Assessing Dry Ports’ Environmental Sustainability
Abstract
:1. Introduction
2. Theoretical Background and Research Questions Development
3. Methods
3.1. Search Strategy
3.2. Analytical Approach
4. Results
4.1. Bibliometric Analysis
4.2. Textual Analysis
4.2.1. RQ1—Dry Ports as an Ecological Pathway in Logistics Chains
4.2.2. RQ2—Indicators for Measuring Environmental Sustainability
4.2.3. RQ3—Strategies for Sustainable Dry Ports
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McConnell, J.E. Geography of international trade. Prog. Hum. Geogr. 2019, 10, 471–483. [Google Scholar] [CrossRef]
- Sheu, J.B.; Chou, Y.H.; Hu, C.C. An integrated logistics operational model for green-supply chain management. Transp. Res. Part E Logist. Transp. Rev. 2005, 41, 287–313. [Google Scholar] [CrossRef]
- Srivastava, S.K. Green supply-chain management: A state-of-the-art literature review. Int. J. Manag. Rev. 2007, 9, 53–80. [Google Scholar] [CrossRef]
- Mentzer, J.T.; DeWitt, W.; Keebler, J.S.; Min, S.; Nix, N.W.; Smith, C.D.; Zacharia, Z.G. Defining supply chain management. J. Bus. Logist. 2001, 22, 1–25. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Frémont, A.; Franc, P. Hinterland transportation in Europe: Combined transport versus road transport. J. Transp. Geogr. 2010, 18, 548–556. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J.; Lai, K.H. Green supply chain management: Pressures, practices and performance within the Chinese automobile industry. J. Clean. Prod. 2007, 15, 1041–1052. [Google Scholar] [CrossRef]
- Crainic, T.G.; Dell’Olmo, P.; Ricciardi, N.; Sgalambro, A. Modeling dry-port-based freight distribution planning. Transp. Res. Part C Emerg. Technol. 2015, 55, 518–534. [Google Scholar] [CrossRef]
- Jeevan, J.M.; Chen, S.; Lee, E. The challenges of Malaysian dry ports development. Asian J. Shipp. Logist. 2015, 31, 109–134. [Google Scholar] [CrossRef]
- Roso, V.; Woxenius, J.; Lumsden, K. The dry port concept: Connecting container seaports with the hinterland. J. Transp. Geogr. 2009, 17, 338–345. [Google Scholar] [CrossRef]
- Wu, J.; Haasis, H.D. The freight village as a pathway to sustainable agricultural products logistics in China. J. Clean. Prod. 2018, 196, 1227–1238. [Google Scholar] [CrossRef]
- Rožić, T.; Rogić, K.; Bajor, I. Research trends of inland terminals: A literature review. Promet-Traffic Transp. 2016, 28, 539–548. [Google Scholar] [CrossRef]
- Sifakis, N.; Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 2021, 286, 125448. [Google Scholar] [CrossRef]
- Monios, J.; Wilmsmeier, G. Giving a direction to port regionalisation. Transp. Res. Part A Policy Pract. 2012, 46, 1551–1561. [Google Scholar] [CrossRef]
- Ballis, A. Freight villages: Warehouse design and rail link aspects. Transp. Res. Rec. 2006, 1966, 27–33. [Google Scholar] [CrossRef]
- Rodrigue, J.-P.; Notteboom, T. Dry ports in European and North American intermodal rail systems: Two of a kind? Res. Transp. Bus. Manag. 2012, 5, 4–15. [Google Scholar] [CrossRef]
- Lättilä, L.; Henttu, V.; Hilmola, O.P. Hinterland operations of seaports do matter: Dry port usage effects on transportation costs and CO2 emissions. Transp. Res. Part E Logist. Transp. Rev. 2013, 55, 23–42. [Google Scholar] [CrossRef]
- Munford, C. Buenos Aires-Congestion and the dry port solution. Cargo Syst. Int. J. ICHCA 1980, 7, 26–31. [Google Scholar]
- Varese, E.; Marigo, D.S.; Lombardi, M. Dry Port: A Review on Concept, Classification, Functionalities and Technological Processes. Logistics 2020, 4, 29. [Google Scholar] [CrossRef]
- UNCTD (United Nations Conference on Trade and Development). Review of Maritime Transport; United Nations: New York, NY, USA, 1991. [Google Scholar]
