Predictors of Problematic Smartphone Use: An Examination of the Integrative Pathways Model and the Role of Age, Gender, Impulsiveness, Excessive Reassurance Seeking, Extraversion, and Depression
Abstract
:1. Introduction
2. Method
2.1. Design
2.2. Participants
2.3. Materials
2.4. Procedure
2.5. Ethics
2.6. Analytic Strategy
3. Results
3.1. Descriptive Statistics
3.2. Smartphone User Behaviour
3.3. Correlational Analysis
3.4. Predictors of Problematic Smartphone Use
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Stieglitz, S.; Brockmann, T. The impact of smartphones on E-participation. In Proceedings of the 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 1734–1742. [Google Scholar] [CrossRef]
- Ibrahim, J.; Ros, R.C.; Sulaiman, N.F.; Nordin, R.C.; Ze, L. Positive impact of Smartphone application: Whatsapp & Facebook for online business. Int. J. Sci. Res. Publ. 2014, 4, 1–4. [Google Scholar]
- Ernsting, C.; Dombrowski, S.U.; Oedekoven, M.; Lo, J. Using smartphones and health apps to change and manage health behaviors: A population-based survey. J. Med. Internet Res. 2017, 19, e101. [Google Scholar] [CrossRef] [PubMed]
- Naslund, J.A.; Aschbrenner, K.A.; Barre, L.K.; Bartels, S.J. Feasibility of popular m-health technologies for activity tracking among individuals with serious mental illness. Telemed. e-Health 2015, 21, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Roepke, A.M.; Jaffee, S.R.; Riffle, O.M.; McGonigal, J.; Broome, R.; Maxwell, B. Randomized controlled trial of SuperBetter, a smartphone-based/internet-based self-help tool to reduce depressive symptoms. Games Health J. 2015, 4, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Statista.com. Number of Mobile Phone Users Worldwide 2013–2019. Retrieved 23 October 2017. Available online: https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/ (accessed on 22 January 2018).
- Jaalouk, D.; Boumosleh, J.M. Depression, anxiety, and smartphone addiction in university students- A cross sectional study. PLoS ONE 2017, 12, 1–14. [Google Scholar] [CrossRef]
- Lepp, A.; Barkley, J.E.; Karpinski, A.C. The relationship between cell phone use, academic performance, anxiety, and Satisfaction with Life in college students. Comput. Hum. Behav. 2014, 31, 343–350. [Google Scholar] [CrossRef]
- Seo, D.G.; Park, Y.; Kim, M.K.; Park, J. Mobile phone dependency and its impacts on adolescents’ social and academic behaviors. Comput. Hum. Behav. 2016, 63, 282–292. [Google Scholar] [CrossRef]
- Billieux, J.; Van der Linden, M.; Rochat, L. The role of impulsivity in actual and problematic use of the mobile phone. Appl. Cognit. Psychol. 2008, 22, 1195–1210. [Google Scholar] [CrossRef]
- Thomee, S.; Hagberg, M.; Harenstam, A. Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults—A prospective cohort study. BMC Public Health 2011, 11, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.; Hecht, P.; Wener, R. Mobile telephones, distracted attention, and pedestrian safety. Accid. Anal. Prev. 2008, 40, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Chen, L.; Yan, Z.; Tang, W.; Yang, F.; Xie, X.; He, J. Mobile phone addiction levels and negative emotions among Chinese young adults: The mediating role of interpersonal problems. Comput. Hum. Behav. 2016, 55, 856–866. [Google Scholar] [CrossRef]
- Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can Disordered Mobile Phone Use Be Considered a Behavioral Addiction? An Update on Current Evidence and a Comprehensive Model for Future Research. Curr. Addict. Rep. 2015, 2, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-L.; Wang, H.-Z.; Gaskin, J.; Wang, L.-H. The role of stress and motivation in problematic smartphone use among college students. Comput. Hum. Behav. 2015, 53, 181–188. [Google Scholar] [CrossRef]
- Toda, M.; Ezoe, S.; Nishi, A.; Mukai, T.; Goto, M.; Morimoto, K. Mobile phone dependence of female students and perceived parental rearing attitudes. Soc. Behav. Pers. 2008, 36, 765–770. [Google Scholar] [CrossRef]
- King, A.L.S.; Valença, A.M.; Silva, A.C.O.; Baczynski, T.; Carvalho, M.R.; Nardi, A.E. Nomophobia: Dependency on virtual environments or social phobia? Comput. Hum. Behav. 2013, 29, 140–144. [Google Scholar] [CrossRef]
