Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union
Abstract
:1. Introduction
2. Nickel Toxicity Effects
2.1. Effects on Crop
2.2. Effects on Soil Microorganisms and Earthworms
3. Bioremediation Techniques
3.1. Phytoremediation
3.2. Aided Plant-Based Bioremediation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Husak, V. Copper and Copper-Containing Pesticides: Metabolism, Toxicity and Oxidative Stress. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2015, 2, 38–50. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An Inventory of Heavy Metals Inputs to Agricultural Soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Kisku, G.C.; Barman, S.C.; Bhargava, S.K. Contamination of Soil and Plants with Potentially Toxic Elements Irrigated with Mixed Industrial Effluent and Its Impact on the Environment. Water Air Soil Pollut. 2000, 120, 121–137. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Tsadilas, C.D.; Rinklebe, J. A Review of the Distribution Coefficients of Trace Elements in Soils: Influence of Sorption System, Element Characteristics, and Soil Colloidal Properties. Adv. Colloid Interface Sci. 2013, 201–202, 43–56. [Google Scholar] [CrossRef]
- Paya-Perez, A.; Rodriguez Eugenio, N. Status of Local Soil Contamination in Europe; Commission, E., Ed.; Joint Research Centre: Ispra, Italy, 2018; ISBN 9789279800726. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Xiao, R.; Ali, A.; Xu, Y.; Abdelrahman, H.; Li, R.; Lin, Y.; Bolan, N.; Shaheen, S.M.; Rinklebe, J.; Zhang, Z. Earthworms as Candidates for Remediation of Potentially Toxic Elements Contaminated Soils and Mitigating the Environmental and Human Health Risks: A Review. Environ. Int. 2022, 158, 106924. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M.; Demetriades, A.; Filzmoser, P.; O’connor, P. Chemistry of Europe’s Agricultural Soils–Part B: General Background Information and Further Analysis of the GEMAS Data Set. Geol. Jahrb. Reihe B 2014, 103, 352. [Google Scholar]
- van der Voet, E.; Salminen, R.; Eckelman, M.; Norgate, T.; Mudd, G.; Hisschier, R.; Spijker, J.; Vijver, M.; Selinus, O.; Posthuma, L.; et al. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles 3; United Nations Environment Programme: Nairobi, Kenya, 2013; ISBN 9789280732665. [Google Scholar]
- MEF. Government Decree on the Assessment of Soil Contamination and Remediation Needs; MEF: Helsinki, Finland, 2007. [Google Scholar]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the Largest Expandable Soil Dataset for Europe: A Review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Hermann, T.; Szatmári, G.; Pásztor, L. Maps of Heavy Metals in the Soils of the European Union and Proposed Priority Areas for Detailed Assessment. Sci. Total Environ. 2016, 565, 1054–1062. [Google Scholar] [CrossRef]
- Fernandez-Ugalde, O.; Scarpa, S.; Orgiazzi, A.; Panagos, P.; Van Liedekerke, M.; Marechal, A.; Jones, A. LUCAS 2018 Soil Module.Presentation of Dataset and Results; EUR 31144; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Environment Agency. Soil Guideline Values for Nickel in Soil. Science Report SC050021/Nickel SGV; European Environment Agency: Copenhagen, Denmark, 2009. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000; ISBN 042919112X. [Google Scholar]
- Mohammadpour, G.; Karbassi, A.; Baghvand, A. Pollution Intensity of Nickel in Agricultural Soil of Hamedan Region. Casp. J. Environ. Sci. 2016, 14, 15–24. [Google Scholar]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A Micronutrient Essential for Higher Plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; Whether Toxic or Essential for Plants and Environment—A Review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, S.B.; Hausinger, R.P. Nickel Uptake and Utilization by Microorganisms. FEMS Microbiol. Rev. 2003, 27, 239–261. [Google Scholar] [CrossRef]
- Goyer, R.A.; Clarkson, T.W. Toxic Effects of Metals. In Casarett and Doullis Toxicology: The Basic Science of Poisons; Klaassen, C.D., Ed.; Mc-Graw Hill: New York, NY, USA, 2001; Volume 81. [Google Scholar]
- Phipps, T.; Tank, S.L.; Wirtz, J.; Brewer, L.; Coyner, A.; Ortego, L.S.; Fairbrother, A. Essentiality of Nickel and Homeostatic Mechanisms for Its Regulation in Terrestrial Organisms. Environ. Rev. 2002, 10, 209–261. [Google Scholar] [CrossRef]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A Comprehensive Review on the Sources, Essentiality and Toxicological Profile of Nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef]
- Küpper, H.; Kroneck, P.M.H. Nickel in the Environment and Its Role in the Metabolism of Plants and Cyanobacteria. In Nickel and Its Surprising Impact in Nature; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 2, ISBN 9780470028131. [Google Scholar]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef]
