Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union
Abstract
1. Introduction
2. Nickel Toxicity Effects
2.1. Effects on Crop
2.2. Effects on Soil Microorganisms and Earthworms
3. Bioremediation Techniques
3.1. Phytoremediation
3.2. Aided Plant-Based Bioremediation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Husak, V. Copper and Copper-Containing Pesticides: Metabolism, Toxicity and Oxidative Stress. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2015, 2, 38–50. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An Inventory of Heavy Metals Inputs to Agricultural Soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Kisku, G.C.; Barman, S.C.; Bhargava, S.K. Contamination of Soil and Plants with Potentially Toxic Elements Irrigated with Mixed Industrial Effluent and Its Impact on the Environment. Water Air Soil Pollut. 2000, 120, 121–137. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Tsadilas, C.D.; Rinklebe, J. A Review of the Distribution Coefficients of Trace Elements in Soils: Influence of Sorption System, Element Characteristics, and Soil Colloidal Properties. Adv. Colloid Interface Sci. 2013, 201–202, 43–56. [Google Scholar] [CrossRef]
- Paya-Perez, A.; Rodriguez Eugenio, N. Status of Local Soil Contamination in Europe; Commission, E., Ed.; Joint Research Centre: Ispra, Italy, 2018; ISBN 9789279800726. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Xiao, R.; Ali, A.; Xu, Y.; Abdelrahman, H.; Li, R.; Lin, Y.; Bolan, N.; Shaheen, S.M.; Rinklebe, J.; Zhang, Z. Earthworms as Candidates for Remediation of Potentially Toxic Elements Contaminated Soils and Mitigating the Environmental and Human Health Risks: A Review. Environ. Int. 2022, 158, 106924. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M.; Demetriades, A.; Filzmoser, P.; O’connor, P. Chemistry of Europe’s Agricultural Soils–Part B: General Background Information and Further Analysis of the GEMAS Data Set. Geol. Jahrb. Reihe B 2014, 103, 352. [Google Scholar]
- van der Voet, E.; Salminen, R.; Eckelman, M.; Norgate, T.; Mudd, G.; Hisschier, R.; Spijker, J.; Vijver, M.; Selinus, O.; Posthuma, L.; et al. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles 3; United Nations Environment Programme: Nairobi, Kenya, 2013; ISBN 9789280732665. [Google Scholar]
- MEF. Government Decree on the Assessment of Soil Contamination and Remediation Needs; MEF: Helsinki, Finland, 2007. [Google Scholar]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the Largest Expandable Soil Dataset for Europe: A Review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Szatmári, G.; Pásztor, L. Maps of Heavy Metals in the Soils of the European Union and Proposed Priority Areas for Detailed Assessment. Sci. Total Environ. 2016, 565, 1054–1062. [Google Scholar] [CrossRef]
- Fernandez-Ugalde, O.; Scarpa, S.; Orgiazzi, A.; Panagos, P.; Van Liedekerke, M.; Marechal, A.; Jones, A. LUCAS 2018 Soil Module.Presentation of Dataset and Results; EUR 31144; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Environment Agency. Soil Guideline Values for Nickel in Soil. Science Report SC050021/Nickel SGV; European Environment Agency: Copenhagen, Denmark, 2009. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000; ISBN 042919112X. [Google Scholar]
- Mohammadpour, G.; Karbassi, A.; Baghvand, A. Pollution Intensity of Nickel in Agricultural Soil of Hamedan Region. Casp. J. Environ. Sci. 2016, 14, 15–24. [Google Scholar]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A Micronutrient Essential for Higher Plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; Whether Toxic or Essential for Plants and Environment—A Review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, S.B.; Hausinger, R.P. Nickel Uptake and Utilization by Microorganisms. FEMS Microbiol. Rev. 2003, 27, 239–261. [Google Scholar] [CrossRef]
- Goyer, R.A.; Clarkson, T.W. Toxic Effects of Metals. In Casarett and Doullis Toxicology: The Basic Science of Poisons; Klaassen, C.D., Ed.; Mc-Graw Hill: New York, NY, USA, 2001; Volume 81. [Google Scholar]
- Phipps, T.; Tank, S.L.; Wirtz, J.; Brewer, L.; Coyner, A.; Ortego, L.S.; Fairbrother, A. Essentiality of Nickel and Homeostatic Mechanisms for Its Regulation in Terrestrial Organisms. Environ. Rev. 2002, 10, 209–261. [Google Scholar] [CrossRef]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A Comprehensive Review on the Sources, Essentiality and Toxicological Profile of Nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef]
- Küpper, H.; Kroneck, P.M.H. Nickel in the Environment and Its Role in the Metabolism of Plants and Cyanobacteria. In Nickel and Its Surprising Impact in Nature; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 2, ISBN 9780470028131. [Google Scholar]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef]
