Wetland Water-Level Prediction in the Context of Machine-Learning Techniques: Where Do We Stand?
Abstract
:1. Introduction
2. Status of Wetlands in the World
3. Factors Affecting Wetland Water Level
4. Importance of Wetland Water-Level Monitoring
5. Available Machine-Learning Techniques to Predict Wetland Water Levels
6. Applications of Machine-Learning Techniques to Predict Wetland Water Levels
7. Summary of the Review
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ANN | Artificial Neural Networks |
USEPA | United States Environmental Protection Agency |
HEC-RAS | Hydrologic Engineering Center’s River Analysis System |
SWAT | The Soil & Water Assessment Tool |
RBF | Radial Basis Function |
SVM | Support Vector Machines |
RF | Random Forests |
DT | Decision Trees |
RMSE | root mean squared error |
R2 | coefficient of determination |
References
- Gardner, R.C.; Davidson, N.C. The Ramsar Convention. In Wetlands; Springer: Dordrecht, The Netherlands, 2011; pp. 189–203. [Google Scholar] [CrossRef]
- Janssen, R.; Goosen, H.; Verhoeven, M.L.; Verhoeven, J.T.A.; Omtzigt, A.Q.A.; Maltby, E. Decision support for integrated wetland management. Environ. Model. Softw. 2005, 20, 215–229. [Google Scholar] [CrossRef]
- Savage, R.; Baker, V. The Importance of Headwater Wetlands and Water Quality in North Carolina; North Carolina Department of Environment and Natural Resources Diviion of Water Quality: Raleigh, NC, USA, 2007. [Google Scholar]
- Viaroli, P.; Bartoli, M.; Vymazal, J. Preface: Wetlands biodiversity and processes—Tools for conservation and management. Hydrobiologia 2016, 774, 1–5. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Liang, S. Evaluating the sustainability of free water surface flow constructed wetlands: Methane and nitrous oxide emissions. J. Clean. Prod. 2017, 147, 152–156. [Google Scholar] [CrossRef]
- Taillardat, P.; Thompson, B.S.; Garneau, M.; Trottier, K.; Friess, D.A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 2020, 10, 20190129. [Google Scholar] [CrossRef] [PubMed]
- Feher, L.C.; Osland, M.J.; Griffith, K.T.; Grace, J.B.; Howard, R.J.; Stagg, C.L.; Enwright, N.M.; Krauss, K.W.; Gabler, C.A.; Day, R.H.; et al. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 2017, 8, e01956. [Google Scholar] [CrossRef]
- Stein, E.D.; Fetscher, A.E.; Clark, R.P.; Wiskind, A.; Grenier, J.L.; Sutula, M.; Collins, J.N.; Grosso, C. Validation of a wetland rapid assessment method: Use of EPA’s level 1-2-3 framework for method testing and refinement. Wetlands 2009, 29, 648–665. [Google Scholar] [CrossRef]
- Noble, C.V.; Wakeley, J.S.; Roberts, T.H.; Henderson, C. Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing the Functions of Headwater Slope Wetlands on the Mississippi and Alabama Coastal Plains; Engineer Research and Development Center Vicksburg MS Environmental Lab: Vicksburg, MS, USA, 2007. [Google Scholar]
- Ringler, C.; Cai, X. Valuing fisheries and wetlands using integrated economic-hydrologic modeling—Mekong River Basin. J. Water Resour. Plan. Manag. 2006, 132, 480–487. [Google Scholar] [CrossRef]
- Lefebvre, G.; Redmond, L.; Germain, C.; Palazzi, E.; Terzago, S.; Willm, L.; Poulin, B. Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Sci. Total Environ. 2019, 692, 546–555. [Google Scholar] [CrossRef]
- Kaleel, M.I.M. The Impact on Wetlands: A Study Based on Selected Areas in Ampara District of Sri Lanka. World News Nat. Sci. 2017, 7, 16–25. [Google Scholar]
- Chen, H.; Zhang, W.; Gao, H.; Nie, N. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens. 2018, 10, 356. [Google Scholar] [CrossRef]
- Chumaidiyah, E.; Dewantoro, M.D.R.; Kamil, A.A. Design of a Participatory Web-Based Geographic Information System for Determining Industrial Zones. Appl. Comput. Intell. Soft Comput. 2021, 2021, 6665959. [Google Scholar] [CrossRef]
- USEPA. Methods for Evaluating Wetland Condition: Wetland Hydrology; EPA-822-R-08-024; Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2008.
