Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. LTTM Synthesis
2.3. Olive Leaves (OLL)
2.4. Extraction Procedure
2.5. Sample Preparation and Determinations
2.6. Experimental Design
2.7. Qualitative Liquid Chromatography-Diode Array-Mass Spectrometry (LC-DAD-MS)
2.8. Statistics
3. Results and Discussion
3.1. LTTM Synthesis
3.2. Process Optimisation
- CLTTM was reduced from 80% (w/v) to 50% (w/v); this fact illustrated that with significantly lower amount of solvent, the same yield can be achieved.
- RL/S was reduced from 100 to 45 mL g−1, which demonstrated that a lower volume of solvent would suffice to obtain the same yield, resulting in even less solvent requirements.
- T was reduced from 80 to 73 °C, hence making the whole process less energy-demanding and therefore more cost-effective and environmentally friendly.
- The resident time was 60 min instead of 90 min, and this was another improvement with regard to the points mentioned in 3.
3.3. Assessment of Model Validity and Extraction Efficiency
3.4. Tentative Characterisation of Extract Composition
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
AAR | antiradical activity (μmol DPPH g−1) |
PR | reducing power (μmol AAE g−1) |
RL/S | liquid-to-solid ratio (mL g−1) |
T | temperature (°C) |
YTFn | yield in total flavonoids (mg RtE g−1) |
YTP | yield in total polyphenols (mg GAE g−1) |
Abbreviations
AAE | ascorbic acid equivalents |
CAE | caffeic acid equivalents |
DPPH | 2,2-diphenyl-picrylhydrazyl radical |
dw | dry weight |
HBA | hydrogen bond acceptor |
HBD | hydrogen bond donor |
LTTM | low-transition temperature mixture |
RtE | rutin (quercetin 3-O-rutinoside) equivalents |
SPT | sodium-potassium tartrate |
TPTZ | 2,4,6-tripyridyl-s-triazine |
References
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Mojzer, B.E.; Knez, H.M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Obied, H.K.; Prenzler, P.D.; Omar, S.H.; Ismael, R.; Servili, M.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Urbani, S. Pharmacology of olive biophenols. Adv. Mol. Toxicol. 2012, 6, 195–242. [Google Scholar]
- Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Ang. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valoriz. 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Kottaras, P.; Koulianos, M.; Makris, D.P. Low-Transition temperature mixtures (LTTMs) made of bioorganic molecules: Enhanced extraction of antioxidant phenolics from industrial cereal solid wastes. Recycling 2017, 2, 3. [Google Scholar] [CrossRef]
- Mylonaki, S.; Kiassos, E.; Makris, D.P.; Kefalas, P. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal. Bioanal. Chem. 2008, 392, 977. [Google Scholar] [CrossRef] [PubMed]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefinery 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Manousaki, A.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Extraction of antioxidant phenolics from Agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: A comparison with conventional eco-friendly solvents. Recycling 2016, 1, 194. [Google Scholar] [CrossRef]
- Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T.; Kefalas, P. Factorial design optimisation of grape (Vitis vinifera) seed polyphenol extraction. Eur. Food Res. Technol. 2009, 229, 731–742. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K.; Kefalas, P. Characterisation of certain major polyphenolic antioxidants in grape (Vitis vinifera cv. Roditis) stems by liquid chromatography-mass spectrometry. Eur. Food Res. Technol. 2008, 226, 1075–1079. [Google Scholar]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Jancheva, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). J. Appl. Res. Med. Aromat. Plants 2016. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep. Purif. Technol. 2015, 149, 237–244. [Google Scholar] [CrossRef]
- Yao, X.-H.; Zhang, D.-Y.; Duan, M.-H.; Cui, Q.; Xu, W.-J.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Fu, Y.-J. Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent. Sep. Purif. Technol. 2015, 149, 116–123. [Google Scholar] [CrossRef]
- Blidi, S.; Bikaki, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. A comparative evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: Apple waste peels as a case study. Waste Biomass Valoriz. 2015, 6, 1125–1133. [Google Scholar] [CrossRef]