- Gupta, V.; Jatav, P.K.; Verma, R.; Kothari, S.L.; Kachhwaha, S. Nickel Accumulation and Its Effect on Growth, Physiological and Biochemical Parameters in Millets and Oats. Environ. Sci. Pollut. Res. 2017, 24, 23915–23925. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Institute of Plant Nutrition University of Hohenheim: Stuttgart, Germany, 1995. [Google Scholar]
- Wood, B.W.; Reilly, C.C.; Nyczepir, A.P. Mouse-Ear of Pecan: A Nickel Deficiency. HortScience 2004, 39, 1238–1242. [Google Scholar] [CrossRef] [Green Version]
- Ruter, J.M. Effect of Nickel Applications for the Control of Mouse Ear Disorder on River Birch. J. Environ. Hortic. 2005, 23, 17–20. [Google Scholar] [CrossRef]
- Wood, B.W.; Reilly, C.C.; Nyczepir, A.P. Field Deficiency of Nickel in Trees: Symptoms and Causes. Acta Hortic. 2006, 721, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Reilly, C.C.; Wood, B.W. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage. Plant Physiol. 2006, 140, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Ali, A.; Khan, M.A.U.; Khan, T.A. Nickel Toxicity in Plants: Reasons, Toxic Effects, Tolerance Mechanisms, and Remediation Possibilities—A Review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar] [CrossRef]
- van der Pas, L.; Ingle, R.A. Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants. Plants 2019, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, M.V. Pollution Resistance of Mountain Birch, Betula Pubescens Subsp. Czerepanovii, near the Copper-Nickel Smelter: Natural Selection or Phenotypic Acclimation? Chemosphere 2005, 59, 189–197. [Google Scholar] [CrossRef]
- Bollard, E.G. Involvement of Unusual Elements in Plant Growth and Nutrition. Encycl. Plant Physiol. New Ser. 1983, 15, 695–744. [Google Scholar]
- Kupper, H.; Lombi, E.; Zhao, F.; Wieshammer, G.; Mcgrath, S.P.; Küpper, H. Cellular Compartmentation of Nickel in the HA Alyssum Lesbiacum, Alyssum Bertolonii and Thlaspi Goesingense. J. Exp. Bot. 2001, 52, 2291–2300. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, B.H.; Shafaqat, A.; Aqeel, A.; Saadia, H.; Muhammad, A.F.; Basharat, A.; Saima, A.B.; Muhammad, B.G. Morphological, Physiological and Biochemical Responses of Plants to Nickel Stress: A Review. Afr. J. Agric. Res. 2013, 8, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Matraszek, R.; Szymańska, M.; Chomczyńska, M.; Soldatov, V.S. Productivity and Chemical Composition of Tomato and Cucumber Plants Growing in Nickel-Polluted Soils Fertilized with Biona-312. Commun. Soil Sci. Plant Anal. 2010, 41, 155–172. [Google Scholar] [CrossRef]
- Rehman, F.; Khan, F.A.; Irfan, M.; Dar, M.I. Impact of Nickel on the Growth of Lycopersicon Esculentum Var. Navodaya. Int. J. Environ. Sci. 2016, 7, 100–106. [Google Scholar]
- Palacios, G.; Gómez, I.; Carbonell-Barrachina, A.; Navarro Pedreño, J.; Mataix, J. Effect of Nickel Concentration on Tomato Plant Nutrition and Dry Matter Yield. J. Plant Nutr. 1998, 21, 2179–2191. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of Nickel and Grafting Combination on Yield, Fruit Quality, Antioxidative Enzyme Activities, Lipid Peroxidation, and Mineral Composition of Tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Subhani, M.A.; Amjad, M.; Iqbal, M.M.; Murtaza, B.; Imran, M.; Naeem, M.A.; Abbas, G.; Andersen, M.N. Nickel Toxicity Pretreatment Attenuates Salt Stress by Activating Antioxidative System and Ion Homeostasis in Tomato (Solanum Lycopersicon L.): An Interplay from Mild to Severe Stress. Environ. Geochem. Health 2022, 1–20. [Google Scholar] [CrossRef]
- Gajewska, E.; Skłodowska, M.; Słaba, M.; Mazur, J. Effect of Nickel on Antioxidative Enzyme Activities, Proline and Chlorophyll Contents in Wheat Shoots. Biol. Plant. 2006, 50, 653–659. [Google Scholar] [CrossRef]
- Maheshwari, R.; Dubey, R.S. Nickel-Induced Oxidative Stress and the Role of Antioxidant Defence in Rice Seedlings. Plant Growth Regul. 2009, 59, 37–49. [Google Scholar] [CrossRef]
- Baccouch, S.; Chaoui, A.; El Ferjani, E. Nickel-Induced Oxidative Damage and Antioxidant Responses in Zea Mays Shoots. Plant Physiol. Biochem. 1998, 36, 689–694. [Google Scholar] [CrossRef]
- Poulik, Z. The Danger of Cumulation of Nickel in Cereals on Contaminated Soil. Agric. Ecosyst. Environ. 1997, 63, 25–29. [Google Scholar] [CrossRef]
- Kumar, O.; Singh, S.K.; Singh, A.P.; Yadav, S.N.; Latare, A.M. Effect of Soil Application of Nickel on Growth, Micronutrient Concentration and Uptake in Barley (Hordeum Vulgare L.) Grown in Inceptisols of Varanasi. J. Plant Nutr. 2017, 41, 50–66. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kala, R.; Gupta, S.P. Effect of Nickel on Yield and Its Concentration in Some Rabi Crops Grown on Typic Ustipsamment. J. Indian Soc. Soil Sci. 1996, 44, 348–349. [Google Scholar]
