The Intention of Sports Participants to Utilize Digital Technology for Engagement: The Moderating Role of Self-Efficacy
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. Behavioral Reasoning Theory (BRT)
2.2. Attitudes and Global Motivation
2.3. Values and Reasons
2.4. Values and Attitudes
2.5. Reasons and Attitudes and Adoption Intentions
2.5.1. Reasons for Adoption (RFA)
2.5.2. Reasons Against Adoption (RAA)
2.6. Attitudes and Adoption Intentions
2.7. Values and Adoption Intentions
2.8. The Moderating Role of Self-Efficacy
3. Methodology
3.1. Subjects of the Study
3.2. Survey Procedure
3.3. Measurement Tools
3.4. Data Analysis Methods
3.5. Assessment of the Measurement Model
4. Results
4.1. Structural Model Assessment
4.2. Moderation Analysis
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
6. Conclusions
7. Research Limitations and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajzen, I. (2001). Nature and operation of attitudes. Annual Review of Psychology, 52(1), 27–58. [Google Scholar] [CrossRef] [PubMed]
- Akdim, K., Casaló, L. V., & Flavián, C. (2022). The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. Journal of Retailing and Consumer Services, 66, 102888. [Google Scholar] [CrossRef]
- Alam, S. S., Wang, C.-K., Masukujjaman, M., Ahmad, I., Lin, C.-Y., & Ho, Y.-H. (2023). Buying behaviour towards eco-labelled food products: Mediation moderation analysis. Sustainability, 15(3), 2474. [Google Scholar] [CrossRef]
- Alharbi, S., & Drew, S. (2014). Using the technology acceptance model in understanding academics’ behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications (IJACSA), 5(1), 1. [Google Scholar] [CrossRef]
- Amin, K., Akter, A., & Azhar, A. (2017). Factors affecting private university students’ intention to adopt e-learning system in bangladesh. Daffodil International University Journal of Business and Economics, 10, 10–25. [Google Scholar]
- Anayat, S., Rasool, G., & Pathania, A. (2023). Examining the context-specific reasons and adoption of artificial intelligence-based voice assistants: A behavioural reasoning theory approach. International Journal of Consumer Studies, 47(5), 1885–1910. [Google Scholar] [CrossRef]
- Ashfaq, M., Zhang, Q., Ali, F., Waheed, A., & Nawaz, S. (2021). You plant a virtual tree, we’ll plant a real tree: Understanding users’ adoption of the Ant Forest mobile gaming application from a behavioral reasoning theory perspective. Journal of Cleaner Production, 310, 127394. [Google Scholar] [CrossRef]
- Bagozzi, R. P. (1992). The self-regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55(2), 178–204. [Google Scholar] [CrossRef]
- Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. [Google Scholar] [CrossRef]
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. [Google Scholar] [CrossRef]
- Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Inc. [Google Scholar]
- Box-Steffensmeier, J. M., Burgess, J., Corbetta, M., Crawford, K., Duflo, E., Fogarty, L., Gopnik, A., Hanafi, S., Herrero, M., Hong, Y. Y., & Kameyama, Y. (2022). The future of human behaviour research. Nature Human Behaviour, 6(1), 15–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, M., & Chen, Y. (2024). The basic connotation, level measurement and structural characteristics of digital literacy of Chinese residents. Information and Post Economy, 9, 91–101. [Google Scholar]
- Chen, P.-T., & Kuo, S.-C. (2017). Innovation resistance and strategic implications of enterprise social media websites in Taiwan through knowledge sharing perspective. Technological Forecasting and Social Change, 118, 55–69. [Google Scholar] [CrossRef]
- Chin, W., Cheah, J.-H., Liu, Y., Ting, H., Lim, X.-J., & Cham, T. H. (2020). Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Industrial Management & Data Systems, 120(12), 2161–2209. [Google Scholar] [CrossRef]
- China Internet Network Information Center. (2024). Statistical report on internet development in china; China Internet Network Information Center.
