Workers’ Psychological Distress During the Early Months of the COVID-19 Pandemic in Brazil: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Research Instrument
2.3. Predictor Variables
2.3.1. Sociodemographic
2.3.2. Occupational
2.3.3. Health-Related
2.3.4. COVID-19 Knowledge
2.3.5. COVID-19 Contact History
2.3.6. COVID-19 Symptoms
2.3.7. COVID-19 Risk Perception
2.3.8. Preventive Behaviors
2.3.9. Sense of Coherence
2.3.10. Work Engagement
2.4. Outcome Variable
Psychological Distress
2.5. Data Analysis
2.5.1. Missing Data
2.5.2. Descriptive Statistics and Group Comparisons
2.5.3. Regression Models for Psychological Distress
2.5.4. Ethical Considerations
3. Results
4. Discussion
4.1. Limitations and Strengths
4.2. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCW | Healthcare workers |
PPE | Personal protective equipment |
NHCW | Non-healthcare workers |
EIQ-BR | Emotional Impact Questionnaire COVID-19 Brazil |
SOC-13 | Sense of Coherence Scale |
UWES-9 | Utrecht Work Engagement Scale |
GHQ-12 | General Health Questionnaire |
References
- Acke, S., Couvreur, S., Bramer, W. M., Schmickler, M. N., De Schryver, A., & Haagsma, J. A. (2022). Global infectious disease risks associated with occupational exposure among non-healthcare workers: A systematic review of the literature. Occupational and Environmental Medicine, 79(1), 63–71. [Google Scholar] [CrossRef]
- Alonso, M. S., Lima, M. C. P., Dias, A., Camacho-Vega, J. C., García-Iglesias, J. J., Ruiz-Frutos, C., Bernardes, J. M., & Gómez-Salgado, J. (2024). Psychological distress among Brazilian workers during the initial stage of the COVID-19 pandemic: A descriptive study. Frontiers in Public Health, 12, 1283310. [Google Scholar] [CrossRef]
- Antonovsky, A. (1996). The salutogenic model as a theory to guide health promotion. Health Promotion International, 11(1), 11–18. [Google Scholar] [CrossRef]
- Aquino, E. M. L., Silveira, I. H., Pescarini, J. M., Aquino, R., Souza-Filho, J. A., Rocha, A. S., Ferreira, A., Victor, A., Teixeira, C., Machado, D. B., Paixão, E., Alves, F. J. O., Pilecco, F., Menezes, G., Gabrielli, L., Leite, L., Almeida, M. C. C., Ortelan, N., Fernandes, Q. H. R. F., … Lima, R. T. R. S. (2020). Social distancing measures to control the COVID-19 pandemic: Potential impacts and challenges in Brazil. Medidas de distanciamento social no controle da pandemia de COVID-19: Potenciais impactos e desafios no Brasil. Ciencia & Saude Coletiva, 25(Suppl. 1), 2423–2446. [Google Scholar] [CrossRef]
- Baker, M. G., Kvalsvig, A., & Verrall, A. J. (2020). New Zealand’s COVID-19 elimination strategy. The Medical Journal of Australia, 213(5), 198–200.e1. [Google Scholar] [CrossRef]
- Barni, D., Danioni, F., Canzi, E., Ferrari, L., Ranieri, S., Lanz, M., Iafrate, R., Regalia, C., & Rosnati, R. (2020). Facing the COVID-19 pandemic: The role of sense of coherence. Frontiers in Psychology, 11, 578440. [Google Scholar] [CrossRef]
- Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. [Google Scholar] [CrossRef]
- Benítez, M. A., Velasco, C., Sequeira, A. R., Henríquez, J., Menezes, F. M., & Paolucci, F. (2020). Responses to COVID-19 in five Latin American countries. Health Policy and Technology, 9(4), 525–559. [Google Scholar] [CrossRef]
- Berger-Estilita, J., Abegglen, S., Hornburg, N., Greif, R., & Fuchs, A. (2022). Health-promoting quality of life at work during the COVID-19 pandemic: A 12-month longitudinal study on the work-related sense of coherence in acute care healthcare professionals. International Journal of Environmental Research and Public Health, 19(10), 6053. [Google Scholar] [CrossRef]