- Choi, C.; Kim, J.; Kim, J.; Kim, H.S. Development of Combined Heavy Rain Damage Prediction Models with Machine Learning. Water 2019, 11, 2516. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Liu, X.; Dai, J. Landsat Observations of Two Decades of Wetland Changes in the Estuary of Poyang Lake during 2000–2019. Water 2021, 14, 8. [Google Scholar] [CrossRef]
- Debanshi, S.; Pal, S. Wetland delineation simulation and prediction in deltaic landscape. Ecol. Indic. 2020, 108, 105757. [Google Scholar] [CrossRef]
- Hossain, S.K.M.; Ema, S.A.; Sohn, H. Rule-Based Classification Based on Ant Colony Optimization: A Comprehensive Review. Appl. Comput. Intell. Soft Comput. 2022, 2022, 2232000. [Google Scholar] [CrossRef]
- Li, J.; Chen, W. A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. Int. J. Remote Sens. 2005, 26, 5051–5069. [Google Scholar] [CrossRef]
- Mitsch, W.; Gosselink, J. Wetlands; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Reis, V.; Hermoso, V.; Hamilton, S.K.; Ward, D.; Fluet-Chouinard, E.; Lehner, B.; Linke, S. A Global Assessment of Inland Wetland Conservation Status. Bioscience 2017, 67, 523–533. [Google Scholar] [CrossRef]
- Dar, S.A.; Bhat, S.U.; Rashid, I.; Dar, S.A. Current status of wetlands in Srinagar City: threats, management strategies, and future perspectives. Front. Environ. Sci. 2020, 7, 199. [Google Scholar] [CrossRef]
- Bassi, N.; Kumar, M.D.; Sharma, A.; Pardha-Saradhi, P. Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. J. Hydrol. Reg. Stud. 2014, 2, 1–19. [Google Scholar] [CrossRef]
- Mengesha, T. Review on the natural conditions and anthropogenic threats of Wetlands in Ethiopian. Glob. J. Ecol. 2017, 2, 006–014. [Google Scholar] [CrossRef]
- Chopra, R.; Verma, V.K.; Sharma, P.K. Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India, through remote sensing. Int. J. Remote Sens. 2001, 22, 89–98. [Google Scholar] [CrossRef]
- Khaniya, B.; Wanniarachchi, S.; Rathnayake, U. Importance of hydrologic simulation for lids and bmps design using HEC-HMS: A case demonstration. Int. J. Hydrol. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Bellerby, R.; Craft, C.; Widney, S.E. Coastal wetland loss, consequences, and challenges for restoration. Anthr. Coasts 2018, 1, 1–15. [Google Scholar] [CrossRef]
- Rashid, I.; Bhat, M.A.; Romshoo, S.A. Assessing changes in the above ground biomass and carbon stocks of Lidder valley, Kashmir Himalaya, India. Geocarto Int. 2017, 32, 717–734. [Google Scholar] [CrossRef]
- Bano, H.; Lone, F.A.; Bhat, J.I.; Rather, R.A.; Malik, S.; Bhat, M.A. Hokersar Wet Land of Kashmir: Its utility and factors responsible for its degradation. Plant Arch. 2018, 18, 1905–1910. [Google Scholar]
- Romshoo, S.A.; Altaf, S.; Rashid, I.; Ahmad Dar, R. Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomat. Nat. Hazards Risk 2018, 9, 224–248. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Barras, J.A.; Steyer, G.D.; Sleavin, W.; Fischer, M.; Beck, H.; Trahan, N.; Griffin, B.; Heckman, D. Land Area Change in Coastal Louisiana from 1932 to 2010; U.S. Geological Survey: Reston, VA, USA, 2011. [CrossRef]
- Rashid, H.; Naseem, G. Quantification of loss in spatial extent of lakes and wetlands in the suburbs of Srinagar city during last century using geospatial approach. In Proceedings of the Taal 2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; pp. 653–658. [Google Scholar]
- Dadaser-Celik, F.; Cengiz, E. A neural network model for simulation of water levels at the Sultan Marshes wetland in Turkey. Wetl. Ecol. Manag. 2013, 21, 297–306. [Google Scholar] [CrossRef]
- Taylor, C.J.; Alley, W.M. Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data; No. 1217-2002; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2002.