- Amjad, M.; Raza, H.; Murtaza, B.; Abbas, G.; Imran, M.; Shahid, M.; Asif Naeem, M.; Zakir, A.; Mohsin Iqbal, M. Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea Mays L.) Hybrids. Plants 2020, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younis, U.; Athar, M.; Malik, S.A.; Shah, H.R.; Mahmood, S. Biochar Impact on Physiological and Biochemical Attributes of Spinach Spinacia Oleracea (L.) in Nickel Contaminated Soil. Glob. J. Environ. Sci. Manag. 2015, 10, 245–254. [Google Scholar]
- Arasimowicz, M.; Wisniowska-Kielian, B.; Niemiec, M. Efficiency of Antioxidative System in Spinach Plants Growing in Soil Contaminated with Nickel. Ecol. Chem. Eng. A 2013, 20, 987–997. [Google Scholar] [CrossRef]
- Molas, J. Changes of Chloroplast Ultrastructure and Total Chlorophyll Concentration in Cabbage Leaves Caused by Excess of Organic Ni(II) Complexes. Environ. Exp. Bot. 2002, 47, 115–126. [Google Scholar] [CrossRef]
- Nie, J.; Pan, Y.; Shi, J.; Guo, Y.; Yan, Z.; Duan, X.; Xu, M. A Comparative Study on the Uptake and Toxicity of Nickel Added in the Form of Different Salts to Maize Seedlings. Int. J. Environ. Res. Public Health 2015, 12, 15075–15087. [Google Scholar] [CrossRef]
- Helaoui, S.; Mkhinini, M.; Boughattas, I.; Alphonse, V.; Giusti-Miller, S.; Livet, A.; Banni, M.; Bousserrhine, N. Assessment of Changes on Rhizospheric Soil Microbial Biomass, Enzymes Activities and Bacterial Functional Diversity under Nickel Stress in Presence of Alfafa Plants. Soil Sediment Contam. 2020, 29, 823–843. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Kucharski, J.; Boros-Lajszner, E. Effect of Nickel Contamination on Soil Enzymatic Activity. Plant Soil Environ. 2005, 51, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Qiu, R.; Chen, G.; Zeng, X.; Fang, X. Response of Microbial Communities to Phytoremediation of Nickel Contaminated Soils. Front. Agric. China 2007, 1, 289–295. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.W.; Ma, Y.B.; Wang, J.T.; Liu, Y.R.; He, J.Z. Long-Term Nickel Exposure Altered the Bacterial Community Composition but Not Diversity in Two Contrasting Agricultural Soils. Environ. Sci. Pollut. Res. 2015, 22, 10496–10505. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Zarubina, A.P.; Plekhanov, S.E. Ecotoxicological Assessment of Nickel Pollution of Soil and Water Environments Adjacent to Soddy–Podzolic Soil. Mosc. Univ. Soil Sci. Bull. 2017, 72, 71–77. [Google Scholar] [CrossRef]
- Xia, X.; Lin, S.; Zhao, J.; Zhang, W.; Lin, K.; Lu, Q.; Zhou, B. Toxic Responses of Microorganisms to Nickel Exposure in Farmland Soil in the Presence of Earthworm (Eisenia Fetida). Chemosphere 2018, 192, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Héry, M.; Nazaret, S.; Jaffré, T.; Normand, P.; Navarro, E. Adaptation to Nickel Spiking of Bacterial Communities in Neocaledonian Soils. Environ. Microbiol. 2003, 5, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Scott-Fordsmand, J.J.; Weeks, J.M.; Hopkin, S.P. Toxicity of Nickel to the Earthworm and the Applicability of the Neutral Red Retention Assay. Ecotoxicology 1998, 7, 291–295. [Google Scholar] [CrossRef]
- Lock, K.; Janssen, C.R. Ecotoxicity of Nickel to Eisenia Fetida, Enchytraeus Albidus and Folsomia Candida. Chemosphere 2002, 46, 197–200. [Google Scholar] [CrossRef]
- Maleri, R.A.; Reinecke, A.J.; Reinecke, S.A. A Comparison of Nickel Toxicity to Pre-Exposed Earthworms (Eisenia Fetida, Oligochaeta) in Two Different Test Substrates. Soil Biol. Biochem. 2007, 39, 2849–2853. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, B.; Xie, D.; Zhou, Y.; Guo, G.; Xu, M.; Bai, L.; Hou, H.; Li, F. Uptake and Toxicity of Spiked Nickel to Earthworm Eisenia Fetida in a Range of Chinese Soils. Environ. Toxicol. Chem. 2011, 30, 2586–2593. [Google Scholar] [CrossRef]
- Wang, G.; Xia, X.; Yang, J.; Tariq, M.; Zhao, J.; Zhang, M.; Huang, K.; Lin, K.; Zhang, W. Exploring the Bioavailability of Nickel in a Soil System: Physiological and Histopathological Toxicity Study to the Earthworms (Eisenia Fetida). J. Hazard. Mater. 2020, 383, 121169. [Google Scholar] [CrossRef]
- Bigorgne, E.; Cossu-Leguille, C.; Murtaza, B.; Abbas, G.; Imran, M.; Shahid, M.; Asif Naeem, M.; Zakir, A.; Mohsin Iqbal, M. Genotoxic Effects of Nickel, Trivalent and Hexavalent Chromium on the Eisenia Fetida Earthworm. Chemosphere 2010, 80, 1109–1112. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Li, J.; He, J.-Z.; Ma, Y.-B.; Zheng, Y.-M. Different Influences of Field Aging on Nickel Toxicity to Folsomia Candida in Two Types of Soil. Env. Sci. Pollut. Res. 2015, 22, 8235–8241. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, M.; Zhou, J.; Zhou, D.; Wang, Y. Effects of Soil Properties and Aging Process on the Acute Toxicity of Cadmium to Earthworm Eisenia Fetida. Env. Sci. Pollut. Res. 2018, 25, 3708–3717. [Google Scholar] [CrossRef] [PubMed]
