Multifractal Patterns in 17-Year PM10 Time Series in Athens, Greece
Abstract
:1. Introduction
2. Experimental Methods
Area of Study
3. Mathematical Methods
3.1. Multifractal Detrended Fluctuation Analysis
Application of MFDFA
- 1.
- If is a time series of length N and , the following mathematical calculation is used to compute the time series’ mean value:
- 2.
- The trajectory or integrated profile is obtained, if the time series comprises increments of a random walk process around the average value
- 3.
- The time series is separated into non-overlapping bins, with being the integer component of and s being the time span. A small portion of the time series is not handled because N is not necessarily an integer multiple of s, and as a result, a short part of the time series is not processed. To incorporate this, the same operation is performed starting from the opposite end. In this manner, bins are obtained, yielding a better degree of estimation accuracy.
- 4.
- The data in each bin are fitted to a polynomial, and the variance in each bin, , and , is used to determine the local trend in each of the two bins. The following equation is used to calculate the square fluctuations
- 5.
- The order fluctuation function is derived by averaging all the segments after the series has been detrended, as shown in the equation belowFluctuation is only defined for . The typical DFA procedure is obtained for . The main goal is to determine the scaling behaviour and estimate the generalised fluctuation functions for various order q values and time spans s. If the time series contains long-range power-law correlations, rises as a power law for long values of scale s, as shown in Equation (7):
- 6.
- The scaling exponent , also known as the generalised Hurst exponent, is estimated in the last phase. For each value of q, the log–log plot of vs. s is used to estimate it. The Hurst exponent is equal to for , and the associated logarithmic plot is the usual DFA diagram [35,36]. , which is independent of q, characterises monofractal time series with compact support. Because tiny and large variations scale differently, will be very dependent on q. describes the scaling behaviour of segments with small fluctuations (small deviations from the corresponding fit) for negative q, whereas describes the scaling behaviour of segments with large fluctuations (large deviations from the corresponding fit) for positive q (large deviations from the corresponding fit).The generalised Hurst exponent of MFDFA is related with classical scaling exponent by the relation
- 7.
- A monofractal time series with long-range correlation is characterised by linear association between exponent and q, namely there is a single Hurst exponent. On the other hand, multifractal time series have non-linear association between and q, and therefore there exist multiple Hurst exponents. Furthermore, the multifractality of the time series can be characterised by deriving the multifractal spectrum , which is related to by a Legendre transform and , where is the singularity strength or Holder exponent and specifies the dimension of the subset series, which is characterised by . The association between and related to is
- 8.
- The singularity spectrum is used to quantify the time series’ long-range correlation features. The width of a spectrum indicates the range of exponents and is sometimes referred to as the degree of fractality. The spectrum is fitted to a quadratic function at the point of its maximum at to enable quantitative description of multifractal spectra. Extrapolating the fitted curve to zero can be used to calculate the spectrum’s width W. The richer the multifractality in the dataset [39,40,41,42], the wider the width.
4. Results and Discussion
- 1.
- The derivatives of the polynomial trendlines of every association and (i.e., the trendlines similar to the dotted red and blue lines in Figure 4, Figure 5 and Figure 6 and here symbolised as ) were set equal to zero. Trivially, through this, the value corresponding to the maximum is calculated (here symbolised as ) as .
- 2.
- The maximum value of (symbolised as ) is calculated, trivially, as .
- 3.
- Thereafter, the half-maximum () spectrum value is calculated as where is the corresponding trendline.
- 4.
- Trivially, by solving the second-order polynomial equation , the two solutions for () are calculated.
- 5.
- The full width at half maximum () is calculated as .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European-Environment-Agency (Ed.) Air Quality Concentrations; EEA: Copenhagen, Denmark, 2021. [Google Scholar]
- World-Health-Organisation (Ed.) Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO—WHO Regional Office for Europe: Copenhagen, Denmark, 2021.
- Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V. Urban population exposure to air pollution in Europe over the last decades. Environ. Sci. Eur. 2021, 33, 28. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, K.M.; Bengtsen, E.; Saber, A.T.; Vogel, U. A review of health effects associated with exposure to jet engine emissions in and around airports. Environ. Health 2021, 20, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, V.; Heiman, F.; Levante, A.; Urbinati, D.; Peduto, I. An Italian individual-level data study investigating on the association between air pollution exposure and Covid-19 severity in primary-care setting. BMC Public Health 2021, 21, 902. [Google Scholar] [CrossRef] [PubMed]
- Solimini, A.; Filipponi, F.; Fegatelli, D.A.; Caputo, B.; De Marco, C.M.; Spagnoli, A.; Vestri, A.R. A global association between Covid-19 cases and airborne particulate matter at regional level. Sci. Rep. 2021, 11, 6256. [Google Scholar] [CrossRef]
- Sanduijav, C.; Ferreira, S.; Filipski, M.; Hashida, Y. Air pollution and happiness: Evidence from the coldest capital in the world. Ecol. Econom. 2021, 187, 107085. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, F.; di He, H.; Lu, Q.C.; Wang, D.; Peng, Z.R. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm. Atmos. Environ. 2015, 104, 264–272. [Google Scholar] [CrossRef]
- Sefidmazgi, G.; Sayemuzzaman, M.; Homaifar, M.; Jha, M.K.; Liess, S. Trend analysis using non-stationary time series clustering based on the finite element method. Nonlinear Process. Geophys. 2014, 21, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Maheswaran, R.; Khosa, R. Wavelet Volterra Coupled Models for forecasting of nonlinear and non–stationary time series. Neurocomputing 2015, 149, 1074–1084. [Google Scholar] [CrossRef]
- Moustris, K.P.; Ziomas, I.C.; Paliatsos, A.G. 3-Day-Ahead Forecasting of Regional Pollution Index for the pollutants NO2, CO, SO2 and O3 using Artificial Neural Networks in Athens, Greece. Water Air Soil. Pollut. 2010, 224, 29–43. [Google Scholar] [CrossRef]
- Moustris, K.P.; Nastos, P.T.; Larisssi, I.K.; Paliatsos, A.G. Application of Multiple Linear Regression Models and Artificial Neural Networks on the surface ozone forecast in the greater Athens area, Greece. Adv. Meteorol. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Moustris, K.P.; Larisssi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Development and Application of Artificial Neural Network Modeling in Forecasting PM10 Levels in a Mediterranean City. Water Air Soil Pollut. 2013, 224, 1634. [Google Scholar] [CrossRef]
- Moustris, K.P.; Proias, G.T.; Larisssi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Air quality prognosis using artificial neural networks modeling in the urban environment of Volos, Central Greece. Fres. Environ. Bull. 2014, 13, 2967–2975. [Google Scholar]
- Moustris, K.; Petraki, E.; Ntourou, K.; Priniotakis, G.; Nikolopoulos, D. Spatiotemporal Evaluation of PM10 Concentrations within the Greater Athens Area, Greece. Trends, Variability and Analysis of a 19 Years Data Series. Environments 2020, 7, 85. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, Y.; Li, P. Multifractal behavior of an air pollutant time series and the relevance to the predictability. Environ. Pollut. 2017, 222, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, C.; Ondov, J.; Efstathiou, M. Scaling properties of air pollution in Athens, Greece and Baltimore. Md. Atmos. Environ. 2005, 39, 4041–4047. [Google Scholar] [CrossRef]