- Claudy, M. C., Garcia, R., & O’Driscoll, A. (2015). Consumer resistance to innovation—A behavioral reasoning perspective. Journal of the Academy of Marketing Science, 43(4), 528–544. [Google Scholar] [CrossRef]
- Claudy, M. C., Peterson, M., & O’Driscoll, A. (2013). Understanding the attitude-behavior gap for renewable energy systems using behavioral reasoning theory. Journal of Macromarketing, 33(4), 273–287. [Google Scholar] [CrossRef]
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. [Google Scholar]
- Dabholkar, P. A., & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-service: Moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30(3), 184–201. [Google Scholar] [CrossRef]
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. [Google Scholar] [CrossRef]
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [Google Scholar] [CrossRef]
- Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Issue 1). Cambridge University press. [Google Scholar]
- Dhir, A., Koshta, N., Goyal, R. K., Sakashita, M., & Almotairi, M. (2021). Behavioral reasoning theory (BRT) perspectives on E-waste recycling and management. Journal of Cleaner Production, 280, 124269. [Google Scholar] [CrossRef]
- Dishman, R. K., Motl, R. W., Sallis, J. F., Dunn, A. L., Birnbaum, A. S., Welk, G. J., Bedimo-Rung, A. L., Voorhees, C. C., & Jobe, J. B. (2005). Self-management strategies mediate self-efficacy and physical activity. American Journal of Preventive Medicine, 29(1), 10–18. [Google Scholar] [CrossRef] [PubMed]
- Doanh, D. C. (2021). The moderating role of self-efficacy on the cognitive process of entrepreneurship: An empirical study in Vietnam. Journal of Entrepreneurship. Management and Innovation, 17(1), 1. [Google Scholar] [CrossRef]
- Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Harcourt Brace Jovanovich College Publishers. [Google Scholar]
- Ehnold, P., Steinbach, D., & Schlesinger, T. (2023). Categorisation of digitalisation practises in voluntary sports clubs. Managing Sport and Leisure, 1–18. [Google Scholar] [CrossRef]
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley Pub. [Google Scholar]
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. [Google Scholar] [CrossRef]
- Frevel, N., Beiderbeck, D., & Schmidt, S. L. (2022). The impact of technology on sports—A prospective study. Technological Forecasting and Social Change, 182, 121838. [Google Scholar] [CrossRef]
- Gupta, A., & Arora, N. (2017a). Consumer adoption of m-banking: A behavioral reasoning theory perspective. International Journal of Bank Marketing, 35(4), 733–747. [Google Scholar] [CrossRef]
- Gupta, A., & Arora, N. (2017b). Understanding determinants and barriers of mobile shopping adoption using behavioral reasoning theory. Journal of Retailing and Consumer Services, 36, 1–7. [Google Scholar] [CrossRef]
- Ha, J.-P., Kang, S. J., & Ha, J. (2015). A conceptual framework for the adoption of smartphones in a sports context. International Journal of Sports Marketing and Sponsorship, 16(3), 2–19. [Google Scholar] [CrossRef]
- Hair, J., Gabriel, M., & Patel, V. (2014). AMOS covariance-based structural equation modeling (CB-SEM): Guidelines on its application as a marketing research tool. Revista Brasileira de Marketing, 13, 44–55. [Google Scholar] [CrossRef]
- Hair, J. F., Hult, G. T. M., Ringle, M. C., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). SAGE Publications. [Google Scholar]
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. [Google Scholar] [CrossRef]
- Hew, J.-J., Lee, V.-H., & Leong, L.-Y. (2023). Why do mobile consumers resist mobile commerce applications? A hybrid fsQCA-ANN analysis. Journal of Retailing and Consumer Services, 75, 103526. [Google Scholar] [CrossRef]
- Hew, J.-J., Leong, L.-Y., Tan, G. W.-H., Lee, V.-H., & Ooi, K.-B. (2018). Mobile social tourism shopping: A dual-stage analysis of a multi-mediation model. Tourism Management, 66, 121–139. [Google Scholar] [CrossRef]
- Hien, N. N., Vo, L. T., Ngan, N. T. T., & Ghi, T. N. (2024). The tendency of consumers to use online travel agencies from the perspective of the valence framework: The role of openness to change and compatibility. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100181. [Google Scholar] [CrossRef]
- Higgins, J. P. (2016). Smartphone applications for patients’ health and fitness. The American Journal of Medicine, 129(1), 11–19. [Google Scholar] [CrossRef]
- Higgins, T. J., Middleton, K. R., Winner, L., & Janelle, C. M. (2014). Physical activity interventions differentially affect exercise task and barrier self-efficacy: A meta-analysis. Health Psychology, 33(8), 891–903. [Google Scholar] [CrossRef] [PubMed]
- Honkanen, P., Verplanken, B., & Olsen, S. O. (2006). Ethical values and motives driving organic food choice. Journal of Consumer Behaviour, 5(5), 420–430. [Google Scholar] [CrossRef]