- Eapen, S.; Singh, S.; D’Souza, S.F. Advances in Development of Transgenic Plants for Remediation of Xenobiotic Pollutants. Biotechnol. Adv. 2007, 25, 442–451. [Google Scholar] [CrossRef]
- Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandey, L.M. Recent Advances in Conventional and Contemporary Methods for Remediation of Heavy Metal-Contaminated Soils. 3 Biotech 2018, 8, 216. [Google Scholar] [CrossRef]
- Van Ginneken, L.; Meers, E.; Guisson, R.; Ruttens, A.; Elst, K.; Tack, F.M.G.; Vangronsveld, J.; Diels, L.; Dejonghe, W. Phytoremediation for Heavy Metal-Contaminated Soils Combined with Bioenergy Production. J. Environ. Eng. Landsc. Manag. 2007, 15, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Singh, V.K.; Singh, R.; Borthakur, A.; Madhav, S.; Ahamad, A.; Kumar, A.; Pal, D.B.; Tiwary, D.; Mishra, P.K. Bioremediation: A Sustainable Approach for Management of Environmental Contaminants. In Abatement of Environmental Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–23. [Google Scholar]
- de Albergaria, J.T.; Nouws, H.P. (Eds.) Soil Remediation; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-60876-651-2. [Google Scholar]
- Cunningham, S.D.; Ow, D.W. Promises and Prospects of Phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Favas, P.J.C.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M.S. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. Environ. Risk Assess. Soil Contam. 2014, 3, 485–516. [Google Scholar]
- Schnoor, J.L.; Licht, L.A.; McCUTCHEON, S.C.; Wolfe, N.L.; Carreira, L.H. Phytoremediation of Organic and Nutrient Contaminants. Environ. Sci. Technol. 1995, 29, 318–323. [Google Scholar] [CrossRef]
- Berti, W.R.; Cunningham, S.D. Phytostabilization of Metals. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; Wiley: New York, NY, USA, 2000; pp. 71–88. [Google Scholar]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation Technology: Hyper-Accumulation Metals in Plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Dhote, S.; Dixit, S. Water Quality Improvement through Macrophytes—A Review. Environ. Monit. Assess. 2009, 152, 149–153. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Anwar Sajad, M. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M. Metal-Accumulating Plants. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Chen, L.; Beiyuan, J.; Hu, W.; Zhang, Z.; Duan, C.; Cui, Q.; Zhu, X.; He, H.; Huang, X.; Fang, L. Phytoremediation of Potentially Toxic Elements (PTEs) Contaminated Soils Using Alfalfa (Medicago Sativa L.): A Comprehensive Review. Chemosphere 2022, 293, 133577. [Google Scholar] [CrossRef] [PubMed]
- Fagnano, M.; Visconti, D.; Fiorentino, N. Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. Agronomy 2020, 10, 1335. [Google Scholar] [CrossRef]
- Fiorentino, N.; Mori, M.; Cenvinzo, V.; Duri, L.G.; Gioia, L.; Visconti, D.; Fagnano, M. Assisted Phytoremediation for Restoring Soil Fertility in Contaminated and Degraded Land. Ital. J. Agron. 2018, 13, 34–44. [Google Scholar]
- Matanzas, N.; Afif, E.; Díaz, T.E.; Gallego, J.L.R. Screening of Pioneer Metallophyte Plant Species with Phytoremediation Potential at a Severely Contaminated Hg and As Mining Site. Environments 2021, 8, 63. [Google Scholar] [CrossRef]
- Wang, L.; Xie, X.; Li, Q.; Yu, Z.; Hu, G.; Wang, X.; Liu, J. Accumulation of Potentially Toxic Trace Elements (PTEs) by Native Plant Species Growing in a Typical Gold Mining Area Located in the Northeast of Qinghai-Tibet Plateau. Env. Sci Pollut Res 2022, 29, 6990–7000. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. IJERPH 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Jigyasu, D.K.; Kumar, A.; Subrahmanyam, G.; Mondal, R.; Shabnam, A.A.; Cabral-Pinto, M.M.S.; Malyan, S.K.; Chaturvedi, A.K.; Gupta, D.K.; et al. Nickel in Terrestrial Biota: Comprehensive Review on Contamination, Toxicity, Tolerance and Its Remediation Approaches. Chemosphere 2021, 275, 129996. [Google Scholar] [CrossRef]
- Govere, E.M. Environmental Phytoremediation and Analytical Technologies for Heavy Metal Removal and Assessment. In Plant Biotechnology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 203–213. [Google Scholar]
- Reeves, R.D. The Hyperaccumulation of Nickel by Serpentine Plants. In The Vegetation of Ultramafic (Serpentine) Soils; Intercept: Totnes, UK, 1992; pp. 253–277. [Google Scholar]