- Lamii, N.; Bentaleb, F.; Fri, M.; Douaioui, K.; Mabrouki, C.; Semma, E.A. Systematic Review of Literature on Dry Port—Concept Evolution. Trans. Marit. Sci. 2020, 02, 248–270. [Google Scholar] [CrossRef]
- Jaržemskis, A.; Vasiliauskas, A.V. Research on dry port concept as intermodal node. Transportation 2007, 22, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Witte, P.; Wiegmansb, B.; Ng, A.K.Y. A critical review on the evolution and development of inland port research. J. Transp. Geogr. 2019, 74, 53–61. [Google Scholar] [CrossRef]
- Nguyen, L.C.; Notteboom, T. The relations between dry port characteristics and regional port-hinterland settings: Findings for a global sample of dry ports. Marit. Policy Manag. 2019, 46, 24–42. [Google Scholar] [CrossRef]
- Rodrigue, J.-P.; Notteboom, T. The geography of containerization: Half a century of revolution, adaptation and diffusion. GeoJournal 2009, 74, 1–5. [Google Scholar] [CrossRef]
- Baydar, A.M.; Süral, H.; Çelik, M. Freight villages: A literature review from the sustainability and societal equity perspective. J. Clean. Prod. 2017, 167, 1208–1221. [Google Scholar] [CrossRef]
- Khaslavskaya, A.; Roso, V. Outcome-driven supply chain perspective on dry ports. Sustainability 2019, 11, 1492. [Google Scholar] [CrossRef]
- Baxter, P.; Jack, S. Qualitative Case Study Methodology: Study Design and Implementation for Novice Researchers. Qual. Rep. 2008, 12, 544–559. [Google Scholar] [CrossRef]
- Mayer, A.; Haas, W.; Wiedenhofer, D.; Krausmann, F.; Nuss, P.; Blengini, G.A. Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy-wide Material Loop Closing in the EU28. J. Ind. Ecol. 2018, 23, 62–76. [Google Scholar] [CrossRef]
- van den Berg, R.; De Langen, P.W. Towards an ‘inland terminal centred’ value proposition. Marit. Policy Manag. 2015, 42, 499–515. [Google Scholar] [CrossRef]
- Awad-Núñez, S.; Soler-Flores, F.; González-Cancelas, N.; Camarero-Orive, A. How should the Sustainability of the Location of Dry Ports be Measured? Transp. Res. Procedia 2016, 14, 936–944. [Google Scholar] [CrossRef]
- Kurtulus, E.; Cetin, I.B. Assessing the environmental benefits of dry port usage: A case of inland container transport in Turkey. Sustainability 2019, 11, 6793. [Google Scholar] [CrossRef] [Green Version]
- Gan, M.; Li, D.; Wang, J.; Zhang, J.; Huang, Q. A comparative analysis of the competition strategy of seaports under carbon emission constraints. J. Clean. Prod. 2021, 310, 127488. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2014, 333–339. [Google Scholar] [CrossRef]
- Ward, V.; House, A.; Hamer, S. Developing a framework for transferring knowledge into action: A thematic analysis of the literature. J. Health Serv. Res. Policy 2009, 14, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Özbük, R.M.Y.; Coşkun, A. Factors affecting food waste at the downstream entities of the supply chain: A critical review. J. Clean. Prod. 2020, 244, 118628. [Google Scholar] [CrossRef]
- Rana, R.L.; Tricase, C.; De Cesare, L. Blockchain technology for a sustainable agri-food supply chain. Br. Food J. 2021, 123, 3471–3485. [Google Scholar] [CrossRef]
- Amicarelli, V.; Bux, C.; Spinelli, M.P.; Lagioia, G. Life cycle assessment to tackle the take-make-waste paradigm in the textiles production. Waste Manag. 2022, 151, 10–27. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Notteboom, T.E. Concentration and load centre development in the European container port system. J. Transp. Geogr. 1997, 5, 99–115. [Google Scholar] [CrossRef]
- Beresford, A.; Pettit, S.; Xu, Q.; Williams, S. A study of dry port development in China. Marit. Econ. Logist. 2012, 14, 73–98. [Google Scholar] [CrossRef]
- Notteboom, T.; Parola, F.; Satta, G.; Risitano, M. A taxonomy of logistics centres: Overcoming conceptual ambiguity. Transp. Rev. 2017, 37, 276–299. [Google Scholar] [CrossRef]