- Kai, S.; Chun-qiong, L.; Nan-shan, A.; Xiao-hong, Z. Using three methods to investigate time-scaling properties in air pollution indexes time series. Nonlinear Anal. Real World Appl. 2008, 9, 693–707. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Zhu, H. A time-scaling property of air pollution indices: A case study of Shanghai. China Atmos. Pollut. Res. 2015, 6, 886–892. [Google Scholar] [CrossRef]
- Lee, C.K.; Juang, L.C.; Wang, C.C.; Liao, Y.Y.; Yu, C.C.; Liu, Y.C.; Ho, D.S. Scaling characteristics in ozone concentration time series (OCTS). Chemosphere 2006, 62, 934–946. [Google Scholar] [CrossRef]
- Windsor, H.L.; Toumi, R. Scaling and persistence of UK pollution. Atmos. Environ. 2001, 35, 4545–4556. [Google Scholar] [CrossRef]
- Weng, Y.C.; Chang, N.B.; Lee, T.Y. Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan. J. Environ. Manag. 2008, 87, 405–414. [Google Scholar] [CrossRef]
- Chelani, A.B. Predicting chaotic time series of PM10 concentration using artificial neural network. J. Environ. Stud. 2005, 62, 181–191. [Google Scholar] [CrossRef]
- Chelani, A.B. Statistical persistence analysis of hourly ground level ozone concentrations in Delhi. Atmos. Res. 2009, 92, 244–250. [Google Scholar] [CrossRef]
- Chelani, A.B. Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi. Atmos. Res. 2012, 108, 128–134. [Google Scholar] [CrossRef]
- Xue, Y.; Pan, W.; Lu, W.z.; He, H.D. Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ. 2015, 532, 744–751. [Google Scholar] [CrossRef]
- Yuval; Broday, D.M. Studying the time scale dependence of environmental variables predictability using fractal analysis. Environ. Sci. Technol. 2010, 44, 4629–4634. [Google Scholar] [CrossRef]
- Pacheco, P.R.; Parodi, M.C.; Mera, E.M.; Salini, G.A. Variables meteorologicas y niveles de concentracion de material particulado de 10 μm en Andacollo, Chile: Un estudio de dispersioy entropias. Inf. Tecnol. 2020, 31, 171–182. [Google Scholar] [CrossRef]
- Du, W.; Wang, J.; Wang, Z.; Lei, Y.; Huang, Y.; Liu, S.; Wu, C.; Ge, S.; Chen, Y.; Bai, K.; et al. Influence of COVID-19 lockdown overlapping Chinese Spring Festival on household PM2.5 in rural Chinese homes. Chemosphere 2021, 278, 130406. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Koulougliotis, D.; Cantzos, D. Fractal and Long-Memory Traces in PM10 Time Series in Athens, Greece. Environments 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Cantzos, D. Long-memory traces in PM10 time series in Athens, Greece: Investigation through DFA and R/S analysis. Meteorol. Atmos. Phys. 2021, 133, 261–279. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Alam, A.; Petraki, E.; Papoutsidakis, M.; Yannakopoulos, P.; Moustris, K.P. Stochastic and Self-Organisation Patterns in a 17-Year PM10 Time Series in Athens. Entropy 2021, 23, 307. [Google Scholar] [CrossRef]
- Hellenic-Statistical-Authority-HSA. Population-Housing Census; HSA: Singapore, 2011. [Google Scholar]
- Hellenic-National-Meteorological-Service. Climatic Data for Selected Stations in Greece. Available online: http://www.hnms.gr/emy/en/climatology/climatology_city?perifereia=Attiki&poli=Athens_Hellinikon/ (accessed on 1 January 2020.).
- Chen, Z.; Ivanov, P.; Hu, K.; Stanley, H. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 2002, 65, 1–15. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. Stat. Mech. Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Salat, H.; Murcio, R.; Arcaute, E. Multifractal methodology. Phys. A 2017, 473, 467–487. [Google Scholar] [CrossRef]