- Krasnostein, A.L.; Oldham, C.E. Predicting wetland water storage. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef]
- Acreman, M.C.; Miller, F. Hydrological impact assessment of wetlands. In Proceedings of the ISGWAS conference on groundwater sustainability, Alicante, Spain, 24–27 January 2006; pp. 225–255. [Google Scholar]
- Yang, M.; Xia, S.; Liu, G.; Wang, M.; Ding, Z.; Yu, P.; Tang, X. Effect of hydrological variation on vegetation dynamics for wintering waterfowl in China’s Poyang Lake Wetland. Glob. Ecol. Conserv. 2020, 22, e01020. [Google Scholar] [CrossRef]
- Białowiec, A.; Albuquerque, A.; Randerson, P.F. The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecol. Eng. 2014, 67, 89–94. [Google Scholar] [CrossRef]
- Ludwig, A.L.; Hession, W.C. Groundwater influence on water budget of a small constructed floodplain wetland in the Ridge and Valley of Virginia, USA. J. Hydrol. Reg. Stud. 2015, 4 Pt B, 699–712. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Kalin, L.; Anderson, C.J. Wetland Water-Level Prediction Using ANN in Conjunction with Base-Flow Recession Analysis. J. Hydrol. Eng. 2017, 22, D4015003. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar]
- Zedler, J.B. Progress in wetland restoration ecology. Trends Ecol. Evol. 2000, 15, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.; Icely, J.; Cristina, S.; Perillo, G.M.E.; Turner, R.E.; Ashan, D.; Cragg, S.; Luo, Y.; Tu, C.; Li, Y.; et al. Anthropogenic, Direct Pressures on Coastal Wetlands. Front. Ecol. Evol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Orme, A.R. Wetland Morphology, Hydrodynamics and Sedimentation. In Wetlands: A Threatened Landscape; Williams, M., Ed.; The Institute of British Geographers, The Alden Press Ltd.: Osney Mead, UK, 1990; pp. 42–94. [Google Scholar]
- Dai, X.; Wan, R.; Yang, G.; Wang, X.; Xu, L.; Li, Y.; Li, B. Impact of seasonal water-level fluctuations on autumn vegetation in Poyang Lake wetland, China. Front. Earth Sci. 2019, 13, 398–409. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Liu, H.; Liang, L.; Cai, Y.; Wang, X.; Li, C. Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. J. Hydrol. 2020, 581, 124418. [Google Scholar] [CrossRef]
- Kang, H.; Jang, I.; Kim, S. Key Processes in CH4 Dynamics in Wetlands and Possible Shifts with Climate Change. In Global Change and the Function and Distribution of Wetlands; Springer: Dordrecht, The Netherlands, 2012; pp. 99–114. [Google Scholar] [CrossRef]
- Chimner, R.A.; Cooper, D.J. Influence of water table levels on CO2 emissions in a Colorado subalpine fen: An in situ microcosm study. Soil Biol. Biochem. 2003, 35, 345–351. [Google Scholar] [CrossRef]
- Steinman, A.D.; Ogdahl, M.E.; Weinert, M.; Uzarski, D.G. Influence of water-level fluctuation duration and magnitude on sediment–water nutrient exchange in coastal wetlands. Aquat. Ecol. 2014, 48, 143–159. [Google Scholar] [CrossRef]
- Van Der Valk, A.G.; Volin, J.C.; Wetzel, P.R. Predicted changes in interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades. Environ. Manag. 2015, 55, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, D.A.; Nichols, S.J. The effects of water-level fluctuations on vegetation in a Lake Huron wetland. Wetlands 2008, 28, 487–501. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Kumar, U. Conservation of wetlands to mitigate urban floods. J. Resour. Energy Dev. 2012, 9, 1–22. [Google Scholar] [CrossRef]
- Kim, J.; Jung, J.; Han, D.; Kim, H.S. Prediction and Evaluation of Hydro-Ecology, Functions, and Sustainability of A Wetland Under Climate Change. Geophys. Res. Abstr. 2019, 21, EGU2019-6804-1. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, E-Book. 2015. Available online: http://auburn.eblib.com/patron/FullRecord.aspx?p=1895927 (accessed on 29 January 2023).