- Özceylan, E.; Erbaş, M.; Tolon, M.; Kabak, M.; Durğut, T. Evaluation of freight villages: A GIS-based multi-criteria decision analysis. Comput. Ind. 2016, 76, 38–52. [Google Scholar] [CrossRef]
- Zeng, Q.; Maloni, M.J.; Paul, J.A.; Yang, Z. Dry port development in China: Motivations, challenges, and opportunities. Transp. J. 2013, 52, 234–263. [Google Scholar] [CrossRef]
- Bux, C.; Varese, E.; Amicarelli, V.; Lombardi, M. Halal Food Sustainability between Certification and Blockchain: A Review. Sustainability 2022, 14, 2152. [Google Scholar] [CrossRef]
- Roso, V. Factors influencing implementation of a dry port. Int. J. Phys. Distrib. Logist. Manag. 2008, 38, 782–798. [Google Scholar] [CrossRef]
- Roso, V. The emergence and significance of dry ports: The case of the Port of Goteborg. World Rev. Intermodal Transp. Res. 2009, 2, 296–310. [Google Scholar] [CrossRef]
- Lima Jr., O.F.; Rutkowski, E.W.; De Carvalho, C.C.; Lima, J.C.F. Sustainable logistics platform in a regional Brazilian airport. Int. J. Sustain. Dev. Plan. 2010, 5, 163–174. [Google Scholar] [CrossRef]
- Henttu, V.; Hilmola, O.-P. Financial and environmental impacts of hypothetical Finnish dry port structure. Res. Transp. Econ. 2011, 33, 35–41. [Google Scholar] [CrossRef]
- Hanaoka, S.; Regmi, M.B. Promoting intermodal freight transport through the development of dry ports in Asia: An environmental perspective. IATSS Res. 2011, 35, 16–23. [Google Scholar] [CrossRef]
- Ka, B. Application of fuzzy AHP and ELECTRE to China dry port location selection. Asian J. Shipp. Logist. 2011, 27, 331–353. [Google Scholar] [CrossRef] [Green Version]
- Iannone, F. The private and social cost efficiency of port hinterland container distribution through a regional logistics system. Transp. Res. Part A Policy Pract. 2012, 46, 1424–1448. [Google Scholar] [CrossRef]
- Haralambides, H.; Gujar, G. On balancing supply chain efficiency and environmental impacts: An eco-DEA model applied to the dry port sector of India. Marit. Econ. Logist. 2012, 14, 122–137. [Google Scholar] [CrossRef]
- Roso, V. Sustainable intermodal transport via dry ports—Importance of directional development. World Rev. Intermodal Transp. Res. 2013, 4, 140–156. [Google Scholar] [CrossRef]
- Wu, J.; Haasis, H.D. Converting knowledge into sustainability performance of freight villages. Logist. Res. 2013, 6, 63–88. [Google Scholar] [CrossRef]
- Regmi, M.B.; Hanaoka, S. Assessment of Modal Shift and Emissions along a Freight Transport Corridor Between Laos and Thailand. Int. J. Sustain. Transp. 2015, 9, 192–202. [Google Scholar] [CrossRef]
- Muravev, D.; Rakhmangulov, A. Environmental Factors’ Consideration at Industrial Transportation Organization in the seaport-Dry port System. Open Eng. 2016, 6, 476–484. [Google Scholar] [CrossRef]
- Molero, G.D.; Santarremigia, F.E.; Aragonés-Beltrán, P.; Pastor-Ferrando, J.-P. Total safety by design: Increased safety and operability of supply chain of inland terminals for containers with dangerous goods. Saf. Sci. 2017, 100, 168–182. [Google Scholar] [CrossRef]
- Black, J.; Roso, V.; Marušić, E.; Brnjac, N. Issues in dry port location and implementation in metropolitan areas: The case of sydney, Australia. Trans. Marit. Sci. 2018, 7, 41–50. [Google Scholar] [CrossRef]
- Tsao, Y.C.; Linh, V.T. Seaport-dry port network design considering multimodal transport and carbon emissions. J. Clean. Prod. 2018, 199, 481–492. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q.; Wang, W.; Peng, Y.; Song, X.; Jiang, Y. Modelling port competition for intermodal network design with environmental concerns. J. Clean. Prod. 2018, 202, 720–735. [Google Scholar] [CrossRef]