- Robinson, B.H.; Chiarucci, A.; Brooks, R.R.; Petit, D.; Kirkman, J.H.; Gregg, P.E.H.; De Dominicis, V. The Nickel Hyperaccumulator Plant Alyssum Bertolonii as a Potential Agent for Phytoremediation and Phytomining of Nickel. J. Geochem. Explor. 1997, 59, 75–86. [Google Scholar] [CrossRef]
- Roccotiello, E.; Serrano, H.C.; Mariotti, M.G.; Branquinho, C. Nickel Phytoremediation Potential of the Mediterranean Alyssoides Utriculata (L.) Medik. Chemosphere 2015, 119, 1372–1378. [Google Scholar] [CrossRef]
- Rosenkranz, T.; Hipfinger, C.; Ridard, C.; Puschenreiter, M. A Nickel Phytomining Field Trial Using Odontarrhena Chalcidica and Noccaea Goesingensis on an Austrian Serpentine Soil. J. Environ. Manag. 2019, 242, 522–528. [Google Scholar] [CrossRef]
- Abhilash, M.R.; Srikantaswamy, S.; Shiva Kumar, D.; Jagadish, K.; Shruthi, L. Phytoremediation of Heavy Metal Industrial Contaminated Soil by Spiracia Oleracea L and Zeamays L. RA-Int. J. Appl. Sci. 1988, 4, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Ciura, J.; Poniedziałek, M.; Sekara, A.; Jedrszczyk, E. The Possibility of Using Crops as Metal Phytoremediants. Pol. J. Environ. Stud. 2004, 14, 17–22. [Google Scholar]
- De Bernardi, A.; Casucci, C.; Businelli, D.; D’Amato, R.; Beone, G.M.; Fontanella, M.C.; Vischetti, C. Phytoremediation Potential of Crop Plants in Countering Nickel Contamination in Carbonation Lime Coming from the Sugar Industry. Plants 2020, 9, 580. [Google Scholar] [CrossRef] [PubMed]
- Francis, E. Phytoremediation Potentials of Sunflower (Helianthus Annuus L.) Asteraceae on Contaminated Soils of Abandoned Dumpsites. Int. J. Sci. Eng. Res. 2017, 8, 1751–17157. [Google Scholar]
- Giordani, C.; Cecchi, S.; Zanchi, C. Phytoremediation of Soil Polluted by Nickel Using Agricultural Crops. Environ. Manag. 2005, 36, 675–681. [Google Scholar] [CrossRef]
- Souza, L.A.; Piotto, F.A.; Nogueirol, R.C.; Azevedo, R.A. Use of Non-Hyperaccumulator Plant Species for the Phytoextraction of Heavy Metals Using Chelating Agents. Sci. Agric. 2013, 70, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.M. Accumulators and Excluders—Strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca Rubra L. and Alyssum Saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Tőzsér, D.; Tóthmérész, B.; Harangi, S.; Baranyai, E.; Lakatos, G.; Fülöp, Z.; Simon, E. Remediation Potential of Early Successional Pioneer Species Chenopodium Album and Tripleurospermum Inodorum. Nat. Conserv. 2019, 36, 47–69. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation Potential of Twelve Wild Plant Species for Toxic Elements in a Contaminated Soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Salinitro, M.; Montanari, S.; Simoni, A.; Ciavatta, C. Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge. Agronomy 2021, 11, 2456. [Google Scholar] [CrossRef]
- Lydakis-Simantiris, N.; Fabian, M.; Skoula, M. Cultivation of Medicinal and Aromatic Plants. Glob. Nest 2015, 18, 525–553. [Google Scholar] [CrossRef]
- Gaggero, E.; Malandrino, M.; Fabbri, D.; Bordiglia, G.; Fusconi, A.; Mucciarelli, M.; Inaudi, P.; Calza, P. Uptake of Potentially Toxic Elements by Four Plant Species Suitable for Phytoremediation of Turin Urban Soils. Appl. Sci. 2020, 10, 3948. [Google Scholar] [CrossRef]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of Heavy Metals by Canola (Brassica Napus) and Radish (Raphanus Sativus) Grown on Multicontaminated Soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Stanislawska-Glubiak, E. Phytoremediation Potential of Phalaris Arundinacea, Salix Viminalis and Zea Mays for Nickel-Contaminated Soils. Int. J. Environ. Sci. Technol. 2019, 16, 1999–2008. [Google Scholar] [CrossRef] [Green Version]
- Galić, M.; Perčin, A.; Zgorelec, Ž.; Kisić, I. Evaluation of Heavy Metals Accumulation Potential of Hemp (Cannabis Sativa l.). J. Cent. Eur. Agric. 2019, 20, 700–711. [Google Scholar] [CrossRef]
- Citterio, S.; Prato, N.; Fumagalli, P.; Aina, R.; Massa, N.; Santagostino, A.; Sgorbati, S.; Berta, G. The Arbuscular Mycorrhizal Fungus Glomus Mosseae Induces Growth and Metal Accumulation Changes in Cannabis sativa L. Chemosphere 2005, 59, 21–29. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of Zeolite to Neutralise Nickel in a Soil Environment. Environ. Monit. Assess. 2018, 190, 54. [Google Scholar] [CrossRef] [Green Version]
- Pescatore, A.; Grassi, C.; Rizzo, A.M.; Orlandini, S.; Napoli, M. Effects of Biochar on Berseem Clover (Trifolium Alexandrinum, L.) Growth and Heavy Metal (Cd, Cr, Cu, Ni, Pb, and Zn) Accumulation. Chemosphere 2022, 287, 131986. [Google Scholar] [CrossRef]
- Stanislawska-Glubiak, E.; Korzeniowska, J. Tolerance of white mustard (Sinapsis alba L.) to soil pollution with several heavy metals. Ecol. Chem. Eng. 2011, 18, 445–450. [Google Scholar]