- King, A.L.; Valença, A.M.; Nardi, A.E. Nomophobia: The Mobile Phone in Panic Disorder with Agoraphobia: Reducing Phobias or Worsening of Dependence? Cognit. Behav. Neurol. 2010, 23, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D. Technological addictions. Clin. Psychol. Forum 1995, 76, 14–19. [Google Scholar]
- Griffiths, M. Behavioural addiction: An issue for everybody? Empl. Couns. Today 1996, 8, 19–25. [Google Scholar] [CrossRef]
- Marks, I. Behavioural (non-chemical) addictions. Br. J. Addict. 1990, 85, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- van Rooij, A.J.; Ferguson, C.J.; Colder Carras, M.; Kardefelt-Winther, D.; Shi, J.; Aarseth, E.; Deleuze, J. A weak scientific basis for gaming disorder: Let us err on the side of caution. J. Behav. Addict. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Chang, L.R.; Lee, Y.H.; Tseng, H.W.; Kuo, T.B.; Chen, S.H. Development and validation of the Smartphone Addiction Inventory (SPAI). PLoS ONE 2014, 9, e98312. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.I.F. Some contributions of the study of gambling to the study of other addictions. In Gambling Behavior and Problem Gambling; University of Nevada Press: Reno, NV, USA, 1993. [Google Scholar]
- Griffiths, M. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Hussain, Z.; Griffiths, M.D.; Sheffield, D. An investigation into problematic smartphone use: The role of narcissism, anxiety, and personality factors. J. Behav. Addict. 2017, 6, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.; Hussain, Z.; Griffiths, M.D. Problematic smartphone use, nature connectedness, and anxiety. J. Behav. Addict. 2018, 7, 109–116. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Public Health Implications of Excessive Use of the Internet, Computers, Smartphones and Similar Electronic Devices: Meeting Report, Main Meeting Hall, Foundation for Promotion of Cancer Research, National Cancer Research Centre, Tokyo, Japan, 27–29 August 2014; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Cho, S.; Lee, E. Development of a brief instrument to measure smartphone addiction among nursing students. Comput. Inform. Nurs. 2015, 33, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Kim, D.J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Motoyoshi, T.; Takai, J.; Yoshida, T. No mobile, no life: Self-perception and text-message dependency among Japanese high school students. Comput. Hum. Behav. 2008, 24, 2311–2324. [Google Scholar] [CrossRef]
- Coyne, J.C. Toward an Interactional Description of Depression. Psychiatry 1976, 39, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Joiner, T.E.; Metalsky, G.I.; Katz, J.; Beach, S.R.H. Depression and Excessive Reassurance-Seeking. Psychol. Inq. 1999, 10, 269–278. [Google Scholar] [CrossRef]
- Lu, X.; Watanabe, J.; Liu, Q.; Uji, M.; Shono, M.; Kitamura, T. Internet and mobile phone text-messaging dependency: Factor structure and correlation with dysphoric mood among Japanese adults. Comput. Hum. Behav. 2011, 27, 1702–1709. [Google Scholar] [CrossRef]
- Ha, J.H.; Chin, B.; Park, D.H.; Ryu, S.H.; Yu, J. Characteristics of excessive cellular phone use in Korean adolescents. CyberPsychol. Behav. 2008, 11, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-K.; Chang, C.-T.; Lin, Y.; Cheng, Z.-H. The dark side of smartphone usage: Psychological traits, compulsive behavior and technostress. Comput. Hum. Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
- Butt, S.; Phillips, J.G. Personality and self reported mobile phone use. Comput. Hum. Behav. 2008, 24, 346–360. [Google Scholar] [CrossRef]
- Drouin, M.; Landgraff, C. Texting, sexting, and attachment in college students’ romantic relationships. Comput. Hum. Behav. 2012, 28, 444–449. [Google Scholar] [CrossRef]
- Bianchi, A.; Phillips, J.G. Psychological Predictors of Problem Mobile Phone Use. CyberPsychol. Behav. 2005, 8, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteside, S.P.; Lynam, D.R. The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Pers. Individ. Differ. 2001, 30, 669–689. [Google Scholar] [CrossRef]
- Kokkinos, C.M.; Antoniadou, N.; Markos, A. Cyber-bullying: An investigation of the psychological profile of university student participants. J. Appl. Dev. Psychol. 2014, 35, 204–214. [Google Scholar] [CrossRef]
- Khang, H.; Kim, J.K.; Kim, Y. Self-traits and motivations as antecedents of digital media flow and addiction: The Internet, mobile phones, and video games. Comput. Hum. Behav. 2013, 29, 2416–2424. [Google Scholar] [CrossRef]