- Jachimowski, R.; Szczepański, E.; Kłodawski, M.; Markowska, K.; Dąbrowski, J. Selection of a container storage strategy at the rail-road intermodal terminal as a function of minimization of the energy expenditure of transshipment devices and CO2 Emissions. Rocz. Ochr. Sr. 2018, 20, 965–988. [Google Scholar]
- Santarremigia, F.E.; Molero, G.D.; Poveda-Reyes, S.; Aguilar-Herrando, J. Railway safety by designing the layout of inland terminals with dangerous goods connected with the rail transport system. Saf. Sci. 2018, 110, 206–2016. [Google Scholar] [CrossRef]
- Carboni, A.; Dalla Chiara, B. Range of technical-economic competitiveness of rail-road combined transport. Eur. Transp. Res. Rev. 2018, 10, 45. [Google Scholar] [CrossRef]
- Qiu, X.; Lam, J.S.L. The value of sharing inland transportation services in a dry port system. Transp. Sci. 2018, 52, 835–849. [Google Scholar] [CrossRef]
- Pham, H.T.; Lee, H. Developing a Green Route Model for Dry Port Selection in Vietnam. Asian J. Shipp. Logist. 2019, 35, 96–107. [Google Scholar] [CrossRef]
- Tsao, Y.-C.; Thanh, V.-V. A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment. Transp. Res. Part E Logist. Transp. Rev. 2019, 124, 13–39. [Google Scholar] [CrossRef]
- Hui, F.K.P.; Aye, L.; Duffield, C.F. Engaging employees with good sustainability: Key performance indicators for dry ports. Sustainability 2019, 11, 2967. [Google Scholar] [CrossRef]
- Li, W.; Hilmola, O.P.; Panova, Y. Container Sea Ports and Dry Ports: Future CO2 Emission Reduction Potential in China. Sustainability 2019, 11, 1515. [Google Scholar] [CrossRef]
- Baydar, A.M.; Süral, H.; Çelik, M. Potential effects of logistics clusters: The case of Turkish Freight Villages. J. Clean. Prod. 2019, 233, 399–411. [Google Scholar] [CrossRef]
- Digiesi, S.; Facchini, F.; Mummolo, G. Dry port as a lean and green strategy in a container terminal hub: A mathematical programming model. Manag. Prod. Eng. Rev. 2019, 10, 14–28. [Google Scholar] [CrossRef]
- Mata-Lima, H.; Galuzzi Silva, M.C.; Emilien, M.; Silveira, A.P.; Sacht, H.M.; Vettorazzi, E.; Morgado-Dias, F. Identifying and ranking environmental aspects of a dry port in Foz do Iguaçu city, Paraná-Brazil. Environ. Qual. Manag. 2019, 29, 57–62. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X. Container loading optimization in rail-truck intermodal terminals considering energy consumption. Sustainability 2019, 11, 2383. [Google Scholar] [CrossRef]
- Hervás-Peralta, M.; Poveda-Reyes, S.; Molero, G.D.; Santarremigia, F.E.; Pastor-Ferrando, J.P. Improving the performance of dry and maritime ports by increasing knowledge about the most relevant functionalities of the Terminal Operating System. Sustainability 2019, 11, 1648. [Google Scholar] [CrossRef]
- Aksoy, S.; Durmusoglu, Y. Improving competitiveness level of Turkish intermodal ports in the Frame of Green Port Concept: A case study. Marit. Policy Manag. 2020, 47, 203–220. [Google Scholar] [CrossRef]
- Carboni, A.; Orsini, F. Dry ports and related environmental benefits: A case study in Italy. Case Stud. Tranport Policy 2020, 8, 416–428. [Google Scholar] [CrossRef]
- Gu, Y.M.; Loh, H.S.; Yap, W.Y. Sustainable port-hinterland intermodal development: Opportunities and challenges for China and India. J. Infrastruct. Policy Dev. 2020, 4, 228–248. [Google Scholar] [CrossRef]
- Facchini, F.; Digiesi, S.; Mossa, G. Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making. Int. J. Prod. Econ. 2020, 219, 164–178. [Google Scholar] [CrossRef]
- Hervás-Peralta, M.; Poveda-Reyes, S.; Santarremigia, F.E.; Molero, G.D. Designing the layout of terminals with dangerous goods for safer and more secure ports and hinterlands. Case Stud. Tranport Policy 2020, 8, 300–310. [Google Scholar] [CrossRef]