- Olemskoi, A.I.; Vadym, N.; Borysiuk, I.A.; Bagdasaryan, S.A. Multifractal analysis for the time series related to economic systems. J. Nano Electr. Phys. 1999, 1, 82–88. [Google Scholar]
- Telesca, L.; Lapenna, V.; Vallianatos, F. Monofractal and multifractal approaches in investigating scaling properties in temporal patterns of the 1983–2000 seismicity in the Western Corinth Graben, Greece. Phys. Earth Planet. Int. 2002, 131, 63–79. [Google Scholar] [CrossRef]
- Telesca, L.; Lapenna, V.; Macchiato, M. Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences. Chaos Solit. Fractals 2004, 19, 1–15. [Google Scholar] [CrossRef]
- Telesca, L.; Lapenna, V.; Macchiato, M. Multifractal fluctuations in seismic interspike series. Phys. A 2005, 354, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Telesca, L.; Lasaponara, R. Vegetational patterns in burned and unburned areas investigated by using the detrended fluctuation analysis. Phys. A 2006, 368, 531–535. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Dutta, S.; Sengupta, R. Multifractality of radon concentration fluctuation in earthquake related signal. Fractals 2012, 20, 33–39. [Google Scholar] [CrossRef]
- Alam, A.; Wang, N.; Zhao, G.; Mehmood, T.; Nikolopoulos, D. Long-lasting patterns of radon in groundwater at Panzhihua, China: Results from DFA, fractal dimensions and residual radon concentration. Geochem. J. 2019, 53, 341–358. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Marousaki, A.; Potirakis, S.; Koulouras, G.; Nomicos, C.; Panagiotaras, D.; Stonhamb, J.; Louizi, A. Environmental monitoring of radon in soil during a very seismically active period occurred in South West Greece. J. Environ. Monit. 2012, 14, 564–578. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Vogiannis, E.; Chaldeos, Y.; Giannakopoulos, P.; Kottou, S.; Nomicos, C.; Stonham, J. Traces of self-organisation and long-range memory in variations of environmental radon in soil: Comparative results from monitoring in Lesvos Island and Ileia (Greece). J. Radioanal. Nucl. Chem. 2014, 299, 203–219. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Nomicos, C.; Koulouras, G.; Kottou, S.; Yannakopoulos, P.H. Long-Memory Trends in Disturbances of Radon in Soil Prior ML=5.1 Earthquakes of 17 November 2014 Greece. J. Earth Sci. Clim. Chang. 2015, 6, 1–11. [Google Scholar]
- Nikolopoulos, D.; Valais, I.; Michail, C.; Bakas, A.; Fountzoula, C.; Cantzos, D.; Bhattacharyya, D.; Sianoudis, I.; Fountos, G.; Yannakopoulos, P.H.; et al. Radioluminescence properties of the CdSe/ZnS Quantum Dot nanocrystals with analysis of long-memory trends. Radiat. Meas. 2016, 92, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulos, D.; Cantzos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Traces of long-memory in pre-seismic MHz electromagnetic time series-Part1: Investigation through the R/S analysis and time-evolving spectral fractals. J. Earth Sci. Clim. Chang. 2016, 7, 359. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulos, D.; Petraki, E.; Cantzos, D.; Yannakopoulos, P.H.; Panagiotaras, D.; Nomicos, C. Fractal Analysis of Pre-Seismic Electromagnetic and Radon Precursors: A Systematic Approach. J. Earth Sci. Clim. Chang. 2016, 7, 1–11. [Google Scholar]
- Nikolopoulos, D.; Matsoukas, C.; Yannakopoulos, P.H.; Petraki, E.; Cantzos, D.; Nomicos, C. Long-Memory and Fractal Trends in Variations of Environmental Radon in Soil: Results from Measurements in Lesvos Island in Greece. J. Earth Sci. Clim. Chang. 2018, 9, 1–11. [Google Scholar]