- Gupta, V.; Jatav, P.K.; Verma, R.; Kothari, S.L.; Kachhwaha, S. Nickel Accumulation and Its Effect on Growth, Physiological and Biochemical Parameters in Millets and Oats. Environ. Sci. Pollut. Res. 2017, 24, 23915–23925. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Institute of Plant Nutrition University of Hohenheim: Stuttgart, Germany, 1995. [Google Scholar]
- Wood, B.W.; Reilly, C.C.; Nyczepir, A.P. Mouse-Ear of Pecan: A Nickel Deficiency. HortScience 2004, 39, 1238–1242. [Google Scholar] [CrossRef]
- Ruter, J.M. Effect of Nickel Applications for the Control of Mouse Ear Disorder on River Birch. J. Environ. Hortic. 2005, 23, 17–20. [Google Scholar] [CrossRef]
- Wood, B.W.; Reilly, C.C.; Nyczepir, A.P. Field Deficiency of Nickel in Trees: Symptoms and Causes. Acta Hortic. 2006, 721, 83–97. [Google Scholar] [CrossRef]
- Bai, C.; Reilly, C.C.; Wood, B.W. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage. Plant Physiol. 2006, 140, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Ali, A.; Khan, M.A.U.; Khan, T.A. Nickel Toxicity in Plants: Reasons, Toxic Effects, Tolerance Mechanisms, and Remediation Possibilities—A Review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar] [CrossRef]
- van der Pas, L.; Ingle, R.A. Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants. Plants 2019, 8, 11. [Google Scholar] [CrossRef]
- Kozlov, M.V. Pollution Resistance of Mountain Birch, Betula Pubescens Subsp. Czerepanovii, near the Copper-Nickel Smelter: Natural Selection or Phenotypic Acclimation? Chemosphere 2005, 59, 189–197. [Google Scholar] [CrossRef]
- Bollard, E.G. Involvement of Unusual Elements in Plant Growth and Nutrition. Encycl. Plant Physiol. New Ser. 1983, 15, 695–744. [Google Scholar]
- Kupper, H.; Lombi, E.; Zhao, F.; Wieshammer, G.; Mcgrath, S.P.; Küpper, H. Cellular Compartmentation of Nickel in the HA Alyssum Lesbiacum, Alyssum Bertolonii and Thlaspi Goesingense. J. Exp. Bot. 2001, 52, 2291–2300. [Google Scholar] [CrossRef]
- Muhammad, B.H.; Shafaqat, A.; Aqeel, A.; Saadia, H.; Muhammad, A.F.; Basharat, A.; Saima, A.B.; Muhammad, B.G. Morphological, Physiological and Biochemical Responses of Plants to Nickel Stress: A Review. Afr. J. Agric. Res. 2013, 8, 1596–1602. [Google Scholar] [CrossRef]
- Matraszek, R.; Szymańska, M.; Chomczyńska, M.; Soldatov, V.S. Productivity and Chemical Composition of Tomato and Cucumber Plants Growing in Nickel-Polluted Soils Fertilized with Biona-312. Commun. Soil Sci. Plant Anal. 2010, 41, 155–172. [Google Scholar] [CrossRef]
- Rehman, F.; Khan, F.A.; Irfan, M.; Dar, M.I. Impact of Nickel on the Growth of Lycopersicon Esculentum Var. Navodaya. Int. J. Environ. Sci. 2016, 7, 100–106. [Google Scholar]
- Palacios, G.; Gómez, I.; Carbonell-Barrachina, A.; Navarro Pedreño, J.; Mataix, J. Effect of Nickel Concentration on Tomato Plant Nutrition and Dry Matter Yield. J. Plant Nutr. 1998, 21, 2179–2191. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of Nickel and Grafting Combination on Yield, Fruit Quality, Antioxidative Enzyme Activities, Lipid Peroxidation, and Mineral Composition of Tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Subhani, M.A.; Amjad, M.; Iqbal, M.M.; Murtaza, B.; Imran, M.; Naeem, M.A.; Abbas, G.; Andersen, M.N. Nickel Toxicity Pretreatment Attenuates Salt Stress by Activating Antioxidative System and Ion Homeostasis in Tomato (Solanum Lycopersicon L.): An Interplay from Mild to Severe Stress. Environ. Geochem. Health 2022, 1–20. [Google Scholar] [CrossRef]
- Gajewska, E.; Skłodowska, M.; Słaba, M.; Mazur, J. Effect of Nickel on Antioxidative Enzyme Activities, Proline and Chlorophyll Contents in Wheat Shoots. Biol. Plant. 2006, 50, 653–659. [Google Scholar] [CrossRef]
- Maheshwari, R.; Dubey, R.S. Nickel-Induced Oxidative Stress and the Role of Antioxidant Defence in Rice Seedlings. Plant Growth Regul. 2009, 59, 37–49. [Google Scholar] [CrossRef]
- Baccouch, S.; Chaoui, A.; El Ferjani, E. Nickel-Induced Oxidative Damage and Antioxidant Responses in Zea Mays Shoots. Plant Physiol. Biochem. 1998, 36, 689–694. [Google Scholar] [CrossRef]
- Poulik, Z. The Danger of Cumulation of Nickel in Cereals on Contaminated Soil. Agric. Ecosyst. Environ. 1997, 63, 25–29. [Google Scholar] [CrossRef]
- Kumar, O.; Singh, S.K.; Singh, A.P.; Yadav, S.N.; Latare, A.M. Effect of Soil Application of Nickel on Growth, Micronutrient Concentration and Uptake in Barley (Hordeum Vulgare L.) Grown in Inceptisols of Varanasi. J. Plant Nutr. 2017, 41, 50–66. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kala, R.; Gupta, S.P. Effect of Nickel on Yield and Its Concentration in Some Rabi Crops Grown on Typic Ustipsamment. J. Indian Soc. Soil Sci. 1996, 44, 348–349. [Google Scholar]