- Kusudo, T.; Yamamoto, A.; Kimura, M.; Matsuno, Y. Development and Assessment of Water-Level Prediction Models for Small Reservoirs Using a Deep Learning Algorithm. Water 2021, 14, 55. [Google Scholar] [CrossRef]
- Andrei, A.; Robert, B.; Erika, B. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software—Case study of Baraolt River, Romania. IOP Conf. Series: Mater. Sci. Eng. 2017, 245, 072010. [Google Scholar] [CrossRef]
- Zhu, S.; Hrnjica, B.; Ptak, M.; Choiński, A.; Sivakumar, B. Forecasting of water level in multiple temperate lakes using machine learning models. J. Hydrol. 2020, 585, 124819. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Truong, V.-H.; Ly, Q.V.; Le, V.-C.; Vu, T.-B.; Le, T.-T.; Tran, T.-T.; Goethals, P. Machine learning-based method for forecasting water levels in irrigation and drainage systems. Environ. Technol. Innov. 2021, 23, 101762. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 2015, 530, 829–844. [Google Scholar] [CrossRef]
- Karimi, S.; Shiri, J.; Kisi, O.; Makarynskyy, O. Forecasting Water Level Fluctuations of Urmieh Lake Using Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System. Int. J. Ocean Clim. Syst. 2012, 3, 109–125. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A Review of the Artificial Neural Network Models for Water Quality Prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Wang, H.; Song, L. Water Level Prediction of Rainwater Pipe Network Using an SVM-Based Machine Learning Method. Int. J. Pattern Recognit. Artif. Intell. 2019, 34, 2051002. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Karimi, S.; Shamshirband, S.; Motamedi, S.; Petković, D.; Hashim, R. A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Appl. Math. Comput. 2015, 270, 731–743. [Google Scholar] [CrossRef]
- Yang, J.-H.; Cheng, C.-H.; Chan, C.P. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method. Comput. Intell. Neurosci. 2017, 2017, 8734214. [Google Scholar] [CrossRef] [PubMed]
- Altunkaynak, A. Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resour. Manag. 2006, 21, 399–408. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Nourani, V.; Mogaddam, A.A.; Nadiri, A.O. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 2008, 22, 5054–5066. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Govindaraju, R.S.; Rao, A.R. (Eds.) Artificial Neural Networks in Hydrology; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; Volume 36. [Google Scholar]
- Sarker, I.H.; Kayes, A.S.M.; Watters, P. Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. J. Big Data 2019, 6, 57. [Google Scholar] [CrossRef]
- Yin, C.; Rosendahl, L.; Luo, Z. Methods to improve prediction performance of ANN models. Simul. Model. Pract. Theory 2003, 11, 211–222. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Karunanayake, C.; Gunathilake, A.S.; Marasingha, N.; Samarasinghe, J.T.; Bandara, I.M.; Rathnayake, U. Hydrological Models and Artificial Neural Networks (ANNs) to Simulate Streamflow in a Tropical Catchment of Sri Lanka. Appl. Comput. Intell. Soft Comput. 2021, 2021, 6683389. [Google Scholar] [CrossRef]
- Perera, A.; Rathnayake, U. Rainfall and atmospheric temperature against the other climatic factors: A case study from Colombo, Sri Lanka. Math. Probl. Eng. 2019, 2019, 5692753. [Google Scholar] [CrossRef]
- Bafitlhile, T.M.; Li, Z. Applicability of ε-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China. Water 2019, 11, 85. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Kalin, L.; Hantush, M.M. An Integrated Approach for Modeling Wetland Water Level: Application to a Headwater Wetland in Coastal Alabama, USA. Water 2018, 10, 879. [Google Scholar] [CrossRef]
- Gopakumar, R.; Takara, K. Water Level Forecasting in the Vembanad Water System Using Artificial Neural Networks. In Proceedings of the 2009 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, India, 27–28 October 2009; pp. 948–953. [Google Scholar] [CrossRef]
- Saha, T.K.; Pal, S.; Sarkar, R. Prediction of wetland area and depth using linear regression model and artificial neural network based cellular automata. Ecol. Informatics 2021, 62, 101272. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Kumar, D.N.; Graillot, D.; Gaur, S. Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks. Water Resour. Manag. 2012, 27, 871–883. [Google Scholar] [CrossRef]
- Khan, M.S.; Coulibaly, P. Application of Support Vector Machine in Lake Water Level Prediction. J. Hydrol. Eng. 2006, 11, 199–205. [Google Scholar] [CrossRef]
- Wei, C.-C. Wavelet kernel support vector machines forecasting techniques: Case study on water-level predictions during typhoons. Expert Syst. Appl. 2012, 39, 5189–5199. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/home/en/ (accessed on 15 May 2022).