- Korzeniowska, J.; Stanislawska-Glubiak, E. Phytoremediation Potential of Miscanthus × Giganteus and Spartina Pectinata in Soil Contaminated with Heavy Metals. Environ. Sci. Pollut. Res. 2015, 22, 11648–11657. [Google Scholar] [CrossRef] [PubMed]
- Citterio, S.; Santagostino, A.; Fumagalli, P.; Prato, N.; Ranalli, P.; Sgorbati, S. Heavy Metal Tolerance and Accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 2003, 256, 243–252. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An Overview and Analysis of Site Remediation Technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Diarra, I.; Kotra, K.K.; Prasad, S. Application of Phytoremediation for Heavy Metal Contaminated Sites in the South Pacific: Strategies, Current Challenges and Future Prospects. Appl. Spectrosc. Rev. 2021, 57, 490–512. [Google Scholar] [CrossRef]
- Barbaroux, R.; Plasari, E.; Mercier, G.; Simonnot, M.O.; Morel, J.L.; Blais, J.F. A New Process for Nickel Ammonium Disulfate Production from Ash of the Hyperaccumulating Plant Alyssum Murale. Sci. Total Environ. 2012, 423, 111–119. [Google Scholar] [CrossRef]
- Conte, A.; Chiaberge, S.; Pedron, F.; Barbafieri, M.; Petruzzelli, G.; Vocciante, M.; Franchi, E.; Pietrini, I. Dealing with Complex Contamination: A Novel Approach with a Combined Bio-Phytoremediation Strategy and Effective Analytical Techniques. J. Environ. Manag. 2021, 288, 112381. [Google Scholar] [CrossRef]
- Huang, X.D.; El-Alawi, Y.; Penrose, D.M.; Glick, B.R.; Greenberg, B.M. A Multi-Process Phytoremediation System for Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Soils. Environ. Pollut. 2004, 130, 465–476. [Google Scholar] [CrossRef]
- Brunetti, G.; Farrag, K.; Soler-Rovira, P.; Ferrara, M.; Nigro, F.; Senesi, N. Heavy Metals Accumulation and Distribution in Durum Wheat and Barley Grown in Contaminated Soils under Mediterranean Field Conditions. J. Plant Interact. 2012, 7, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, M.; Ma, Y.; Freitas, H. Characterization of Metal-Resistant Plant-Growth Promoting Bacillus Weihenstephanensis Isolated from Serpentine Soil in Portugal. J. Basic Microbiol. 2008, 48, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Vila, A.; Covelo, E.F.; Forján, R.; Asensio, V. Phytoremediating a Copper Mine Soil with Brassica Juncea L., Compost and Biochar. Environ. Sci. Pollut. Res. 2014, 21, 11293–11304. [Google Scholar] [CrossRef]
- Urionabarrenetxea, E.; Garcia-Velasco, N.; Anza, M.; Artetxe, U.; Lacalle, R.; Garbisu, C.; Becerril, T.; Soto, M. Application of in Situ Bioremediation Strategies in Soils Amended with Sewage Sludges. Sci. Total Environ. 2021, 766, 144099. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Conejo, M.I.; Becerra-Castro, C.; Prieto-Fernández, A.; Monterroso, C.; Saavedra-Ferro, A.; Mench, M.; Kidd, P.S. Rhizobacterial Inoculants Can Improve Nickel Phytoextraction by the Hyperaccumulator Alyssum Pintodasilvae. Plant Soil 2014, 379, 35–50. [Google Scholar] [CrossRef]
- Steliga, T.; Kluk, D. Application of Festuca Arundinacea in Phytoremediation of Soils Contaminated with Pb, Ni, Cd and Petroleum Hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef] [PubMed]
- Pidlisnyuk, V.; Mamirova, A.; Pranaw, K.; Stadnik, V.; Kuráň, P.; Trögl, J.; Shapoval, P. Miscanthus × Giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy 2022, 12, 771. [Google Scholar] [CrossRef]
- Adiloğlu, S.; Turgut Sağlam, M.; Adiloğlu, A.; Süme, A. Phytoremediation of Nickel (Ni) from Agricultural Soils Using Canola (Brassica Napus L.). Desalination Water Treat. 2016, 57, 2383–2388. [Google Scholar] [CrossRef]
- Casucci, C.; De Bernardi, A.; D’Amato, R.; Businelli, D.; Vischetti, C. Zeolite and Bentonite as Nickel Sequestrants in Carbonation Lime Coming from the Sugar Industry. Environ. Sci. Pollut. Res. 2020, 27, 18803–18809. [Google Scholar] [CrossRef]
- Radziemska, M.; Koda, E.; Bilgin, A.; Vaverková, M.D. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas. Int. J. Environ. Res. Public Health 2018, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meagher, R.B. Phytoremediation of Toxic Elemental and Organic Pollutants. Curr. Opin. Plant Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Kim, S.; Lim, H.; Lee, I. Enhanced Heavy Metal Phytoextraction by Echinochloa Crus-Galli Using Root Exudates. J. Biosci. Bioeng. 2010, 109, 47–50. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Hanus-Fajerska, E.; MuszyŃska, E.; Ciarkowska, K. Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere 2016, 26, 1–12. [Google Scholar] [CrossRef]
- Halim, M.; Conte, P.; Piccolo, A. Potential Availability of Heavy Metals to Phytoextraction from Contaminated Soils Induced by Exogenous Humic Substances. Chemosphere 2003, 52, 265–275. [Google Scholar] [CrossRef]
