ± 0.020 | 0.542 ± 0.026 |
Cl | 0.058 ± 0.004 | 0.177 ± 0.008 | 0.027 ± 0.003 | 0.075 ± 0.005 | 0.033 ± 0.0034 | 0.346 ± 0.009 |
K2O | 0.385 ± 0.027 | 0.491 ± 0.032 | 0.552 ± 0.034 | 1.698 ± 0.077 | 0.874 ± 0.064 | 1.127 ± 0.038 |
CaO | 93.375 ± 4.036 | 89.219 ± 3.657 | 89.937 ± 3.061 | 45.437 ± 2.067 | 78.740 ± 2.966 | 72.602 ± 2.591 |
MnO | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | 0.097 ± 0.041 |
Fe2O3 | 0.499 ± 0.042 | 0.783 ± 0.039 | 0.661 ± 0.042 | 0.346 ± 0.028 | 1.627 ± 0.085 | 1.701 ± 0.038 |
CuO | nd 2 | nd 2 | nd 2 | nd 2 | nd 2 | 0.049 ± 0.002 |
SrO | 0.055 ± -0.005 | 0.046 ± 0.004 | 0.104 ± 0.011 | 3.192 ± 0.641 | 0.025 ± 0.002 | 0.435 ± 0.040 |
Element 1 | Sample 1 (White) | Sample 2 (Red-Dark) | Sample 3 (Blue) | Sample 4 (Grey) | Sample 5 (Red-Light) | Sample 6 (Black) |
---|---|---|---|---|---|---|
C | 5.64 ± 0.06 | 9.26 ± 0.06 | 7.15 ± 0.05 | 8.07 ± 0.07 | 12.57 ± 0.08 | 8.15 ± 0.08 |
O | 39.06 ± 0.24 | 52.22 ± 0.29 | 43.44 ± 0.24 | 47.66 ± 0.26 | 45.56 ± 0.29 | 45.09 ± 0.26 |
F | nd 2 | <LOD 3 | nd 2 | <LOD 3 | 0.79 ± 0.14 | <lod 3 |
Na | 0.15 ± 0.02 | nd 2 | nd 2 | 0.43 ± 0.02 | nd 2 | 0.42 ± 0.02 |
Mg | 0.36 ± 0.02 | 0.41 ± 0.03 | 0.53 ± 0.02 | 8.25 ± 0.05 | 0.63 ± 0.03 | 0.93 ± 0.02 |
Al | 0.39 ± 0.02 | 0.83 ± 0.03 | 0.71 ± 0.03 | 0.58 ± 0.03 | 1.07 ± 0.04 | 1.92 ± 0.04 |
Si | 0.38 ± 0.03 | 1.44 ± 0.03 | 1.14 ± 0.03 | 1.20 ± 0.04 | 2.67 ± 0.04 | 4.99 ± 0.05 |
P | nd 2 | nd 2 | nd 2 | 0.42 ± 0.04 | nd 2 | nd 2 |
S | nd 2 | 1.24 ± 0.02 | 0.18 ± 0.03 | 1.25 ± 0.02 | 0.65 ± 0.04 | nd 2 |
Cl | 0.21 ± 0.02 | nd 2 | nd 2 | nd 2 | nd 2 | 0.52 ± 0.03 |
K | 0.23 ± 0.03 | 1.28 ± 0.07 | 0.34 ± 0.06 | 0.95 ± 0.03 | 0.48 ± 0.07 | 0.92 ± 0.08 |
Ca | 53.56 ± 0.27 | 33.32 ± 0.20 | 46.50 ± 0.23 | 31.20 ± 0.20 | 35.59 ± 0.22 | 37.06 ± 0.22 |
Mineral Phase | Raman Characteristic Peaks [cm−1] |
---|---|
Calcite | 157, 283, 713, 1087 |
Quartz | 352, 462, 1375 |
Goethite | 304, 395, 480, 557 |
Hematite | 304, 395 |
Manganite | 395, 557, 637 |
Orthosilicates | 395, 557, 880 |
Carbon | 1325, 1610 |
Element | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
---|---|---|---|---|---|---|
Lx | 87.01 | 86.61 | 84.97 | 85.63 | 78.61 | 89.88 |
ax | −0.39 | 0.62 | −0.97 | −0.57 | 2 | −1.08 |
bx | 12.11 | 7.4 | 5.70 | 7.37 | 9.61 | 7.20 |
ΔLx | −11.86 | −0.4 | −2.04 | −1.38 | −20.27 | −8.99 |
Δax | 1.92 | 2.94 | 1.34 | 1.75 | 4.31 | 1.23 |
Δbx | 1.65 | −3.05 | −4.75 | −3.08 | −0.87 | −3.25 |
ΔEx | 12.13 | 0.84 | 12.62 | 1.58 | 20.71 | 9.64 |
Cx 1 | 12.11 | 7.42 | 5.78 | 7.39 | 9.81 | 7.28 |
ΔCx | - | −4.69 | −6.33 | −4.73 | −2.29 | −4.82 |
H 2 | 91.84 | 85.21 | 99.66 | 94.42 | 78.24 | 98.53 |
ΔH | - | 6.63 | 7.82 | 2.58 | −13.6 | 6.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ion, R.M.; Bakirov, B.A.; Kichanov, S.E.; Kozlenko, D.P.; Belushkin, A.V.; Radulescu, C.; Dulama, I.D.; Bucurica, I.A.; Gheboianu, A.I.; Stirbescu, R.M.; et al. Non-Destructive and Micro-Invasive Techniques for Characterizing the Ancient Roman Mosaic Fragments. Appl. Sci. 2020, 10, 3781. https://doi.org/10.3390/app10113781
Ion RM, Bakirov BA, Kichanov SE, Kozlenko DP, Belushkin AV, Radulescu C, Dulama ID, Bucurica IA, Gheboianu AI, Stirbescu RM, et al. Non-Destructive and Micro-Invasive Techniques for Characterizing the Ancient Roman Mosaic Fragments. Applied Sciences. 2020; 10(11):3781. https://doi.org/10.3390/app10113781
Chicago/Turabian StyleIon, Rodica Mariana, Bulat A. Bakirov, Sergey E. Kichanov, Denis P. Kozlenko, Alexander V. Belushkin, Cristiana Radulescu, Ioana Daniela Dulama, Ioan Alin Bucurica, Anca Irina Gheboianu, Raluca Maria Stirbescu, and et al. 2020. "Non-Destructive and Micro-Invasive Techniques for Characterizing the Ancient Roman Mosaic Fragments" Applied Sciences 10, no. 11: 3781. https://doi.org/10.3390/app10113781
APA StyleIon, R. M., Bakirov, B. A., Kichanov, S. E., Kozlenko, D. P., Belushkin, A. V., Radulescu, C., Dulama, I. D., Bucurica, I. A., Gheboianu, A. I., Stirbescu, R. M., Teodorescu, S., Iancu, L., David, M. E., & Grigorescu, R. M. (2020). Non-Destructive and Micro-Invasive Techniques for Characterizing the Ancient Roman Mosaic Fragments. Applied Sciences, 10(11), 3781. https://doi.org/10.3390/app10113781