- Huang, G., & Ren, Y. (2020). Linking technological functions of fitness mobile apps with continuance usage among Chinese users: Moderating role of exercise self-efficacy. Computers in Human Behavior, 103, 151–160. [Google Scholar] [CrossRef]
- Jan, I. U., Ji, S., & Kim, C. (2023). What (de) motivates customers to use AI-powered conversational agents for shopping? The extended behavioral reasoning perspective. Journal of Retailing and Consumer Services, 75, 103440. [Google Scholar] [CrossRef]
- Jin, C., Xu, A., Zhu, Y., & Li, J. (2023). Technology growth in the digital age: Evidence from China. Technological Forecasting and Social Change, 187, 122221. [Google Scholar] [CrossRef]
- Jin, C.-H. (2014). Adoption of e-book among college students: The perspective of an integrated TAM. Computers in Human Behavior, 41, 471–477. [Google Scholar] [CrossRef]
- Jin, E., & Lee, S. (2023). A study on the effect of user value on smartwatch digital healthcare acceptance intention to promote digital healthcare venture start up. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 18(2), 35–52. [Google Scholar]
- Kan, B., & Xie, Y. (2024). Impact of sports participation on life satisfaction among internal migrants in China: The chain mediating effect of social interaction and self-efficacy. Acta Psychologica, 243, 104139. [Google Scholar] [CrossRef]
- Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. [Google Scholar] [CrossRef]
- Keiper, M. C., Fried, G., Lupinek, J., & Nordstrom, H. (2023). Artificial intelligence in sport management education: Playing the AI game with ChatGPT. Journal of Hospitality, Leisure, Sport & Tourism Education, 33, 100456. [Google Scholar] [CrossRef]
- Kim, Y., Kim, S., & Rogol, E. (2017). The effects of consumer innovativeness on sport team applications acceptance and usage. Journal of Sport Management, 31(3), 241–255. [Google Scholar] [CrossRef]
- Kleijnen, M., Lee, N., & Wetzels, M. (2009). An exploration of consumer resistance to innovation and its antecedents. Journal of Economic Psychology, 30(3), 344–357. [Google Scholar] [CrossRef]
- Ko, Y. J., Cattani, K., Chang, Y., & Hur, Y. (2011). Do spectators and competitors accept the use of scoring technology in Taekwondo competitions? International Journal of Sport Management and Marketing, 9(3/4), 238–253. [Google Scholar] [CrossRef]
- Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of E-Collaboration (IJeC), 11(4), 1–10. [Google Scholar] [CrossRef]
- Kottasz, R., Bennett, R., Vijaygopal, R., & Gardasz, B. (2021). Driverless futures: Current non-drivers’ willingness to travel in driverless vehicles. Journal of Marketing Management, 37(15–16), 1656–1689. [Google Scholar] [CrossRef]
- Kruse, S. D., Rakha, S., & Calderone, S. (2018). Developing cultural competency in higher education: An agenda for practice. Teaching in Higher Education, 23(6), 733–750. [Google Scholar] [CrossRef]
- Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432–2439. [Google Scholar] [CrossRef]
- Luo, W., & He, Y. (2021). Influence of sports applications on college students’ exercise behaviors and habits: A thematic analysis. Alexandria Engineering Journal, 60(6), 5095–5104. [Google Scholar] [CrossRef]
- Lupton, D. (2020). ‘Better understanding about what’s going on’: Young Australians’ use of digital technologies for health and fitness. Sport, Education and Society, 25(1), 1–13. [Google Scholar] [CrossRef]
- Martinez Ramirez, D. E., Camacho Ruíz, E. J., Ibarra Espinosa, M. L., García Rodríguez, J., & Flores Pérez, V. (2024). Sports performance in function of self-efficacy: A systematic review. Cultura_Ciencia_Deporte [CCD], 19(61), 93–104. [Google Scholar]
- McAuley, E., & Blissmer, B. (2000). Self-efficacy determinants and consequences of physical activity. Exercise and Sport Sciences Reviews, 28(2), 85–88. [Google Scholar]
- McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37. [Google Scholar] [CrossRef]
- Mejova, Y., & Kalimeri, K. (2019, June 9–12). Effect of values and technology use on exercise: Implications for personalized behavior change interventions. Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization (pp. 36–45), Larnaca, Cyprus. [Google Scholar] [CrossRef]
- Msaed, C., Al-Kwifi, S. O., & Ahmed, Z. U. (2017). Building a comprehensive model to investigate factors behind switching intention of high-technology products. Journal of Product & Brand Management, 26(2), 102–119. [Google Scholar] [CrossRef]
- Naraine, M. (2019). Follower segments within and across the social media networks of major professional sport organizations. Sport Marketing Quarterly, 28(4), 222–233. [Google Scholar] [CrossRef]
- National Physical Fitness Monitoring Center. (2020). 2020 National fitness activity survey bulletin; National Physical Fitness Monitoring Center. Available online: https://www.sport.gov.cn/n315/n329/c24335053/content.html (accessed on 1 August 2024).
- Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw-Hill. [Google Scholar]
- Oye, N. D., A.Iahad, N., & Ab. Rahim, N. (2014). The history of UTAUT model and its impact on ICT acceptance and usage by academicians. Education and Information Technologies, 19(1), 251–270. [Google Scholar] [CrossRef]
- Patterson, M. S., Amo, C. E., Prochnow, T., & Heinrich, K. M. (2022). Exploring social networks relative to various types of exercise self-efficacy within CrossFit participants. International Journal of Sport and Exercise Psychology, 20(6), 1691–1710. [Google Scholar] [CrossRef]
- Peterson, M., & Simkins, T. (2019). Consumers’ processing of mindful commercial car sharing. Business Strategy and the Environment, 28(3), 457–465. [Google Scholar] [CrossRef]
- Pillai, R., & Sivathanu, B. (2018). An empirical study on the adoption of M-learning apps among IT/ITeS employees. Interactive Technology and Smart Education, 15(3), 182–204. [Google Scholar] [CrossRef]
- Qi, Y., Sajadi, S. M., Baghaei, S., Rezaei, R., & Li, W. (2024). Digital technologies in sports: Opportunities, challenges, and strategies for safeguarding athlete wellbeing and competitive integrity in the digital era. Technology in Society, 77, 102496. [Google Scholar] [CrossRef]
- Qian, R., & Kim, K. (2024). Sports participants’ intentions to use digital technology for sports participation: A behavioral reasoning theory perspective. International Journal of Applied Sports Sciences, 36(1), 56–76. [Google Scholar] [CrossRef]
- Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: The marketing problem and its solutions. Journal of Consumer Marketing, 6(2), 5–14. [Google Scholar] [CrossRef]
- Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6–30. [Google Scholar] [CrossRef]
- Ren, Z., Hu, L., Yu, J. J., Yu, Q., Chen, S., Ma, Y., Lin, J., Yang, L., Li, X., & Zou, L. (2020). The influence of social support on physical activity in Chinese adolescents: The mediating role of exercise self-efficacy. Children, 7(3), 23. [Google Scholar] [CrossRef]
- Rokeach, M. (1973). The nature of human values. Free Press. [Google Scholar]
- Ryan, J., & Casidy, R. (2018). The role of brand reputation in organic food consumption: A behavioral reasoning perspective. Journal of Retailing and Consumer Services, 41, 239–247. [Google Scholar] [CrossRef]
- Sadiq, M. A., Rajeswari, B., Ansari, L., & Danish Kirmani, M. (2021). The role of food eating values and exploratory behaviour traits in predicting intention to consume organic foods: An extended planned behaviour approach. Journal of Retailing and Consumer Services, 59, 102352. [Google Scholar] [CrossRef]
- Sahu, A. K., Padhy, R. K., & Dhir, A. (2020). Envisioning the future of behavioral decision-making: A systematic literature review of behavioral reasoning theory. Australasian Marketing Journal, 28(4), 145–159. [Google Scholar] [CrossRef]
- Sarstedt, M., Hair, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. [Google Scholar] [CrossRef]
- Sarstedt, M., Ringle, C. M., Cheah, J.-H., Ting, H., Moisescu, O. I., & Radomir, L. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics, 26(4), 531–554. [Google Scholar] [CrossRef]
- Schwartz, S. H. (1992). Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries (Vol. 25, pp. 1–65). Academic Press. [Google Scholar] [CrossRef]
- Schwarzer, R., Bäßler, J., Kwiatek, P., Schröder, K., & Zhang, J. X. (1997). The assessment of optimistic self-beliefs: Comparison of the German, Spanish, and Chinese versions of the general self-efficacy scale. Applied Psychology, 46(1), 69–88. [Google Scholar] [CrossRef]
- Seong, B.-H., & Hong, C.-Y. (2022). Corroborating the effect of positive technology readiness on the intention to use the virtual reality sports game “Screen Golf”: Focusing on the technology readiness and acceptance model. Information Processing & Management, 59(4), 102994. [Google Scholar] [CrossRef]