- Vetal, M.D.; Lade, V.G.; Rathod, V.K. Extraction of ursolic acid from Ocimum sanctum by ultrasound: Process intensification and kinetic studies. Chem. Eng. Proc. Process. Intensif. 2013, 69, 24–30. [Google Scholar] [CrossRef]
- Rakotondramasy-Rabesiaka, L.; Havet, J.-L.; Porte, C.; Fauduet, H. Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Sep. Purif. Technol. 2010, 76, 126–131. [Google Scholar] [CrossRef]
- Patsea, M.; Stefou, I.; Grigorakis, S.; Makris, D.P. Screening of Natural Sodium Acetate-Based Low-Transition Temperature Mixtures (LTTMs) for Enhanced Extraction of Antioxidants and Pigments from Red Vinification Solid Wastes. Environ. Proc. 2017, 1–13. [Google Scholar] [CrossRef]
- Apostolakis, A.; Grigorakis, S.; Makris, D.P. Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Sep. Purif. Technol. 2014, 128, 89–95. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.-H.; Lee, B.-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef] [PubMed]
- Karvela, E.; Makris, D.P.; Karathanos, V.T. Implementation of response surface methodology to assess the antiradical behaviour in mixtures of ascorbic acid and α-tocopherol with grape (Vitis vinifera) stem extracts. Food Chem. 2012, 132, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Abaza, L.; Youssef, N.B.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M. Chétoui olive leaf extracts: Influence of the solvent type on phenolics and antioxidant activities. Grasas. Aceites. 2011, 62, 96–104. [Google Scholar] [CrossRef]
- Lee, O.-H.; Lee, B.-Y.; Lee, J.; Lee, H.-B.; Son, J.-Y.; Park, C.-S.; Shetty, K.; Kim, Y.-C. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 2009, 100, 6107–6113. [Google Scholar] [CrossRef] [PubMed]
- Benavente-Garcıa, O.; Castillo, J.; Lorente, J.; Ortuno, A.; Del Rio, J. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Japón-Luján, R.; Capote, F.P.; Marinas, A.; de Castro, M.D.L. Liquid chromatography/triple quadrupole tandem mass spectrometry with multiple reaction monitoring for optimal selection of transitions to evaluate nutraceuticals from olive-tree materials. Rapid Com. Mass Spectrom. 2008, 22, 855–864. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Code Units | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
CLTTM (%, w/v) | X1 | 50 | 65 | 80 |
RL/S (mL g−1) | X2 | 15 | 30 | 45 |
T (°C) | X3 | 50 | 65 | 80 |
Design Point | Independent Variables | Response (YTP, mg CAE g−1 dw ) | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Measured | Predicted | |
1 | −1 | −1 | −1 | 10.21 | 9.27 |
2 | −1 | −1 | 1 | 11.82 | 13.16 |
3 | −1 | 1 | −1 | 17.00 | 18.34 |
4 | −1 | 1 | 1 | 26.69 | 25.96 |
5 | 1 | −1 | −1 | 11.28 | 12.24 |
6 | 1 | −1 | 1 | 8.65 | 7.55 |
7 | 1 | 1 | −1 | 21.58 | 20.47 |
8 | 1 | 1 | 1 | 18.34 | 19.51 |
9 | −1 | 0 | 0 | 14.94 | 13.92 |
10 | 1 | 0 | 0 | 12.10 | 12.18 |
11 | 0 | −1 | 0 | 12.37 | 12.10 |
12 | 0 | 1 | 0 | 23.28 | 22.61 |
13 | 0 | 0 | −1 | 6.95 | 6.70 |
14 | 0 | 0 | 1 | 8.84 | 8.16 |
15 | 0 | 0 | 0 | 11.08 | 11.01 |
16 | 0 | 0 | 0 | 9.08 | 11.01 |
No | Rt (min) | UV-Vis | [M + H]+ (m/z) | Other Ions (m/z) | Tentative Identity |
---|---|---|---|---|---|
1 | 24.09 | 266, 340 | 611 | 449, 287 | Luteolin di-glycoside |
2 | 26.92 | 248, 354 | 595 | 617[M + Na]+, 449, 287 | Luteolin rutinoside |
3 | 27.86 | 252, 280 | 541 | 563, 361, 137 | Oleuropein |
4 | 28.20 | 244, 340 | 579 | 601[M + Na]+, 271 | Apigenin rutinoside |
5 | 29.05 | 266, 342 | 449 | 287 | Luteolin glucoside |
6 | 29.91 | 266, 340 | 449 | 287 | Luteolin glucoside |
7 | 32.02 | 252, 292, 352 | 287 | - | Luteolin |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dedousi, M.; Mamoudaki, V.; Grigorakis, S.; Makris, D.P. Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). Environments 2017, 4, 31. https://doi.org/10.3390/environments4020031
Dedousi M, Mamoudaki V, Grigorakis S, Makris DP. Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). Environments. 2017; 4(2):31. https://doi.org/10.3390/environments4020031
Chicago/Turabian StyleDedousi, Marianna, Valentina Mamoudaki, Spyros Grigorakis, and Dimitris P. Makris. 2017. "Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM)" Environments 4, no. 2: 31. https://doi.org/10.3390/environments4020031
APA StyleDedousi, M., Mamoudaki, V., Grigorakis, S., & Makris, D. P. (2017). Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). Environments, 4(2), 31. https://doi.org/10.3390/environments4020031