- Li, X.; Sha, J.; Wang, Z.-L. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method. Hydrol. Sci. J. 2019, 64, 1857–1866. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Constructed Wetlands for Reclamation and Reuse of Wastewater and Urban Stormwater: A Review. Front. Environ. Sci. 2022, 10, 836289. [Google Scholar] [CrossRef]
- Guo, C.; Cui, Y. Machine learning exhibited excellent advantages in the performance simulation and prediction of free water surface constructed wetlands. J. Environ. Manag. 2022, 309, 114694. [Google Scholar] [CrossRef]
- Li, W.; Cui, L.; Zhang, Y.; Cai, Z.; Zhang, M.; Xu, W.; Zhao, X.; Lei, Y.; Pan, X.; Li, J.; et al. Using a backpropagation artificial neural network to predict nutrient removal in tidal flow constructed wetlands. Water 2018, 10, 83. [Google Scholar] [CrossRef]
- Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water 2021, 13, 1173. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Artificial Intelligence models for prediction of the tide level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 35, 2537–2548. [Google Scholar] [CrossRef]
Region | |
---|---|
Africa | 0.74 |
Asia | 4.11 |
Europe | 0.75 |
South America | 0.89 |
North America | 2.46 |
Central America | 0.04 |
Oceania | 0.17 |
Reference | Wetland Location | Period | Data Resolution | Method | Accuracy |
---|---|---|---|---|---|
Rezaeianzadeh et al. [43] | coastal Alabama | February 2011 to March 2012 | Hourly | ANN | RMSE = 2.9 cm Nash–Sutcliffe efficiency = 0.98 |
Rezaeianzadeh et al. [82] | coastal Alabama | February 2011 to March 2012 | Daily averaged values from Hourly | ANN with SWAT model | RMSE = 14.5 cm |
Choi et al. [16] | Upo Wetland, South Korea | 2009 to 2015 | Daily | ANN, DT, RF, SVM | R2 = 0.96 Nash–Sutcliffe efficiency = 0.92 RMSE = 0.09 m Persistence Index = 0.19 |
Dadaser-Celik and Cengiz [36] | Sultan Marshes Wetland, Turkey | 1993 to 2002 | Monthly | ANN | R2 = 0.96 RMSE = 4 cm |
Altunkaynak [69] | Lake Van, Turkey | ANN | |||
Gopakumar and Takara [83] | Vembanad Wetland, India | 1996 to 1999 | Daily | ANN | R2 = 0.87–0.9 RMSE = 5.63 cm–8.88 cm |
Saha et al. [84] | Atreyee River basin, India and Bangladesh | 1987 to 2019 | Random (Water depth as a function of NDWI) | ANN | R2 = 0.42–0.69 |
Karthikeyan et al. [85] | Padre Wetland, India | July 2004 to May 2006 | Weekly averaged based on daily data | ANN | Normalized RMSE = 0.2335–0.4885 Relative RMSE = 1.4920–3.6418 Nash–Sutcliffe Efficiency = 0.7499–0.9538 Correlation Coefficient = 0.9225–0.9798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayathilake, T.; Gunathilake, M.B.; Wimalasiri, E.M.; Rathnayake, U. Wetland Water-Level Prediction in the Context of Machine-Learning Techniques: Where Do We Stand? Environments 2023, 10, 75. https://doi.org/10.3390/environments10050075
Jayathilake T, Gunathilake MB, Wimalasiri EM, Rathnayake U. Wetland Water-Level Prediction in the Context of Machine-Learning Techniques: Where Do We Stand? Environments. 2023; 10(5):75. https://doi.org/10.3390/environments10050075
Chicago/Turabian StyleJayathilake, Tharaka, Miyuru B. Gunathilake, Eranga M. Wimalasiri, and Upaka Rathnayake. 2023. "Wetland Water-Level Prediction in the Context of Machine-Learning Techniques: Where Do We Stand?" Environments 10, no. 5: 75. https://doi.org/10.3390/environments10050075
APA StyleJayathilake, T., Gunathilake, M. B., Wimalasiri, E. M., & Rathnayake, U. (2023). Wetland Water-Level Prediction in the Context of Machine-Learning Techniques: Where Do We Stand? Environments, 10(5), 75. https://doi.org/10.3390/environments10050075