- Shah Alam, S., Masukujjaman, M., Sayeed, M. S., Omar, N. A., Ayob, A. H., & Wan Hussain, W. M. H. (2023). Modeling consumers’ usage intention of augmented reality in online buying context: Empirical setting with measurement development. Journal of Global Marketing, 36(1), 1–24. [Google Scholar] [CrossRef]
- Sheeran, P., Maki, A., Montanaro, E., Avishai-Yitshak, A., Bryan, A., Klein, W. M., Miles, E., & Rothman, A. J. (2016). The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychology, 35(11), 1178–1188. [Google Scholar] [CrossRef]
- Shi, H., Wang, S., & Zhao, D. (2017). Exploring urban resident’s vehicular PM2.5 reduction behavior intention: An application of the extended theory of planned behavior. Journal of Cleaner Production, 147, 603–613. [Google Scholar] [CrossRef]
- Sivathanu, B. (2018a). Adoption of internet of things (IOT) based wearables for healthcare of older adults—A behavioural reasoning theory (BRT) approach. Journal of Enabling Technologies, 12(4), 169–185. [Google Scholar] [CrossRef]
- Sivathanu, B. (2018b). Adoption of online subscription beauty boxes: A Behavioural Reasoning Theory (BRT) perspective. Journal of Electronic Commerce in Organizations (JECO), 16(4), 19–40. [Google Scholar] [CrossRef]
- Skimina, E., Cieciuch, J., & Strus, W. (2021). Traits and values as predictors of the frequency of everyday behavior: Comparison between models and levels. Current Psychology, 40(1), 133–153. [Google Scholar] [CrossRef]
- Steffen, A. M., McKibbin, C., Zeiss, A. M., Gallagher-Thompson, D., & Bandura, A. (2002). The revised scale for caregiving self-efficacy: Reliability and validity studies. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 57(1), 74–86. [Google Scholar] [CrossRef] [PubMed]
- Stockless, A. (2018). Acceptance of learning management system: The case of secondary school teachers. Education and Information Technologies, 23(3), 1101–1121. [Google Scholar] [CrossRef]
- Talwar, S., Dhir, A., Kaur, P., & Mäntymäki, M. (2020). Barriers toward purchasing from online travel agencies. International Journal of Hospitality Management, 89, 102593. [Google Scholar] [CrossRef]
- Tewari, A., Mathur, S., Srivastava, S., & Gangwar, D. (2022). Examining the role of receptivity to green communication, altruism and openness to change on young consumers’ intention to purchase green apparel: A multi-analytical approach. Journal of Retailing and Consumer Services, 66, 102938. [Google Scholar] [CrossRef]
- Tewari, A., Singh, R., Mathur, S., & Pande, S. (2023). A modified UTAUT framework to predict students’ intention to adopt online learning: Moderating role of openness to change. The International Journal of Information and Learning Technology, 40(2), 130–147. [Google Scholar] [CrossRef]
- Thong, J. Y. L., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799–810. [Google Scholar] [CrossRef]
- Tjønndal, A. (2022). The impact of COVID-19 lockdowns on Norwegian athletes’ training habits and their use of digital technology for training and competition purposes. Sport in Society, 25(7), 1373–1387. [Google Scholar] [CrossRef]
- Uhrich, S. (2022). Sport spectator adoption of technological innovations: A behavioral reasoning analysis of fan experience apps. Sport Management Review, 25(2), 275–299. [Google Scholar] [CrossRef]
- Verma, V. K., Chandra, B., & Kumar, S. (2019). Values and ascribed responsibility to predict consumers’ attitude and concern towards green hotel visit intention. Journal of Business Research, 96, 206–216. [Google Scholar] [CrossRef]
- Westaby, J. D. (2005). Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior. Organizational Behavior and Human Decision Processes, 98(2), 97–120. [Google Scholar] [CrossRef]