- Amjad, M.; Raza, H.; Murtaza, B.; Abbas, G.; Imran, M.; Shahid, M.; Asif Naeem, M.; Zakir, A.; Mohsin Iqbal, M. Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea Mays L.) Hybrids. Plants 2020, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Younis, U.; Athar, M.; Malik, S.A.; Shah, H.R.; Mahmood, S. Biochar Impact on Physiological and Biochemical Attributes of Spinach Spinacia Oleracea (L.) in Nickel Contaminated Soil. Glob. J. Environ. Sci. Manag. 2015, 10, 245–254. [Google Scholar]
- Arasimowicz, M.; Wisniowska-Kielian, B.; Niemiec, M. Efficiency of Antioxidative System in Spinach Plants Growing in Soil Contaminated with Nickel. Ecol. Chem. Eng. A 2013, 20, 987–997. [Google Scholar] [CrossRef]
- Molas, J. Changes of Chloroplast Ultrastructure and Total Chlorophyll Concentration in Cabbage Leaves Caused by Excess of Organic Ni(II) Complexes. Environ. Exp. Bot. 2002, 47, 115–126. [Google Scholar] [CrossRef]
- Nie, J.; Pan, Y.; Shi, J.; Guo, Y.; Yan, Z.; Duan, X.; Xu, M. A Comparative Study on the Uptake and Toxicity of Nickel Added in the Form of Different Salts to Maize Seedlings. Int. J. Environ. Res. Public Health 2015, 12, 15075–15087. [Google Scholar] [CrossRef]
- Helaoui, S.; Mkhinini, M.; Boughattas, I.; Alphonse, V.; Giusti-Miller, S.; Livet, A.; Banni, M.; Bousserrhine, N. Assessment of Changes on Rhizospheric Soil Microbial Biomass, Enzymes Activities and Bacterial Functional Diversity under Nickel Stress in Presence of Alfafa Plants. Soil Sediment Contam. 2020, 29, 823–843. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Kucharski, J.; Boros-Lajszner, E. Effect of Nickel Contamination on Soil Enzymatic Activity. Plant Soil Environ. 2005, 51, 523–531. [Google Scholar] [CrossRef]
- Cai, X.; Qiu, R.; Chen, G.; Zeng, X.; Fang, X. Response of Microbial Communities to Phytoremediation of Nickel Contaminated Soils. Front. Agric. China 2007, 1, 289–295. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.W.; Ma, Y.B.; Wang, J.T.; Liu, Y.R.; He, J.Z. Long-Term Nickel Exposure Altered the Bacterial Community Composition but Not Diversity in Two Contrasting Agricultural Soils. Environ. Sci. Pollut. Res. 2015, 22, 10496–10505. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Zarubina, A.P.; Plekhanov, S.E. Ecotoxicological Assessment of Nickel Pollution of Soil and Water Environments Adjacent to Soddy–Podzolic Soil. Mosc. Univ. Soil Sci. Bull. 2017, 72, 71–77. [Google Scholar] [CrossRef]
- Xia, X.; Lin, S.; Zhao, J.; Zhang, W.; Lin, K.; Lu, Q.; Zhou, B. Toxic Responses of Microorganisms to Nickel Exposure in Farmland Soil in the Presence of Earthworm (Eisenia Fetida). Chemosphere 2018, 192, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Héry, M.; Nazaret, S.; Jaffré, T.; Normand, P.; Navarro, E. Adaptation to Nickel Spiking of Bacterial Communities in Neocaledonian Soils. Environ. Microbiol. 2003, 5, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Scott-Fordsmand, J.J.; Weeks, J.M.; Hopkin, S.P. Toxicity of Nickel to the Earthworm and the Applicability of the Neutral Red Retention Assay. Ecotoxicology 1998, 7, 291–295. [Google Scholar] [CrossRef]
- Lock, K.; Janssen, C.R. Ecotoxicity of Nickel to Eisenia Fetida, Enchytraeus Albidus and Folsomia Candida. Chemosphere 2002, 46, 197–200. [Google Scholar] [CrossRef]
- Maleri, R.A.; Reinecke, A.J.; Reinecke, S.A. A Comparison of Nickel Toxicity to Pre-Exposed Earthworms (Eisenia Fetida, Oligochaeta) in Two Different Test Substrates. Soil Biol. Biochem. 2007, 39, 2849–2853. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, B.; Xie, D.; Zhou, Y.; Guo, G.; Xu, M.; Bai, L.; Hou, H.; Li, F. Uptake and Toxicity of Spiked Nickel to Earthworm Eisenia Fetida in a Range of Chinese Soils. Environ. Toxicol. Chem. 2011, 30, 2586–2593. [Google Scholar] [CrossRef]
- Wang, G.; Xia, X.; Yang, J.; Tariq, M.; Zhao, J.; Zhang, M.; Huang, K.; Lin, K.; Zhang, W. Exploring the Bioavailability of Nickel in a Soil System: Physiological and Histopathological Toxicity Study to the Earthworms (Eisenia Fetida). J. Hazard. Mater. 2020, 383, 121169. [Google Scholar] [CrossRef]
- Bigorgne, E.; Cossu-Leguille, C.; Murtaza, B.; Abbas, G.; Imran, M.; Shahid, M.; Asif Naeem, M.; Zakir, A.; Mohsin Iqbal, M. Genotoxic Effects of Nickel, Trivalent and Hexavalent Chromium on the Eisenia Fetida Earthworm. Chemosphere 2010, 80, 1109–1112. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Li, J.; He, J.-Z.; Ma, Y.-B.; Zheng, Y.-M. Different Influences of Field Aging on Nickel Toxicity to Folsomia Candida in Two Types of Soil. Env. Sci. Pollut. Res. 2015, 22, 8235–8241. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Zhou, J.; Zhou, D.; Wang, Y. Effects of Soil Properties and Aging Process on the Acute Toxicity of Cadmium to Earthworm Eisenia Fetida. Env. Sci. Pollut. Res. 2018, 25, 3708–3717. [Google Scholar] [CrossRef] [PubMed]