- de Souza, M.F.; Pinto, P.H.G.; Teixeira, R.B.A.; Nascimento, C.D.O.L.; de Albuquerque Nóbrega, R.A. Dry port location optimization to foster sustainable regional development. Sustain. Debate 2020, 8, 416–428. [Google Scholar] [CrossRef]
- Tadic, S.; Krstic, M.; Roso, V.; Brnjac, N. Dry port terminal location selection by applying the hybrid grey MCDM model. Sustainability 2020, 12, 6983. [Google Scholar] [CrossRef]
- Baccelli, O.; Morino, P. The role of port authorities in the promotion of logistics integration between ports and the railway system: The Italian experience. Res. Transp. Bus. Manag. 2020, 35, 100451. [Google Scholar] [CrossRef]
- D’Amore, G.; Di Vaio, A.; Balsalobre-Lorente, D.; Boccia, F. Artificial Intelligence in the Water–Energy–Food Model: A Holistic Approach towards Sustainable Development Goals. Sustainability 2022, 14, 867. [Google Scholar] [CrossRef]
- Di Vaio, A.; Trujillo, L.; D’Amore, G.; Palladino, R. Water governance models for meeting sustainable development Goals: A structured literature review. Util. Policy 2021, 72, 101255. [Google Scholar] [CrossRef]
- Di Vaio, A.; Hasan, S.; Palladino, R.; Profita, F.; Mejri, I. Understanding knowledge hiding in business organizations: A bibliometric analysis of research trends, 1988–2020. J. Bus. Res. 2021, 134, 560–573. [Google Scholar] [CrossRef]
- Khaslavskaya, A.; Roso, V. Dry ports: Research outcomes, trends, and future implications. Marit. Econ. Logist. 2020, 22, 265–292. [Google Scholar] [CrossRef]
- World Port Sustainability Program: Areas of Interest. 2022. Available online: https://sustainableworldports.org/areas-of-interest/#infrastructure (accessed on 23 February 2022).
- ESCAP (Economic and Social Commission for Asia and the Pacific). Policies and issues related to dry ports of international importance and the development of intermodal transport. In Proceedings of the 4th Meeting of the Working Group on Dry Ports, Bangkok, Thailand, 2–3 June 2021. [Google Scholar]
- United Nations Department of Economic and Social Affairs. Sustainable transport, sustainable development. In Interagency Report, Proceedings of the Second Global Sustainable Transport Conference, Beijing, China, 14–16 October 2021; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Alamoush, A.S.; Ballini, F.; Dalaklis, S. Port sustainable supply chain management framework: Contributing to the United Nations’ sustainable development goals. Marit. Technol. Res. 2021, 3, 137–161. [Google Scholar] [CrossRef]
Author(s) | Year | Journal |
---|---|---|
Roso [47] | 2008 | International Journal of Physical Distribution and Logistics Management |
Roso [48] | 2009 | World Review of Intermodal Transportation Research |
Roso et al. [10] | 2009 | Journal of Transport Geography |
Lima et al. [49] | 2010 | International Journal of Sustainable Development and Planning |
Henttu and Hilmola [50] | 2011 | Research in Transportation Economics |
Hanaoka and Regmi [51] | 2011 | IATSS Research |
Ka [52] | 2011 | The Asian Journal of Shipping and Logistics |
Iannone [53] | 2012 | Transportation Research Part A: Policy and Practice |
Haralambides and Gujar [54] | 2012 | Maritime Economics and Logistics |
Roso [55] | 2013 | World Review of Intermodal Transportation Research |
Zeng et al. [45] | 2013 | Transportation Journal |
Lättilä et al. [17] | 2013 | Transportation Research Part E: Logistics and Transportation Rev. |
Wu and Haasis [56] | 2013 | Logistics Research |
Regmi and Hanaoka [57] | 2015 | International Journal of Sustainable Transportation |
Muravev and Rakhmangulov [58] | 2016 | Open Engineering |
Molero et al. [59] | 2017 | Safety Science |
Black et al. [60] | 2018 | Transactions on Maritime Science |
Tsao and Linh [61] | 2018 | Journal of Cleaner Production |
Wu and Haasis [11] | 2018 | Journal of Cleaner Production |