- Petraki, E.; Nikolopoulos, D.; Fotopoulos, A.; Panagiotaras, D.; Koulouras, G.; Zisos, A.; Nomicos, C.; Louizi, A.; Stonham, J. Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece. Appl. Radiat. Isotop. 2013, 72, 39–53. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Fotopoulos, A.; Panagiotaras, D.; Nomicos, C.; Yannakopoulos, P.; Kottou, S.; Zisos, A.; Louizi, A.; Stonham, J. Long-range memory patterns in variations of environmental radon in soil. Anal. Methods 2013, 5, 4010–4020. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review. J. Earth Sci. Clim. Chang. 2015, 6, 1–11. [Google Scholar]
- Petraki, E.; Nikolopoulos, D.; Panagiotaras, D.; Cantzos, D.; Yannakopoulos, P.; Nomicos, C.; Stonham, J. Radon-222: A Potential Short-Term Earthquake Precursor. J. Earth Sci. Clim. Chang. 2015, 6, 1–11. [Google Scholar]
- Telesca, L.; Lapenna, V. Measuring multifractality in seismic sequences. Tectonophysics 2006, 423, 115–123. [Google Scholar] [CrossRef]
- He, Y.; Gu, Z.; Lu, W.; Zhang, L.; Okuda, T.; Fujioka, K.; Luo, H.; Yu, C. Atmospheric humidity and particle charging state on agglomeration of aerosol particles. Atmos. Environ. 2019, 197, 141–149. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.; Priniotakis, G.; Voyiatzis, I.; Cantzos, D. Long-Lasting Patterns in 3 kHz Electromagnetic Time Series after the ML = 6.6 Earthquake of 2018-10-25 near Zakynthos, Greece. Geosciences 2020, 10, 235. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Chaldeos, Y.; Koulouras, G.; Nomicos, C.; Yannakopoulos, P.H.; Kottou, S.; Stonham, J. Fractal evolution of MHz electromagnetic signals prior to earthquakes: Results collected in Greece during 2009. Geomat. Nat. Hazards Risk 2016, 7, 550–564. [Google Scholar] [CrossRef]
- Granero, M.S.; Segovia, J.T.; Pérez, J.G. Some comments on Hurst exponent and the long memory processes on capital markets. Phys. A 2008, 387, 543–551. [Google Scholar]
Monitoring Station | Abbr. | Longitude | Latitude | Alt. (m) | Characterisation | D.C. |
---|---|---|---|---|---|---|
Aristotelous | ARI | 23°4339 | 37°5916 | 75 | Urban-Traffic | 85.8% |
Lykovrissi | LYK | 23°4719 | 38°0404 | 234 | Suburban-Background | 89.2% |
Maroussi | MAR | 23°4714 | 38°0151 | 170 | Urban-Traffic | 82.5% |
Agia Paraskevi | AGP | 23°4909 | 37°5942 | 290 | Suburban-Background | 88.7% |
Thrakomakedones | THR | 23°4529 | 38°0836 | 550 | Suburban-Background | 77.2% |
i/i | Date | Monitoring Stations |
---|---|---|
1. | 25 March 2007 | AGP, ARI, MAR |
2. | 28 July 2007 | AGP, LYME, MAR |
3. | 4 April 2009 | AGP, ARI, LYK, THR |
4. | 6 April 2009 | AGP, ARI, MAR, THR |
5. | 7 June 2010 | AGP, LYK, MAR |
6. | 26 June 2014 | AGP, ARI, LYK, MAR |
7. | 27 June 2014 | AGP, ARI, LYK, MAR |
8. | 8 January 2015 | AGP, LYK, MAR |
9. | 2 February 2015 | AGP, MAR |
10. | 6 February 2015 | AGP, ARI, MAR, THR |
11. | 7 July 2016 | AGP, ARI, THR |
Date | Station | Raw | Shuffled | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | fmax | FWHM | FWHM/ fmax | R2 | fmax | FWHM | FWHM/ fmax | ||
25 March 2007 | AGP | 0.990 | 1.080 | 1.000 | 0.926 | 0.993 | 1.43 | 0.965 | 0.673 |
ARI | 0.999 | 1.053 | 0.366 | 0.347 | 0.999 | 1.01 | 0.45 | 0.442 | |
MAR | 0.997 | 1.022 | 0.562 | 0.550 | 0.997 | 1.02 | 0.525 | 0.516 | |
28 July 2007 | AGP | 0.992 | 1.05 | 0.768 | 0.730 | 0.997 | 1.01 | 0.483 | 0.477 |
LYK | 0.994 | 1.05 | 0.771 | 0.734 | 0.997 | 1.01 | 0.435 | 0.431 | |
MAR | 0.994 | 1.06 | 0.834 | 0.790 | 0.967 | 1.02 | 0.568 | 0.556 | |