- Eapen, S.; Singh, S.; D’Souza, S.F. Advances in Development of Transgenic Plants for Remediation of Xenobiotic Pollutants. Biotechnol. Adv. 2007, 25, 442–451. [Google Scholar] [CrossRef]
- Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandey, L.M. Recent Advances in Conventional and Contemporary Methods for Remediation of Heavy Metal-Contaminated Soils. 3 Biotech 2018, 8, 216. [Google Scholar] [CrossRef]
- Van Ginneken, L.; Meers, E.; Guisson, R.; Ruttens, A.; Elst, K.; Tack, F.M.G.; Vangronsveld, J.; Diels, L.; Dejonghe, W. Phytoremediation for Heavy Metal-Contaminated Soils Combined with Bioenergy Production. J. Environ. Eng. Landsc. Manag. 2007, 15, 227–236. [Google Scholar] [CrossRef]
- Singh, P.; Singh, V.K.; Singh, R.; Borthakur, A.; Madhav, S.; Ahamad, A.; Kumar, A.; Pal, D.B.; Tiwary, D.; Mishra, P.K. Bioremediation: A Sustainable Approach for Management of Environmental Contaminants. In Abatement of Environmental Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–23. [Google Scholar]
- de Albergaria, J.T.; Nouws, H.P. (Eds.) Soil Remediation; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-60876-651-2. [Google Scholar]
- Cunningham, S.D.; Ow, D.W. Promises and Prospects of Phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Favas, P.J.C.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M.S. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. Environ. Risk Assess. Soil Contam. 2014, 3, 485–516. [Google Scholar]
- Schnoor, J.L.; Licht, L.A.; McCUTCHEON, S.C.; Wolfe, N.L.; Carreira, L.H. Phytoremediation of Organic and Nutrient Contaminants. Environ. Sci. Technol. 1995, 29, 318–323. [Google Scholar] [CrossRef]
- Berti, W.R.; Cunningham, S.D. Phytostabilization of Metals. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; Wiley: New York, NY, USA, 2000; pp. 71–88. [Google Scholar]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation Technology: Hyper-Accumulation Metals in Plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Dhote, S.; Dixit, S. Water Quality Improvement through Macrophytes—A Review. Environ. Monit. Assess. 2009, 152, 149–153. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Anwar Sajad, M. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M. Metal-Accumulating Plants. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Chen, L.; Beiyuan, J.; Hu, W.; Zhang, Z.; Duan, C.; Cui, Q.; Zhu, X.; He, H.; Huang, X.; Fang, L. Phytoremediation of Potentially Toxic Elements (PTEs) Contaminated Soils Using Alfalfa (Medicago Sativa L.): A Comprehensive Review. Chemosphere 2022, 293, 133577. [Google Scholar] [CrossRef] [PubMed]
- Fagnano, M.; Visconti, D.; Fiorentino, N. Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. Agronomy 2020, 10, 1335. [Google Scholar] [CrossRef]
- Fiorentino, N.; Mori, M.; Cenvinzo, V.; Duri, L.G.; Gioia, L.; Visconti, D.; Fagnano, M. Assisted Phytoremediation for Restoring Soil Fertility in Contaminated and Degraded Land. Ital. J. Agron. 2018, 13, 34–44. [Google Scholar]
- Matanzas, N.; Afif, E.; Díaz, T.E.; Gallego, J.L.R. Screening of Pioneer Metallophyte Plant Species with Phytoremediation Potential at a Severely Contaminated Hg and As Mining Site. Environments 2021, 8, 63. [Google Scholar] [CrossRef]
- Wang, L.; Xie, X.; Li, Q.; Yu, Z.; Hu, G.; Wang, X.; Liu, J. Accumulation of Potentially Toxic Trace Elements (PTEs) by Native Plant Species Growing in a Typical Gold Mining Area Located in the Northeast of Qinghai-Tibet Plateau. Env. Sci Pollut Res 2022, 29, 6990–7000. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. IJERPH 2020, 17, 679. [Google Scholar] [CrossRef]
- Kumar, A.; Jigyasu, D.K.; Kumar, A.; Subrahmanyam, G.; Mondal, R.; Shabnam, A.A.; Cabral-Pinto, M.M.S.; Malyan, S.K.; Chaturvedi, A.K.; Gupta, D.K.; et al. Nickel in Terrestrial Biota: Comprehensive Review on Contamination, Toxicity, Tolerance and Its Remediation Approaches. Chemosphere 2021, 275, 129996. [Google Scholar] [CrossRef]
- Govere, E.M. Environmental Phytoremediation and Analytical Technologies for Heavy Metal Removal and Assessment. In Plant Biotechnology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 203–213. [Google Scholar]
- Reeves, R.D. The Hyperaccumulation of Nickel by Serpentine Plants. In The Vegetation of Ultramafic (Serpentine) Soils; Intercept: Totnes, UK, 1992; pp. 253–277. [Google Scholar]
- Robinson, B.H.; Chiarucci, A.; Brooks, R.R.; Petit, D.; Kirkman, J.H.; Gregg, P.E.H.; De Dominicis, V. The Nickel Hyperaccumulator Plant Alyssum Bertolonii as a Potential Agent for Phytoremediation and Phytomining of Nickel. J. Geochem. Explor. 1997, 59, 75–86. [Google Scholar] [CrossRef]