Xu et al. [62] | 2018 | Journal of Cleaner Production |
Jachimowski et al. [63] | 2018 | Rocznik Ochrona Środowiska |
Santarremigia et al. [64] | 2018 | Safety Science |
Carboni and Dalla Chiara [65] | 2018 | Case Studies on Transport Policy |
Qiu and Lam [66] | 2018 | Transportation Science |
Pham and Lee [67] | 2019 | Asian Journal of Shipping and Logistics |
Tsao and Thanh [68] | 2019 | Transportation Research Part E: Logistics and Transportation Review |
Hui et al. [69] | 2019 | Sustainability |
Kurtulus and Cetin [32] | 2019 | Sustainability |
Li et al. [70] | 2019 | Sustainability |
Baydar et al. [71] | 2019 | Journal of Cleaner Production |
Digiesi et al. [72] | 2019 | Management and Production Engineering Review |
Khaslavskaya and Roso [27] | 2019 | Maritime Economics and Logistics |
Mata-Lima et al. [73] | 2019 | Environmental Quality Management |
Wang and Zhu [74] | 2019 | Sustainability |
Hervás-Peralta et al. [75] | 2019 | Sustainability |
Aksoy and Durmusoglu [76] | 2020 | Maritime Policy and Management |
Carboni and Orsini [77] | 2020 | European Transport Research Review |
Gu et al. [78] | 2020 | Journal of Infrastructure, Policy, and Development |
Facchini et al. [79] | 2020 | International Journal of Production Economics |
Hervás-Peralta et al. [80] | 2020 | Case Studies on Tranport Policy |
de Souza et al. [81] | 2020 | Sustainability in Debate |
Tadic et al. [82] | 2020 | Sustainability |
Baccelli and Morino [83] | 2020 | Research in Transportation Business and Management |
References | Subtopics | ||
---|---|---|---|
Environmental Sciences (PS) | Social Sciences (SS) | Business, Management, and Accounting (SS) | |
Roso [47] | X | X | |
Roso [48] | X | ||
Roso et al. [10] | X | X | |
Lima et al. [49] | X | X | |
Henttu and Hilmola [50] | X | ||
Hanaoka and Regmi [51] | X | ||
Ka [52] | X | X | |
Iannone [53] | X | ||
Haralambides and Gujar [54] | X | ||
Roso [55] | X | ||
Zeng et al. [45] | X | ||
Lättilä et al. [17] | X | X | |
Wu and Haasis [56] | X | X | |
Regmi and Hanaoka [57] | X | X | X |
Muravev and Rakhmangulov [58] | X | ||
Molero et al. [59] | X | X | |
Black et al. [60] | X | X | |
Tsao and Linh [61] | X | X | |
Wu and Haasis [11] | X | ||
Xu et al. [62] | X | X | |
Jachimowski et al. [63] | X | ||
Santarremigia et al. [64] | X | ||
Carboni and Dalla Chiara [65] | X | ||
Qiu and Lam [66] | X | ||
Pham and Lee [67] | X | X | |
Tsao and Thanh [68] | X | X | |
Hui et al. [69] | X | X | |
Kurtulus and Cetin [32] | X | X | |
Li et al. [70] | X | X | |
Baydar et al. [71] | X | ||
Digiesi et al. [72] | X | ||
Khaslavskaya and Roso [27] | X | X | |
Mata-Lima et al. [73] | X | ||
Wang and Zhu [74] | X | X | |
Hervás-Peralta et al. [75] | X | ||
Aksoy and Durmusoglu [76] | X | ||
Carboni and Orsini [77] | X | ||
Gu et al. [78] | X | ||
Facchini et al. [79] | X | ||
Hervás-Peralta et al. [80] | X | ||
de Souza et al. [81] | X | X | |
Tadic et al. [82] | |||
Baccelli and Morino [83] | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varese, E.; Bux, C.; Amicarelli, V.; Lombardi, M. Assessing Dry Ports’ Environmental Sustainability. Environments 2022, 9, 117. https://doi.org/10.3390/environments9090117
Varese E, Bux C, Amicarelli V, Lombardi M. Assessing Dry Ports’ Environmental Sustainability. Environments. 2022; 9(9):117. https://doi.org/10.3390/environments9090117
Chicago/Turabian StyleVarese, Erica, Christian Bux, Vera Amicarelli, and Mariarosaria Lombardi. 2022. "Assessing Dry Ports’ Environmental Sustainability" Environments 9, no. 9: 117. https://doi.org/10.3390/environments9090117
APA StyleVarese, E., Bux, C., Amicarelli, V., & Lombardi, M. (2022). Assessing Dry Ports’ Environmental Sustainability. Environments, 9(9), 117. https://doi.org/10.3390/environments9090117