- Luo, C.; Shena, Z.; Li, X. Enhanced Phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 2010, 59, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar Amendment Improves Crop Production in Problem Soils: A Review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Cundy, A.B.; Bardos, R.P.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Neu, S.; Mench, M.; Witters, N.; Vangronsveld, J. Developing Principles of Sustainability and Stakeholder Engagement for “Gentle” Remediation Approaches: The European Context. J. Environ. Manag. 2013, 129, 283–291. [Google Scholar] [CrossRef]
- Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons Co-Contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-Assisted Phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef]
- Lacalle, R.G.; Aparicio, J.D.; Artetxe, U.; Urionabarrenetxea, E.; Polti, M.A.; Soto, M.; Garbisu, C.; Becerril, J.M. Gentle Remediation Options for Soil with Mixed Chromium (VI) and Lindane Pollution: Biostimulation, Bioaugmentation, Phytoremediation and Vermiremediation. Heliyon 2020, 6, e04550. [Google Scholar] [CrossRef]
- Saha, L.; Tiwari, J.; Bauddh, K.; Ma, Y. Recent Developments in Microbe–Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Macomber, L.; Hausinger, R.P. Mechanisms of Nickel Toxicity in Microorganisms. Metallomics 2011, 3, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. A Review on Progress of Heavy Metal Removal Using Adsorbents of Microbial and Plant Origin. Environ. Sci. Pollut. Res. 2015, 22, 15386–15415. [Google Scholar] [CrossRef]
- Glick, B.R. Phytoremediation: Synergistic Use of Plants and Bacteria to Clean up the Environment. Biotechnol. Adv. 2003, 21, 383–393. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.; Angle, J.S.; Delorme, T.A.; Chaney, R.L.; Van Berkum, P.; Moawad, H.; Ghanem, K.; Ghozlan, H.A. Rhizobacterial Effects on Nickel Extraction from Soil and Uptake by Alyssum Murale. New Phytol. 2003, 158, 219–224. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, S.N.; Garg, S.K. Microbially Enhanced Phytoextraction of Heavy-Metal Fly-Ash Amended Soil. Commun. Soil Sci. Plant Anal. 2013, 44, 3161–3176. [Google Scholar] [CrossRef]
- Dada, E.O.; Akinola, M.O.; Owa, S.O.; Dedeke, G.A.; Aladesida, A.A.; Owagboriaye, F.O.; Oludipe, E.O. Efficacy of Vermiremediation to Remove Contaminants from Soil. J. Health Pollut. 2021, 11, 210302. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, J.; Tang, Z.; Zhao, Y.; Wang, C. Vermiremediation of Organically Contaminated Soils: Concepts, Current Status, and Future Perspectives. Appl. Soil Ecol. 2020, 147, 103377. [Google Scholar] [CrossRef]
- Hussain, N.; Chatterjee, S.K.; Maiti, T.K.; Goswami, L.; Das, S.; Deb, U.; Bhattacharya, S.S. Metal Induced Non-Metallothionein Protein in Earthworm: A New Pathway for Cadmium Detoxification in Chloragogenous Tissue. J. Hazard. Mater. 2021, 401, 123357. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, A.; Karmegam, N.; Tripathi, S.; Kannan, S.; Thangaraj, R. Environment-Friendly Management of Textile Mill Wastewater Sludge Using Epigeic Earthworms: Bioaccumulation of Heavy Metals and Metallothionein Production. J. Environ. Manag. 2020, 254, 109813. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Li, S.; Wu, J.; Lian, J.; Liu, W.; Sun, Y. Insights into the Mechanisms Underlying the Remediation Potential of Earthworms in Contaminated Soil: A Critical Review of Research Progress and Prospects. Sci. Total Environ. 2020, 740, 140145. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bhatti, S.S.; Singh, J.; Sambyal, V.; Nagpal, A.; Vig, A.P. Vermiremediation and Phytoremediation: Eco Approaches for Soil Stabilization. Austin Environ. Sci. 2016, 1, 1006. [Google Scholar]
- Batham, M.; Road, J.; Road, J. Eco Approaches—Vermiremediation And Phytoremediation Of Mercury. J. Emerg. Technol. Innov. Res. 2018, 5, 326–337. [Google Scholar]
- Fonte, S.J.; Botero, C.; Quintero, D.C.; Lavelle, P.; van Kessel, C. Earthworms Regulate Plant Productivity and the Efficacy of Soil Fertility Amendments in Acid Soils of the Colombian Llanos. Soil Biol. Biochem. 2019, 129, 136–143. [Google Scholar] [CrossRef]