- Roccotiello, E.; Serrano, H.C.; Mariotti, M.G.; Branquinho, C. Nickel Phytoremediation Potential of the Mediterranean Alyssoides Utriculata (L.) Medik. Chemosphere 2015, 119, 1372–1378. [Google Scholar] [CrossRef]
- Rosenkranz, T.; Hipfinger, C.; Ridard, C.; Puschenreiter, M. A Nickel Phytomining Field Trial Using Odontarrhena Chalcidica and Noccaea Goesingensis on an Austrian Serpentine Soil. J. Environ. Manag. 2019, 242, 522–528. [Google Scholar] [CrossRef]
- Abhilash, M.R.; Srikantaswamy, S.; Shiva Kumar, D.; Jagadish, K.; Shruthi, L. Phytoremediation of Heavy Metal Industrial Contaminated Soil by Spiracia Oleracea L and Zeamays L. RA-Int. J. Appl. Sci. 1988, 4, 55–59. [Google Scholar] [CrossRef][Green Version]
- Ciura, J.; Poniedziałek, M.; Sekara, A.; Jedrszczyk, E. The Possibility of Using Crops as Metal Phytoremediants. Pol. J. Environ. Stud. 2004, 14, 17–22. [Google Scholar]
- De Bernardi, A.; Casucci, C.; Businelli, D.; D’Amato, R.; Beone, G.M.; Fontanella, M.C.; Vischetti, C. Phytoremediation Potential of Crop Plants in Countering Nickel Contamination in Carbonation Lime Coming from the Sugar Industry. Plants 2020, 9, 580. [Google Scholar] [CrossRef] [PubMed]
- Francis, E. Phytoremediation Potentials of Sunflower (Helianthus Annuus L.) Asteraceae on Contaminated Soils of Abandoned Dumpsites. Int. J. Sci. Eng. Res. 2017, 8, 1751–17157. [Google Scholar]
- Giordani, C.; Cecchi, S.; Zanchi, C. Phytoremediation of Soil Polluted by Nickel Using Agricultural Crops. Environ. Manag. 2005, 36, 675–681. [Google Scholar] [CrossRef]
- Souza, L.A.; Piotto, F.A.; Nogueirol, R.C.; Azevedo, R.A. Use of Non-Hyperaccumulator Plant Species for the Phytoextraction of Heavy Metals Using Chelating Agents. Sci. Agric. 2013, 70, 290–295. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and Excluders—Strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca Rubra L. and Alyssum Saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Tőzsér, D.; Tóthmérész, B.; Harangi, S.; Baranyai, E.; Lakatos, G.; Fülöp, Z.; Simon, E. Remediation Potential of Early Successional Pioneer Species Chenopodium Album and Tripleurospermum Inodorum. Nat. Conserv. 2019, 36, 47–69. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation Potential of Twelve Wild Plant Species for Toxic Elements in a Contaminated Soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Salinitro, M.; Montanari, S.; Simoni, A.; Ciavatta, C. Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge. Agronomy 2021, 11, 2456. [Google Scholar] [CrossRef]
- Lydakis-Simantiris, N.; Fabian, M.; Skoula, M. Cultivation of Medicinal and Aromatic Plants. Glob. Nest 2015, 18, 525–553. [Google Scholar] [CrossRef]
- Gaggero, E.; Malandrino, M.; Fabbri, D.; Bordiglia, G.; Fusconi, A.; Mucciarelli, M.; Inaudi, P.; Calza, P. Uptake of Potentially Toxic Elements by Four Plant Species Suitable for Phytoremediation of Turin Urban Soils. Appl. Sci. 2020, 10, 3948. [Google Scholar] [CrossRef]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of Heavy Metals by Canola (Brassica Napus) and Radish (Raphanus Sativus) Grown on Multicontaminated Soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Stanislawska-Glubiak, E. Phytoremediation Potential of Phalaris Arundinacea, Salix Viminalis and Zea Mays for Nickel-Contaminated Soils. Int. J. Environ. Sci. Technol. 2019, 16, 1999–2008. [Google Scholar] [CrossRef]
- Galić, M.; Perčin, A.; Zgorelec, Ž.; Kisić, I. Evaluation of Heavy Metals Accumulation Potential of Hemp (Cannabis Sativa l.). J. Cent. Eur. Agric. 2019, 20, 700–711. [Google Scholar] [CrossRef]
- Citterio, S.; Prato, N.; Fumagalli, P.; Aina, R.; Massa, N.; Santagostino, A.; Sgorbati, S.; Berta, G. The Arbuscular Mycorrhizal Fungus Glomus Mosseae Induces Growth and Metal Accumulation Changes in Cannabis sativa L. Chemosphere 2005, 59, 21–29. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of Zeolite to Neutralise Nickel in a Soil Environment. Environ. Monit. Assess. 2018, 190, 54. [Google Scholar] [CrossRef]
- Pescatore, A.; Grassi, C.; Rizzo, A.M.; Orlandini, S.; Napoli, M. Effects of Biochar on Berseem Clover (Trifolium Alexandrinum, L.) Growth and Heavy Metal (Cd, Cr, Cu, Ni, Pb, and Zn) Accumulation. Chemosphere 2022, 287, 131986. [Google Scholar] [CrossRef]
- Stanislawska-Glubiak, E.; Korzeniowska, J. Tolerance of white mustard (Sinapsis alba L.) to soil pollution with several heavy metals. Ecol. Chem. Eng. 2011, 18, 445–450. [Google Scholar]
- Korzeniowska, J.; Stanislawska-Glubiak, E. Phytoremediation Potential of Miscanthus × Giganteus and Spartina Pectinata in Soil Contaminated with Heavy Metals. Environ. Sci. Pollut. Res. 2015, 22, 11648–11657. [Google Scholar] [CrossRef] [PubMed]