- Westmattelmann, D., Grotenhermen, J.-G., Sprenger, M., Rand, W., & Schewe, G. (2021). Apart we ride together: The motivations behind users of mixed-reality sports. Journal of Business Research, 134, 316–328. [Google Scholar] [CrossRef]
- Wiser, R. H. (2007). Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles. Ecological Economics, 62(3–4), 419–432. [Google Scholar] [CrossRef]
- Zhang, T., Gensler, S., & Garcia, R. (2011). A study of the diffusion of alternative fuel vehicles: An agent-based modeling approach*: Diffusion of alternative fuel vehicles. Journal of Product Innovation Management, 28(2), 152–168. [Google Scholar] [CrossRef]
- Zhong, X., Li, M., & Li, L. (2021). Preventing and detecting insufficient effort survey responding. Advances in Psychological Science, 29(2), 225–237. [Google Scholar] [CrossRef]
- Zhou, R., & Feng, C. (2017). Difference between leisure and work contexts: The roles of perceived enjoyment and perceived usefulness in predicting mobile video calling use acceptance. Frontiers in Psychology, 8, 350. [Google Scholar] [CrossRef]
- Zhou, W., & Guo, G. (2006). Self-efficacy: The conception, theory and applications. Journal of Renmin University of China, 1, 91–97. [Google Scholar]
Characteristic | Frequency | % | |
---|---|---|---|
Gender | Male | 176 | 55.3% |
Female | 142 | 44.7% | |
Age (years old) | Under 18 | 37 | 11.6% |
18–30 | 85 | 26.7% | |
31–40 | 102 | 32.1% | |
41–50 | 63 | 19.8% | |
51–60 | 17 | 5.3% | |
Over 60 | 14 | 4.4% | |
Education | Middle school and below | 17 | 5.3% |
High school | 44 | 13.8% | |
College | 87 | 27.4% | |
Undergraduate | 156 | 49.1% | |
Graduate students and above | 14 | 4.4% | |
Occupation | Student | 82 | 25.8% |
Teacher | 29 | 9.1% | |
Full-time housewife | 34 | 10.7% | |
Company employees | 93 | 29.2% | |
Freelance work | 54 | 17.0% | |
Other | 26 | 8.2% | |
Income (yuan) | 2000 or less | 106 | 33.3% |
2001–4999 | 73 | 23.0% | |
5000–7999 | 63 | 19.8% | |
8000–9999 | 34 | 10.7% | |
10,000–14,999 | 26 | 8.2% | |
15,000 and above | 16 | 5.0% | |
Frequency of use | 10% | 30 | 9.4% |
20% | 31 | 9.7% | |
30% | 35 | 11.0% | |
40% | 54 | 17.0% | |
50% | 64 | 20.1% | |
60% | 35 | 11.0% | |
70% | 28 | 8.8% | |
80% | 25 | 7.9% | |
90% | 14 | 4.4% | |
100% | 2 | 0.6% |
Construct | Item | Factor Loadings | VIF | AVE | CR | α | |
---|---|---|---|---|---|---|---|
First-order | |||||||
Values of Openness to Change | VOC1 | I seek constant surprises | 0.904 *** | 3.257 | 0.895 | 0.897 | 0.826 |
VOC2 | I have an adventurous spirit, eager to explore innovation | 0.915 *** | 3.39 | ||||
VOC3 | I am receptive to new experiences | 0.909 *** | 4.271 | ||||
Attitudes | ATT1 | I believe utilizing digital technology for physical activity is a beneficial approach | 0.947 *** | 4.437 | 0.932 | 0.932 | 0.88 |
ATT2 | I think digital technology provides significant advantages for sports participation | 0.934 *** | 3.608 | ||||
ATT3 | I am convinced that digital technology enhances the value of sports participation | 0.933 *** | 3.722 | ||||
Adoption Intentions | AI1 | I intend to incorporate digital technology into my sports participation | 0.921 *** | 3.257 | 0.924 | 0.926 | 0.868 |
AI2 | I anticipate utilizing digital technology in future sports participation | 0.93 *** | 3.39 | ||||
AI3 | I plan to embrace digital technology as a means to engage in sports activities | 0.944 *** | 4.271 | ||||
Self-Efficacy | SE1 | If I put in my best effort, I can consistently resolve challenges in my life | 0.909 *** | 3.273 | 0.887 | 0.908 | 0.814 |
SE2 | Confident in handling life’s surprises effectively | 0.895 *** | 2.053 | ||||
SE3 | Even if others object to me, I can still achieve my goal | 0.903 *** | 3.156 | ||||
Usage Barrier (RAA) | UB1 | Engaging in sports participation through digital technology is challenging | 0.916 *** | 2.987 | 0.908 | 0.909 | 0.845 |