4 April 2009 | AGP | 0.995 | 1.039 | 0.706 | 0.679 | 0.9973 | 1.08 | 0.417 | 0.385 |
ARI | 0.991 | 1.073 | 1.019 | 0.950 | 0.9976 | 0.78 | 0.476 | 0.608 | |
LYK | 0.997 | 1.017 | 0.485 | 0.477 | 0.9994 | 1.01 | 0.310 | 0.308 | |
THR | 0.993 | 1.025 | 0.635 | 0.620 | 0.995 | 1.03 | 0.585 | 0.570 | |
6 April 2009 | AGP | 0.990 | 0.759 | 0.811 | 1.068 | 0.996 | 3.15 | 1.159 | 0.368 |
ARI | 0.965 | 4.681 | 10.440 | 2.230 | 0.998 | 1.02 | 0.493 | 0.486 | |
MAR | 0.991 | 1.075 | 0.969 | 0.901 | 0.9978 | 2.56 | 0.771 | 0.301 | |
THR | 0.992 | 1.013 | 0.544 | 0.537 | 0.9954 | 1.02 | 0.583 | 0.569 | |
6 July 2010 | AGP | 0.987 | 1.098 | 0.965 | 0.880 | 0.9938 | 1.02 | 0.498 | 0.489 |
LYK | 0.999 | 0.988 | 0.555 | 0.743 | 0.9924 | 1.00 | 0.549 | 0.550 | |
MAR | 0.995 | 1.039 | 1.055 | 1.068 | 0.9967 | 1.26 | 0.720 | 0.570 | |
26 June 2014 | AGP | 0.993 | 1.039 | 0.763 | 0.734 | 0.9899 | 1.06 | 0.887 | 0.834 |
ARI | 0.992 | 1.699 | 0.646 | 0.380 | 0.9937 | 1.06 | 0.832 | 0.787 | |
LYK | 0.993 | 1.046 | 0.841 | 0.804 | 0.9975 | 1.02 | 0.551 | 0.539 | |
MAR | 0.997 | 1.016 | 0.505 | 0.497 | 0.9907 | 1.03 | 0.651 | 0.632 | |
27 June 2014 | AGP | 0.995 | 1.042 | 0.729 | 0.699 | 0.9871 | 1.03 | 0.630 | 0.613 |
ARI | 0.993 | 1.040 | 0.690 | 0.664 | 0.9975 | 1.03 | 0.612 | 0.596 | |
LYK | 0.994 | 1.034 | 0.679 | 0.656 | 0.9963 | 2.12 | 0.967 | 0.456 | |
MAR | 0.997 | 1.019 | 0.502 | 0.493 | 0.9967 | 1.02 | 0.551 | 0.539 | |
8 January 2015 | AGP | 0.985 | 1.246 | 1.964 | 1.576 | 0.9829 | 1.21 | 1.860 | 1.535 |
LYK | 0.985 | 1.195 | 1.755 | 1.469 | 0.9801 | 1.16 | 1.538 | 1.328 | |
MAR | 0.982 | 1.141 | 1.415 | 1.240 | 0.9927 | 6.68 | 1.533 | 0.230 | |
2 February 2015 | AGP | 0.990 | 1.092 | 1.044 | 0.956 | 0.998 | 1.01 | 0.965 | 0.958 |
MAR | 0.994 | 1.027 | 0.696 | 0.677 | 0.9893 | 1.08 | 1.065 | 0.987 | |
6 February 2015 | AGP | 0.988 | 1.114 | 1.205 | 1.082 | 0.987 | 1.10 | 1.084 | 0.985 |
ARI | 0.993 | 1.035 | 0.665 | 0.643 | 0.993 | 1.05 | 0.831 | 0.789 | |
MAR | 0.991 | 5.789 | 2.055 | 0.355 | 0.9939 | 1.03 | 0.728 | 0.709 | |
THR | 0.969 | 7.099 | 17.005 | 2.395 | 0.9941 | 1.03 | 0.601 | 0.586 | |
7 July 2016 | AGP | 0.993 | 1.052 | 0.824 | 0.783 | 0.9929 | 1.06 | 0.887 | 0.835 |
ARI | 0.995 | 1.039 | 0.684 | 0.659 | 0.9973 | 1.02 | 0.550 | 0.538 | |
THR | 0.990 | 1.921 | 1.540 | 0.802 | 0.9918 | 1.08 | 1.197 | 1.110 |
Date | Station | Raw | Shuffled |
---|---|---|---|
6 April 2009 | ARI | 2.230 | 0.486 |
8 January 2015 | AGP | 1.576 | 1.535 |
8 January 2015 | LYK | 1.469 | 1.328 |
6 February 2015 | THR | 2.395 | 0.586 |
7 July 2016 | THR | 0.802 | 1.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolopoulos, D.; Alam, A.; Petraki, E.; Yannakopoulos, P.; Moustris, K. Multifractal Patterns in 17-Year PM10 Time Series in Athens, Greece. Environments 2023, 10, 9. https://doi.org/10.3390/environments10010009
Nikolopoulos D, Alam A, Petraki E, Yannakopoulos P, Moustris K. Multifractal Patterns in 17-Year PM10 Time Series in Athens, Greece. Environments. 2023; 10(1):9. https://doi.org/10.3390/environments10010009
Chicago/Turabian StyleNikolopoulos, Dimitrios, Aftab Alam, Ermioni Petraki, Panayiotis Yannakopoulos, and Konstantinos Moustris. 2023. "Multifractal Patterns in 17-Year PM10 Time Series in Athens, Greece" Environments 10, no. 1: 9. https://doi.org/10.3390/environments10010009
APA StyleNikolopoulos, D., Alam, A., Petraki, E., Yannakopoulos, P., & Moustris, K. (2023). Multifractal Patterns in 17-Year PM10 Time Series in Athens, Greece. Environments, 10(1), 9. https://doi.org/10.3390/environments10010009