- Citterio, S.; Santagostino, A.; Fumagalli, P.; Prato, N.; Ranalli, P.; Sgorbati, S. Heavy Metal Tolerance and Accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 2003, 256, 243–252. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An Overview and Analysis of Site Remediation Technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Diarra, I.; Kotra, K.K.; Prasad, S. Application of Phytoremediation for Heavy Metal Contaminated Sites in the South Pacific: Strategies, Current Challenges and Future Prospects. Appl. Spectrosc. Rev. 2021, 57, 490–512. [Google Scholar] [CrossRef]
- Barbaroux, R.; Plasari, E.; Mercier, G.; Simonnot, M.O.; Morel, J.L.; Blais, J.F. A New Process for Nickel Ammonium Disulfate Production from Ash of the Hyperaccumulating Plant Alyssum Murale. Sci. Total Environ. 2012, 423, 111–119. [Google Scholar] [CrossRef]
- Conte, A.; Chiaberge, S.; Pedron, F.; Barbafieri, M.; Petruzzelli, G.; Vocciante, M.; Franchi, E.; Pietrini, I. Dealing with Complex Contamination: A Novel Approach with a Combined Bio-Phytoremediation Strategy and Effective Analytical Techniques. J. Environ. Manag. 2021, 288, 112381. [Google Scholar] [CrossRef]
- Huang, X.D.; El-Alawi, Y.; Penrose, D.M.; Glick, B.R.; Greenberg, B.M. A Multi-Process Phytoremediation System for Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Soils. Environ. Pollut. 2004, 130, 465–476. [Google Scholar] [CrossRef]
- Brunetti, G.; Farrag, K.; Soler-Rovira, P.; Ferrara, M.; Nigro, F.; Senesi, N. Heavy Metals Accumulation and Distribution in Durum Wheat and Barley Grown in Contaminated Soils under Mediterranean Field Conditions. J. Plant Interact. 2012, 7, 160–174. [Google Scholar] [CrossRef][Green Version]
- Rajkumar, M.; Ma, Y.; Freitas, H. Characterization of Metal-Resistant Plant-Growth Promoting Bacillus Weihenstephanensis Isolated from Serpentine Soil in Portugal. J. Basic Microbiol. 2008, 48, 500–508. [Google Scholar] [CrossRef]
- Rodríguez-Vila, A.; Covelo, E.F.; Forján, R.; Asensio, V. Phytoremediating a Copper Mine Soil with Brassica Juncea L., Compost and Biochar. Environ. Sci. Pollut. Res. 2014, 21, 11293–11304. [Google Scholar] [CrossRef]
- Urionabarrenetxea, E.; Garcia-Velasco, N.; Anza, M.; Artetxe, U.; Lacalle, R.; Garbisu, C.; Becerril, T.; Soto, M. Application of in Situ Bioremediation Strategies in Soils Amended with Sewage Sludges. Sci. Total Environ. 2021, 766, 144099. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Conejo, M.I.; Becerra-Castro, C.; Prieto-Fernández, A.; Monterroso, C.; Saavedra-Ferro, A.; Mench, M.; Kidd, P.S. Rhizobacterial Inoculants Can Improve Nickel Phytoextraction by the Hyperaccumulator Alyssum Pintodasilvae. Plant Soil 2014, 379, 35–50. [Google Scholar] [CrossRef]
- Steliga, T.; Kluk, D. Application of Festuca Arundinacea in Phytoremediation of Soils Contaminated with Pb, Ni, Cd and Petroleum Hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef] [PubMed]
- Pidlisnyuk, V.; Mamirova, A.; Pranaw, K.; Stadnik, V.; Kuráň, P.; Trögl, J.; Shapoval, P. Miscanthus × Giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy 2022, 12, 771. [Google Scholar] [CrossRef]
- Adiloğlu, S.; Turgut Sağlam, M.; Adiloğlu, A.; Süme, A. Phytoremediation of Nickel (Ni) from Agricultural Soils Using Canola (Brassica Napus L.). Desalination Water Treat. 2016, 57, 2383–2388. [Google Scholar] [CrossRef]
- Casucci, C.; De Bernardi, A.; D’Amato, R.; Businelli, D.; Vischetti, C. Zeolite and Bentonite as Nickel Sequestrants in Carbonation Lime Coming from the Sugar Industry. Environ. Sci. Pollut. Res. 2020, 27, 18803–18809. [Google Scholar] [CrossRef]
- Radziemska, M.; Koda, E.; Bilgin, A.; Vaverková, M.D. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas. Int. J. Environ. Res. Public Health 2018, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Meagher, R.B. Phytoremediation of Toxic Elemental and Organic Pollutants. Curr. Opin. Plant Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Kim, S.; Lim, H.; Lee, I. Enhanced Heavy Metal Phytoextraction by Echinochloa Crus-Galli Using Root Exudates. J. Biosci. Bioeng. 2010, 109, 47–50. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Hanus-Fajerska, E.; MuszyŃska, E.; Ciarkowska, K. Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere 2016, 26, 1–12. [Google Scholar] [CrossRef]
- Halim, M.; Conte, P.; Piccolo, A. Potential Availability of Heavy Metals to Phytoextraction from Contaminated Soils Induced by Exogenous Humic Substances. Chemosphere 2003, 52, 265–275. [Google Scholar] [CrossRef]