UB2 | Digital technology may not offer sufficient convenience for sports participation | 0.915 *** | 2.837 | ||||
UB3 | The requirement for specialized facilities may restrict the use of digital technology in sports engagement | 0.926 *** | 3.231 | ||||
Risk Barrier (RAA) | RB1 | Concerns about reliability arise when utilizing digital technology for sports engagement | 0.902 *** | 2.668 | 0.899 | 0.9 | 0.832 |
RB2 | I have concerns about the potential for information leaks when using digital technology in sports activities | 0.929 *** | 3.225 | ||||
RB3 | I perceive using digital technology for sports participation as a risky endeavor | 0.904 *** | 2.649 | ||||
Value Barrier (RAA) | VB1 | I perceive little advantage in utilizing digital technology for engaging in sports activities | 0.905 *** | 2.651 | 0.895 | 0.895 | 0.827 |
VB2 | I believe that digital technology does not improve my sports abilities | 0.91 *** | 2.69 | ||||
VB3 | I see no distinct benefits in integrating digital technology into sports participation | 0.912 *** | 2.763 | ||||
Tradition Barrier (RAA) | TB1 | For me, traditional methods of sports participation are entirely sufficient | 0.913 *** | 2.772 | 0.893 | 0.893 | 0.823 |
TB2 | I feel at ease engaging in sports that are familiar and have a long history | 0.907 *** | 2.619 | ||||
TB3 | I prefer traditional sports for greater satisfaction | 0.901 *** | 2.574 | ||||
Image Barrier (RAA) | IB1 | I’m skeptical about using digital tech in physical activities | 0.914 *** | 2.933 | 0.917 | 0.918 | 0.858 |
IB2 | I find it challenging to merge sports with digital tech | 0.93 *** | 3.382 | ||||
IB3 | I view digital technology as intricate and complicated | 0.934 *** | 3.638 | ||||
Perceived Ease of Use (RFA) | PEOU1 | I believe digital technology in sports can be straightforward | 0.91 *** | 2.866 | 0.9 | 0.902 | 0.834 |
PEOU2 | I find it straightforward to understand and apply digital technology for engaging in sports activities | 0.916 *** | 2.786 | ||||
PEOU3 | Digital technology enables flexible and interactive engagement in sports | 0.912 *** | 2.769 | ||||
Perceived Usefulness (RFA) | PU1 | Digital tech speeds up sports task completion | 0.929 *** | 3.376 | 0.912 | 0.913 | 0.851 |
PU2 | Incorporating digital tech in sports boosts my performance and output | 0.91 *** | 2.8 | ||||
PU3 | Digital technology can make participating in sports more convenient and accessible | 0.928 *** | 3.293 | ||||
Perceived Enjoyment (RFA) | PE1 | I believe digital tech simplifies sports and enhances enjoyment | 0.92 *** | 3.096 | 0.925 | 0.926 | 0.87 |
PE2 | Digital participation in sports is naturally enjoyable | 0.94 *** | 3.978 | ||||
PE3 | I am a staunch proponent of digital tech in sports participation | 0.938 *** | 3.879 | ||||
Second-order | |||||||
RFA | PE | 0.807 *** | 1.805 | 0.854 | 0.857 | 0.632 | |
PEOU | 0.792 *** | 1.367 | |||||
PU | 0.784 *** | 1.394 | |||||
RAA | RB | 0.751 *** | 1.387 | 0.708 | 0.711 | 0.612 | |
TB | 0.794 *** | 1.697 | |||||
UB | 0.838 *** | 1.864 | |||||
VB | 0.825 *** | 2.125 | |||||
IB | 0.763 *** | 2.017 |
AI | ATT | VOC | SE | PE | PEOU | PU | RB | TB | UB | VB | IB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AI | 0.932 | 0.545 | 0.492 | 0.226 | 0.402 | 0.184 | 0.12 | 0.207 | 0.227 | 0.491 | 0.303 | 0.334 |
ATT | 0.507 | 0.938 | 0.419 | 0.104 | 0.455 | 0.213 | 0.145 | 0.319 | 0.335 | 0.562 | 0.305 | 0.367 |
VOC | 0.449 | 0.383 | 0.909 | 0.031 | 0.26 | 0.092 | 0.096 | −0.153 | −0.14 | −0.257 | −0.118 | −0.142 |
SE | 0.205 | 0.099 | 0.033 | 0.902 | 0.025 | 0.059 | 0.033 | −0.07 | 0.084 | 0.205 | 0.167 | −0.109 |
PE | 0.372 | 0.423 | 0.285 | 0.04 | 0.933 | 0.486 | 0.479 | 0.16 | 0.197 | 0.336 | 0.138 | −0.101 |