- Khang, H.; Woo, H.; Kim, J.K. Self as an antecedent of mobile phone addiction. Int. J. Mob. Commun. 2011, 10, 65–84. [Google Scholar] [CrossRef]
- Zheng, F.; Gao, P.; He, M.; Li, M.; Zhou, Z.; Yu, Z.; Zeng, Q. Association between mobile phone use and inattention in 7102 Chinese adolescents: A population-based cross-sectional study. BMC Public Health 2014, 14, 1022. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J.; Gay, P.; Rochat, L.; Van der Linden, M. The role of urgency and its underlying psychological mechanisms in problematic behaviours. Behav. Res. Ther. 2010, 48, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Augner, C.; Hacker, G.W. Associations between problematic mobile phone use and psychological parameters in young adults. Int. J. Public Health 2012, 57, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Aluja, A.; García, Ó.; García, L.F. Relationships among extraversion, openness to experience, and sensation seeking. Pers. Individ. Differ. 2003, 35, 671–680. [Google Scholar] [CrossRef]
- Delevi, R.; Weisskirch, R.S. Personality factors as predictors of sexting. Comput. Hum. Behav. 2013, 29, 2589–2594. [Google Scholar] [CrossRef]
- Pearson, C.; Hussain, Z. Smartphone Use, Addiction, Narcissism, and Personality: A Mixed Methods Investigation. Int. J. Cyber Behav. Psychol. Learn. 2015, 5, 17–32. [Google Scholar] [CrossRef]
- Stead, H.; Bibby, P.A. Personality, fear of missing out and problematic internet use and their relationship to subjective well-being. Comput. Hum. Behav. 2017, 76, 534–540. [Google Scholar] [CrossRef]
- Cheever, N.A.; Rosen, L.D.; Carrier, L.M.; Chavez, A. Out of sight is not out of mind: The impact of restricting wireless mobile device use on anxiety levels among low, moderate and high users. Comput. Hum. Behav. 2014, 37, 290–297. [Google Scholar] [CrossRef]
- Yildirim, C.; Sumuer, E.; Adnan, M.; Yildirim, S. A growing fear: Prevalence of nomophobia among Turkish college students. Inf. Dev. 2016, 32, 1322–1331. [Google Scholar] [CrossRef]
- Chóliz, M. Mobile-phone addiction in adolescence: The Test of Mobile Phone Dependence (TMD). Prog. Health Sci. 2012, 2, 33–44. [Google Scholar]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güzeller, C.O.; Coşguner, T. Development of a Problematic Mobile Phone Use Scale for Turkish Adolescents. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-M. The Effect of Self-Esteem and Depression on Smartphone Addiction among University Students. J. Korea Converg. Soc. 2016, 7, 113–123. [Google Scholar] [CrossRef]
- Kim, J.-H.; Seo, M.; David, P. Alleviating depression only to become problematic mobile phone users: Can face-to-face communication be the antidote? Comput. Hum. Behav. 2015, 51, 440–447. [Google Scholar] [CrossRef]
- Demirci, K.; Akgönül, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemola, S.; Perkinson-Gloor, N.; Brand, S.; Dewald-Kaufmann, J.F.; Grob, A. Adolescents’ Electronic Media Use at Night, Sleep Disturbance, and Depressive Symptoms in the Smartphone Age. J. Youth Adolesc. 2015, 44, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.C. Work/Family Border Theory: A New Theory of Work/Family Balance. Hum. Relat. 2000, 53, 747–770. [Google Scholar] [CrossRef]
- Derks, D.; Bakker, A.B. Smartphone Use, Work–Home Interference, and Burnout: A Diary Study on the Role of Recovery. Appl. Psychol. 2014, 63, 411–440. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Cheng-Fang, Y.; Chen, C.-S.; Chang, Y.-H.; Yeh, Y.-C.; Ko, C.-H. The bidirectional interactions between addiction, behaviour approach and behaviour inhibition systems among adolescents in a prospective study. Psychiatry Res. 2012, 200, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Starr, L.R.; Davila, J. Excessive reassurance seeking, depression, and interpersonal rejection: A meta-analytic review. J. Abnorm. Psychol. 2008, 117, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE: London, UK, 2013. [Google Scholar]
- Mayers, A. Introduction to Statistics and SPSS in Psychology; Pearson Higher Education: Harlow, UK, 2013. [Google Scholar]