- Luo, C.; Shena, Z.; Li, X. Enhanced Phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 2010, 59, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar Amendment Improves Crop Production in Problem Soils: A Review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Cundy, A.B.; Bardos, R.P.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Neu, S.; Mench, M.; Witters, N.; Vangronsveld, J. Developing Principles of Sustainability and Stakeholder Engagement for “Gentle” Remediation Approaches: The European Context. J. Environ. Manag. 2013, 129, 283–291. [Google Scholar] [CrossRef]
- Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons Co-Contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-Assisted Phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef]
- Lacalle, R.G.; Aparicio, J.D.; Artetxe, U.; Urionabarrenetxea, E.; Polti, M.A.; Soto, M.; Garbisu, C.; Becerril, J.M. Gentle Remediation Options for Soil with Mixed Chromium (VI) and Lindane Pollution: Biostimulation, Bioaugmentation, Phytoremediation and Vermiremediation. Heliyon 2020, 6, e04550. [Google Scholar] [CrossRef]
- Saha, L.; Tiwari, J.; Bauddh, K.; Ma, Y. Recent Developments in Microbe–Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Macomber, L.; Hausinger, R.P. Mechanisms of Nickel Toxicity in Microorganisms. Metallomics 2011, 3, 1153–1162. [Google Scholar] [CrossRef]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. A Review on Progress of Heavy Metal Removal Using Adsorbents of Microbial and Plant Origin. Environ. Sci. Pollut. Res. 2015, 22, 15386–15415. [Google Scholar] [CrossRef]
- Glick, B.R. Phytoremediation: Synergistic Use of Plants and Bacteria to Clean up the Environment. Biotechnol. Adv. 2003, 21, 383–393. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.; Angle, J.S.; Delorme, T.A.; Chaney, R.L.; Van Berkum, P.; Moawad, H.; Ghanem, K.; Ghozlan, H.A. Rhizobacterial Effects on Nickel Extraction from Soil and Uptake by Alyssum Murale. New Phytol. 2003, 158, 219–224. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, S.N.; Garg, S.K. Microbially Enhanced Phytoextraction of Heavy-Metal Fly-Ash Amended Soil. Commun. Soil Sci. Plant Anal. 2013, 44, 3161–3176. [Google Scholar] [CrossRef]
- Dada, E.O.; Akinola, M.O.; Owa, S.O.; Dedeke, G.A.; Aladesida, A.A.; Owagboriaye, F.O.; Oludipe, E.O. Efficacy of Vermiremediation to Remove Contaminants from Soil. J. Health Pollut. 2021, 11, 210302. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, J.; Tang, Z.; Zhao, Y.; Wang, C. Vermiremediation of Organically Contaminated Soils: Concepts, Current Status, and Future Perspectives. Appl. Soil Ecol. 2020, 147, 103377. [Google Scholar] [CrossRef]
- Hussain, N.; Chatterjee, S.K.; Maiti, T.K.; Goswami, L.; Das, S.; Deb, U.; Bhattacharya, S.S. Metal Induced Non-Metallothionein Protein in Earthworm: A New Pathway for Cadmium Detoxification in Chloragogenous Tissue. J. Hazard. Mater. 2021, 401, 123357. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, A.; Karmegam, N.; Tripathi, S.; Kannan, S.; Thangaraj, R. Environment-Friendly Management of Textile Mill Wastewater Sludge Using Epigeic Earthworms: Bioaccumulation of Heavy Metals and Metallothionein Production. J. Environ. Manag. 2020, 254, 109813. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Li, S.; Wu, J.; Lian, J.; Liu, W.; Sun, Y. Insights into the Mechanisms Underlying the Remediation Potential of Earthworms in Contaminated Soil: A Critical Review of Research Progress and Prospects. Sci. Total Environ. 2020, 740, 140145. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bhatti, S.S.; Singh, J.; Sambyal, V.; Nagpal, A.; Vig, A.P. Vermiremediation and Phytoremediation: Eco Approaches for Soil Stabilization. Austin Environ. Sci. 2016, 1, 1006. [Google Scholar]
- Batham, M.; Road, J.; Road, J. Eco Approaches—Vermiremediation And Phytoremediation Of Mercury. J. Emerg. Technol. Innov. Res. 2018, 5, 326–337. [Google Scholar]
- Fonte, S.J.; Botero, C.; Quintero, D.C.; Lavelle, P.; van Kessel, C. Earthworms Regulate Plant Productivity and the Efficacy of Soil Fertility Amendments in Acid Soils of the Colombian Llanos. Soil Biol. Biochem. 2019, 129, 136–143. [Google Scholar] [CrossRef]