- Gomez-Eyles, J.L.; Sizmur, T.; Collins, C.D.; Hodson, M.E. Effects of Biochar and the Earthworm Eisenia Fetida on the Bioavailability of Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements. Environ. Pollut. 2011, 159, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Hu, X.; Liu, Y.; Wang, W.; Feng, M.; Shan, X. The Role of Earthworms (Eisenia Fetida) in Influencing Bioavailability of Heavy Metals in Soils. Biol Fertil Soils 2004, 40, 181–187. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Álvarez, A.; Benimeli, C.S.; Polti, M.A. The Current Approach to Soil Remediation: A Review of Physicochemical and Biological Technologies, and the Potential of Their Strategic Combination. J. Environ. Chem. Eng. 2022, 10, 107141. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals From Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Peijnenburg, W.J.G.M.; Baerselman, R.; de Groot, A.C.; Jager, T.; Posthuma, L.; Van Veen, R.P.M. Relating Environmental Availability to Bioavailability: Soil-Type-Dependent Metal Accumulation in the Oligochaete Eisenia Andrei. Ecotoxicol. Environ. Saf. 1999, 44, 294–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Žaltauskaitė, J.; Kniuipytė, I.; Praspaliauskas, M. Earthworm Eisenia Fetida Potential for Sewage Sludge Amended Soil Valorization by Heavy Metal Remediation and Soil Quality Improvement. J. Hazard. Mater. 2022, 424, 127316. [Google Scholar] [CrossRef]
- Sohal, B.; Ahmad Bhat, S.; Vig, A.P. Vermiremediation and Comparative Exploration of Physicochemical, Growth Parameters, Nutrients and Heavy Metals Content of Biomedical Waste Ash via Ecosystem Engineers Eisenia Fetida. Ecotoxicol. Environ. Saf. 2021, 227, 112891. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, J.; Wójcik-Oliveira, K. Effect of Vermicomposting on the Concentration of Heavy Metals in Soil with Drill Cuttings. J. Ecol. Eng. 2019, 20, 152–157. [Google Scholar] [CrossRef]
Soil Type | Ni Level (mg kg−1) | Plant Species | Aided- Phytoremediation | Main Results | Country | Reference |
---|---|---|---|---|---|---|
Natural | 36.4 54.3 48.2 (FC) | T.durum, H.vulgare | B.licheniformis BLMB1 | Increased Ni concentration in wheat and barley roots after the application of B.licheniformis | IT | [123] |
Urban | 147 (FC) | B.juncea, H.annuus, Z.mays, P. vittata | Florawiva FW | Plant growth as stimulated by FW, but BF and TF were not enhanced significantly | IT | [108] |
Natural | 53.4 (FC) | T. alexandrinum | Biochar | Biochar did not affect Ni accumulation in above-ground tissues, but significantly increased Ni in roots compared to the control | IT | [114] |
Artificial | 100 (LC) | C. sativa | G.mosseae | Fungi enhanced the translocation from root to shoot | IT | [112] |
Natural | 200 (LC) | H. annuus | B.weihenstephanensis SM3 | Bacteria increased the plant’s weight compared to the non-inoculated control. There was a decrease in Ni accumulation of 14% and 48% in the root and shoots, respectively | PT | [124] |
Natural | 18.9 (FC) | B. juncea | compost 95% + biochar 5% (holm oak wood) | The 40% amendment was the most advantageous treatment for the Ni phytoextraction | ES | [125] |
Natural | 100 (FC) | M.sativa, C.sativus, L.sativa | E.fetida, B.xenovorans LB400, Paenibacillus sp. | The best Ni elimination yields were obtained after P+B+E treatment | ES | [126] |
Agricultural | 152.8 (FC) | A. pintodasilvae | PGPR | A. nicotinovorans SA40 was able to promote plant growth and improve Ni phytoextraction | ES | [127] |
Natural | 100 200 (LC) | A. sativa | Zeolite | The reduction in Ni accumulation in A.sativa is limited to sandy-silty loam | PL | [113] |
Natural | 73.1 168.4 (FC) | F. arundinacea | Mineral fertiliser (Azofoska) | Ni was few translocated from the root to shoot; BF (roots/shoots) was > 1, showing that F.arundinacea accumulates metals mostly in roots | PL | [128] |
Artificial | 40 100 (LC) | L.esculentum, C.sativus | Ion-exchange substrates (Biona-312) | Biona 312 application significantly decreased Ni in tomato plants, while in cucumber, it increased and decreased in roots and above-ground, respectively | PL | [40] |
Natural | 91.3 (FC) | M.×giganteus | S.maltophilia KP-13; B.altitudinis KP-14; P. fluorescens KP-16 | Ni was accumulated in the roots. The treatments with M.× giganteus + P. fluorescens KP-16 significantly increased the root absorption | CZ | [129] |
Agricultural | 100 (LC) | B. napus | EDTA | The Ni amount in root and shoot increased with increasing EDTA application | TR | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vischetti, C.; Marini, E.; Casucci, C.; De Bernardi, A. Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments 2022, 9, 133. https://doi.org/10.3390/environments9100133
Vischetti C, Marini E, Casucci C, De Bernardi A. Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments. 2022; 9(10):133. https://doi.org/10.3390/environments9100133
Chicago/Turabian StyleVischetti, Costantino, Enrica Marini, Cristiano Casucci, and Arianna De Bernardi. 2022. "Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union" Environments 9, no. 10: 133. https://doi.org/10.3390/environments9100133
APA StyleVischetti, C., Marini, E., Casucci, C., & De Bernardi, A. (2022). Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments, 9(10), 133. https://doi.org/10.3390/environments9100133