- Pontes, H.M.; Griffiths, M.D. Assessment of internet gaming disorder in clinical research: Past and present perspectives. Clin. Res. Regul. Aff. 2014, 31, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Joiner, T.E. Excessive Reassurance Seeking: Delineating a Risk Factor Involved in the Development of Depressive Symptoms. Psychol. Sci. 2001, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- Saucier, G. Mini-Markers: A Brief Version of Goldberg’s Unipolar Big-Five Markers. J. Pers. Assess. 1994, 63, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory-II; The Psychological Cooperation: San Antonio, TX, USA, 1996. [Google Scholar]
- Wu, A.M.S.; Cheung, V.I.; Ku, L.; Hung, E.P.W. Psychological risk factors of addiction to social networking sites among Chinese smartphone users. J. Behav. Addict. 2013, 2, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, S.; Ellis, D.A.; Shaw, H.; Piwek, L. Beyond Self-Report: Tools to Compare Estimated and Real-World Smartphone Use. PLoS ONE 2015, 10, e0139004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachman, S. A cognitive theory of compulsive checking. Behav. Res. Ther. 2002, 40, 625–639. [Google Scholar] [CrossRef]
- Ellis, D.A.; Kaye, L.K.; Wilcockson, T.D.; Ryding, F.C. Digital Traces of behaviour within addiction: Response to Griffiths (2017). Int. J. Ment. Health Addict. 2018, 16, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D. Conceptual Issues Concerning Internet Addiction and Internet Gaming Disorder: Further Critique on Ryding and Kaye (2017). Int. J. Ment. Health Addict. 2018, 16, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Khamis, H.; Kepler, M. Sample Size in Multiple Regression: 20 + 5k. J. Appl. Stat. Sci. 2010, 17, 505–517. [Google Scholar]
Variable | Minimum | Maximum | |
---|---|---|---|
Gender (Male, %) | 42 (28.6) | - | - |
Session Length (Minutes) (Mean, SD) | 15.12 (12.02) | 1 | 60 |
PSU (Mean, SD) | 17.14 (5.69) | 9 | 31 |
Impulsiveness (Mean, SD) | 61.3 (9.38) | 40 | 86 |
Excessive Reassurance (Mean, SD) | 2.56 (1.48) | 1 | 6.25 |
Extraversion (Mean, SD) | 43.91 (11.84) | 12 | 69 |
Depression (Mean, SD) | 9.34 (6.63) | 0 | 29 |
Smartphone Feature | Frequency | Percentage |
---|---|---|
Messaging | 58 | 39.5 |
Social Networking | 56 | 38.1 |
Phone Calls | 10 | 6.8 |
7 | 4.8 | |
Other | 6 | 4.1 |
Gaming | 5 | 3.4 |
Video Apps | 2 | 1.4 |
Work | 2 | 1.4 |
Shopping | 1 | 0.7 |
PSU (1) | Avg. SP Sess. Length (2) | Age (3) | Impulsiveness (4) | Extraversion (5) | Excessive Reassurance (6) | Depression (7) | |
---|---|---|---|---|---|---|---|
1 | |||||||
2 | 0.46 ** | ||||||
3 | −0.33 ** | −0.44 ** | |||||
4 | 0.37 ** | 0.16 | −0.13 | ||||
5 | −0.10 | 0.00 | −0.06 | 0.03 | |||
6 | 0.36 ** | 0.22 ** | −0.27 ** | 0.42 ** | −0.13 | ||
7 | 0.26 ** | 0.21 * | −0.12 | 0.36 ** | −0.44 ** | 0.35 ** |
Variable | B | Standard Error | β | t | p | BCa 95% Confidence Intervals |
---|---|---|---|---|---|---|
Age | −0.11 | 0.03 | −0.25 | −3.30 | 0.001 | −0.175–−0.046 |
Impulsiveness | 0.16 | 0.05 | 0.26 | 3.02 | 0.003 | 0.066–0.252 |
Extraversion | −0.04 | 0.04 | −0.08 | −0.95 | 0.37 | −0.123–0.041 |
Excessive Reassurance | 0.59 | 0.31 | 0.16 | 1.82 | 0.057 | −0.024–1.23 |
Depression | 0.04 | 0.08 | 0.05 | 0.53 | 0.617 | −0.129–0.207 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, L.; Hussain, Z. Predictors of Problematic Smartphone Use: An Examination of the Integrative Pathways Model and the Role of Age, Gender, Impulsiveness, Excessive Reassurance Seeking, Extraversion, and Depression. Behav. Sci. 2018, 8, 74. https://doi.org/10.3390/bs8080074
Mitchell L, Hussain Z. Predictors of Problematic Smartphone Use: An Examination of the Integrative Pathways Model and the Role of Age, Gender, Impulsiveness, Excessive Reassurance Seeking, Extraversion, and Depression. Behavioral Sciences. 2018; 8(8):74. https://doi.org/10.3390/bs8080074
Chicago/Turabian StyleMitchell, Lewis, and Zaheer Hussain. 2018. "Predictors of Problematic Smartphone Use: An Examination of the Integrative Pathways Model and the Role of Age, Gender, Impulsiveness, Excessive Reassurance Seeking, Extraversion, and Depression" Behavioral Sciences 8, no. 8: 74. https://doi.org/10.3390/bs8080074
APA StyleMitchell, L., & Hussain, Z. (2018). Predictors of Problematic Smartphone Use: An Examination of the Integrative Pathways Model and the Role of Age, Gender, Impulsiveness, Excessive Reassurance Seeking, Extraversion, and Depression. Behavioral Sciences, 8(8), 74. https://doi.org/10.3390/bs8080074