PEOU | 0.166 | 0.196 | 0.102 | 0.067 | 0.445 | 0.913 | 0.503 | 0.054 | 0.092 | 0.203 | 0.125 | −0.07 |
PU | 0.111 | 0.134 | 0.106 | 0.041 | 0.44 | 0.457 | 0.922 | 0.097 | 0.117 | 0.179 | 0.091 | −0.075 |
RB | −0.188 | −0.292 | 0.169 | 0.076 | −0.146 | −0.047 | −0.088 | 0.912 | 0.623 | 0.579 | 0.603 | 0.393 |
TB | −0.207 | −0.306 | 0.157 | −0.071 | −0.179 | −0.083 | −0.106 | 0.559 | 0.907 | 0.619 | 0.655 | 0.461 |
UB | −0.451 | −0.517 | 0.284 | −0.189 | −0.308 | −0.184 | −0.162 | 0.524 | 0.558 | 0.919 | 0.649 | 0.622 |
VB | −0.275 | −0.279 | 0.131 | −0.155 | −0.126 | −0.112 | −0.082 | 0.542 | 0.586 | 0.585 | 0.909 | 0.556 |
IB | −0.308 | −0.34 | 0.157 | 0.119 | 0.109 | 0.081 | 0.082 | 0.433 | 0.509 | 0.681 | 0.614 | 0.926 |
First-Order Paths | ||||||||||
Paths | β | T | Result | VIF | f2 | LLCI | ULCI | |||
H1a | VOC | → | RFA | 0.223 | 4.032 *** | Yes | 1.009 | 0.059 | 0.114 | 0.332 |
H1b | VOC | → | RAA | −0.217 | 3.967 *** | Yes | 1.009 | 0.052 | −0.322 | −0.109 |
H2 | VOC | → | ATT | 0.287 | 5.465 *** | Yes | 1.328 | 0.1 | 0.185 | 0.391 |
H3a | RFA | → | ATT | 0.148 | 2.677 ** | Yes | 1.292 | 0.027 | 0.041 | 0.256 |
H3b | RAA | → | ATT | −0.296 | 6.033 *** | Yes | 1.153 | 0.122 | −0.392 | −0.2 |
H4a | RFA | → | AI | 0.14 | 3.198 ** | Yes | 1.364 | 0.024 | 0.054 | 0.226 |
H4b | RAA | → | AI | −0.136 | 2.971 ** | Yes | 1.296 | 0.024 | −0.23 | −0.05 |
H5 | ATT | → | AI | 0.23 | 4.357 *** | Yes | 1.848 | 0.048 | 0.125 | 0.33 |
H6 | VOC | → | AI | 0.296 | 6.265 *** | Yes | 1.639 | 0.089 | 0.205 | 0.389 |
H7a | SE x VOC | → | RFA | 0.342 | 7.185 *** | Yes | 1.008 | 0.151 | 0.248 | 0.432 |
H7b | SE x VOC | → | RAA | −0.166 | 3.346 ** | Yes | 1.008 | 0.033 | −0.265 | −0.068 |
H7c | SE x VOC | → | ATT | 0.222 | 4.502 *** | Yes | 1.204 | 0.071 | 0.124 | 0.318 |
H7d | SE x RFA | → | ATT | 0.095 | 1.879 | NO | 1.206 | 0.014 | −0.001 | 0.198 |
H7e | SE x RAA | → | ATT | 0.049 | 0.944 | NO | 1.092 | 0.003 | −0.052 | 0.151 |
H7f | SE x RFA | → | AI | 0.116 | 2.379 * | Yes | 1.275 | 0.02 | 0.02 | 0.213 |
H7g | SE x RAA | → | AI | −0.019 | 0.368 | NO | 1.211 | 0.001 | −0.123 | 0.083 |
H7h | SE x ATT | → | AI | −0.115 | 2.105 * | Yes | 1.569 | 0.014 | −0.227 | −0.01 |
H7i | SE x VOC | → | AI | 0.038 | 0.694 | NO | 1.428 | 0.002 | −0.064 | 0.148 |
Second-Order Paths | ||||||||||
Paths | β | T | LLCI | ULCI | ||||||
RFA | → | PEOU | 0.792 | 35.004 *** | 0.744 | 0.832 | ||||
RFA | → | PU | 0.784 | 28.927 *** | 0.726 | 0.832 | ||||
RFA | → | PE | 0.807 | 34.962 *** | 0.756 | 0.847 | ||||
RAA | → | UB | 0.838 | 47.371 *** | 0.801 | 0.871 | ||||
RAA | → | RB | 0.751 | 24.502 *** | 0.688 | 0.806 | ||||
RAA | → | VB | 0.825 | 42.95 *** | 0.784 | 0.861 | ||||
RAA | → | TB | 0.794 | 35.794 *** | 0.748 | 0.834 | ||||
RAA | → | IB | 0.763 | 28.443 *** | 0.707 | 0.812 |
R2 | Q2 | |
---|---|---|
ATT | 0.379 | 0.324 |
AI | 0.4 | 0.335 |
RAA | 0.094 | 0.056 |
RFA | 0.165 | 0.098 |
VOC | - | - |
SE | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, R.; Kim, K. The Intention of Sports Participants to Utilize Digital Technology for Engagement: The Moderating Role of Self-Efficacy. Behav. Sci. 2025, 15, 367. https://doi.org/10.3390/bs15030367
Qian R, Kim K. The Intention of Sports Participants to Utilize Digital Technology for Engagement: The Moderating Role of Self-Efficacy. Behavioral Sciences. 2025; 15(3):367. https://doi.org/10.3390/bs15030367
Chicago/Turabian StyleQian, Rubin, and Kitak Kim. 2025. "The Intention of Sports Participants to Utilize Digital Technology for Engagement: The Moderating Role of Self-Efficacy" Behavioral Sciences 15, no. 3: 367. https://doi.org/10.3390/bs15030367
APA StyleQian, R., & Kim, K. (2025). The Intention of Sports Participants to Utilize Digital Technology for Engagement: The Moderating Role of Self-Efficacy. Behavioral Sciences, 15(3), 367. https://doi.org/10.3390/bs15030367