- Gomez-Eyles, J.L.; Sizmur, T.; Collins, C.D.; Hodson, M.E. Effects of Biochar and the Earthworm Eisenia Fetida on the Bioavailability of Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements. Environ. Pollut. 2011, 159, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Hu, X.; Liu, Y.; Wang, W.; Feng, M.; Shan, X. The Role of Earthworms (Eisenia Fetida) in Influencing Bioavailability of Heavy Metals in Soils. Biol Fertil Soils 2004, 40, 181–187. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Álvarez, A.; Benimeli, C.S.; Polti, M.A. The Current Approach to Soil Remediation: A Review of Physicochemical and Biological Technologies, and the Potential of Their Strategic Combination. J. Environ. Chem. Eng. 2022, 10, 107141. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals From Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Peijnenburg, W.J.G.M.; Baerselman, R.; de Groot, A.C.; Jager, T.; Posthuma, L.; Van Veen, R.P.M. Relating Environmental Availability to Bioavailability: Soil-Type-Dependent Metal Accumulation in the Oligochaete Eisenia Andrei. Ecotoxicol. Environ. Saf. 1999, 44, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Žaltauskaitė, J.; Kniuipytė, I.; Praspaliauskas, M. Earthworm Eisenia Fetida Potential for Sewage Sludge Amended Soil Valorization by Heavy Metal Remediation and Soil Quality Improvement. J. Hazard. Mater. 2022, 424, 127316. [Google Scholar] [CrossRef]
- Sohal, B.; Ahmad Bhat, S.; Vig, A.P. Vermiremediation and Comparative Exploration of Physicochemical, Growth Parameters, Nutrients and Heavy Metals Content of Biomedical Waste Ash via Ecosystem Engineers Eisenia Fetida. Ecotoxicol. Environ. Saf. 2021, 227, 112891. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, J.; Wójcik-Oliveira, K. Effect of Vermicomposting on the Concentration of Heavy Metals in Soil with Drill Cuttings. J. Ecol. Eng. 2019, 20, 152–157. [Google Scholar] [CrossRef]
Soil Type | Ni Level (mg kg−1) | Plant Species | Aided- Phytoremediation | Main Results | Country | Reference |
---|---|---|---|---|---|---|
Natural | 36.4 54.3 48.2 (FC) | T.durum, H.vulgare | B.licheniformis BLMB1 | Increased Ni concentration in wheat and barley roots after the application of B.licheniformis | IT | [123] |
Urban | 147 (FC) | B.juncea, H.annuus, Z.mays, P. vittata | Florawiva FW | Plant growth as stimulated by FW, but BF and TF were not enhanced significantly | IT | [108] |
Natural | 53.4 (FC) | T. alexandrinum | Biochar | Biochar did not affect Ni accumulation in above-ground tissues, but significantly increased Ni in roots compared to the control | IT | [114] |
Artificial | 100 (LC) | C. sativa | G.mosseae | Fungi enhanced the translocation from root to shoot | IT | [112] |
Natural | 200 (LC) | H. annuus | B.weihenstephanensis SM3 | Bacteria increased the plant’s weight compared to the non-inoculated control. There was a decrease in Ni accumulation of 14% and 48% in the root and shoots, respectively | PT | [124] |
Natural | 18.9 (FC) | B. juncea | compost 95% + biochar 5% (holm oak wood) | The 40% amendment was the most advantageous treatment for the Ni phytoextraction | ES | [125] |
Natural | 100 (FC) | M.sativa, C.sativus, L.sativa | E.fetida, B.xenovorans LB400, Paenibacillus sp. | The best Ni elimination yields were obtained after P+B+E treatment | ES | [126] |
Agricultural | 152.8 (FC) | A. pintodasilvae | PGPR | A. nicotinovorans SA40 was able to promote plant growth and improve Ni phytoextraction | ES | [127] |
Natural | 100 200 (LC) | A. sativa | Zeolite | The reduction in Ni accumulation in A.sativa is limited to sandy-silty loam | PL | [113] |
Natural | 73.1 168.4 (FC) | F. arundinacea | Mineral fertiliser (Azofoska) | Ni was few translocated from the root to shoot; BF (roots/shoots) was > 1, showing that F.arundinacea accumulates metals mostly in roots | PL | [128] |
Artificial | 40 100 (LC) | L.esculentum, C.sativus | Ion-exchange substrates (Biona-312) | Biona 312 application significantly decreased Ni in tomato plants, while in cucumber, it increased and decreased in roots and above-ground, respectively | PL | [40] |
Natural | 91.3 (FC) | M.×giganteus | S.maltophilia KP-13; B.altitudinis KP-14; P. fluorescens KP-16 | Ni was accumulated in the roots. The treatments with M.× giganteus + P. fluorescens KP-16 significantly increased the root absorption | CZ | [129] |
Agricultural | 100 (LC) | B. napus | EDTA | The Ni amount in root and shoot increased with increasing EDTA application | TR | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vischetti, C.; Marini, E.; Casucci, C.; De Bernardi, A. Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments 2022, 9, 133. https://doi.org/10.3390/environments9100133
Vischetti C, Marini E, Casucci C, De Bernardi A. Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments. 2022; 9(10):133. https://doi.org/10.3390/environments9100133
Chicago/Turabian StyleVischetti, Costantino, Enrica Marini, Cristiano Casucci, and Arianna De Bernardi. 2022. "Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union" Environments 9, no. 10: 133. https://doi.org/10.3390/environments9100133
APA StyleVischetti, C., Marini, E., Casucci, C., & De Bernardi, A. (2022). Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments, 9(10), 133. https://doi.org/10.3390/environments9100133