- Blasco-Belled, A., Tejada-Gallardo, C., Fatsini-Prats, M., & Alsinet, C. (2024). Mental health among the general population and healthcare workers during the COVID-19 pandemic: A meta-analysis of well-being and psychological distress prevalence. Current Psychology, 43, 8435–8446. [Google Scholar] [CrossRef]
- Boin, A., Lodge, M., & Luesink, M. (2020). Learning from the COVID-19 crisis: An initial analysis of national responses. Policy Design and Practice, 3(3), 189–204. [Google Scholar] [CrossRef]
- Borges, L. D. O., & Argolo, J. C. T. (2002). Adaptação e validação de uma escala de bem-estar psicológico para uso em estudos ocupacionais. Avaliação Psicológica: Interamerican Journal of Psychological Assessment, 1(1), 17–27. [Google Scholar]
- Capano, G., Howlett, M., Jarvis, D. S. L., Ramesh, M., & Goyal, N. (2020). Mobilizing policy (in)capacity to fight COVID-19: Understanding variations in state responses. Policy & Society, 39(3), 285–308. [Google Scholar] [CrossRef]
- Carvalho, T., Krammer, F., & Iwasaki, A. (2021). The first 12 months of COVID-19: A timeline of immunological insights. Nature Reviews Immunology, 21(4), 245–256. [Google Scholar] [CrossRef]
- Costin, A., Roman, A. F., & Balica, R. S. (2023). Remote work burnout, professional job stress, and employee emotional exhaustion during the COVID-19 pandemic. Frontiers in Psychology, 14, 1193854. [Google Scholar] [CrossRef]
- Danioni, F., Barni, D., Ferrari, L., Ranieri, S., Canzi, E., Iafrate, R., Lanz, M., Regalia, C., & Rosnati, R. (2023). The enduring role of sense of coherence in facing the pandemic. Health Promotion International, 38(3), daad054. [Google Scholar] [CrossRef]
- de Lima Osório, F., Zuardi, A. W., Silveira, I. L. M., de Souza Crippa, J. A., Hallak, J. E. C., Pereira-Lima, K., & Loureiro, S. R. (2023). Mental health trajectories of Brazilian health workers during two waves of the COVID-19 pandemic (2020–2021). Frontiers in Psychiatry, 14, 1026429. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W. M., Buss, L. F., Candido, D. D. S., Carrera, J. P., Li, S., Zarebski, A. E., Pereira, R. H. M., Prete, C. A., Jr., de Souza-Santos, A. A., Parag, K. V., Belotti, M. C. T. D., Vincenti-Gonzalez, M. F., Messina, J., da Silva Sales, F. C., Andrade, P. D. S., Nascimento, V. H., Ghilardi, F., Abade, L., Gutierrez, B., … Faria, N. R. (2020). Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nature Human Behaviour, 4(8), 856–865. [Google Scholar] [CrossRef]
- Dobson, A. J., & Barnett, A. G. (2008). An introduction to generalized linear models (3rd ed.). CRC Press. [Google Scholar]
- Doleman, G., De Leo, A., & Bloxsome, D. (2023). The impact of pandemics on healthcare providers’ workloads: A scoping review. Journal of Advanced Nursing, 79(12), 4434–4454. [Google Scholar] [CrossRef]
- Eriksson, M., & Mittelmark, M. B. (2016). The sense of coherence and its measurement. In M. B. Mittelmark, S. Sagy, M. Eriksson, G. F. Bauer, J. M. Pelikan, B. Lindström, & G. A. Espnes (Eds.), The handbook of salutogenesis (pp. 97–106). Springer. [Google Scholar]
- Faghri, P. D., Dobson, M., Landsbergis, P., & Schnall, P. L. (2021). COVID-19 pandemic: What has work got to do with it? Journal of Occupational and Environmental Medicine, 63(4), e245–e249. [Google Scholar] [CrossRef]
- Fonseca, E. M. D., Nattrass, N., Lazaro, L. L. B., & Bastos, F. I. (2021). Political discourse, denialism and leadership failure in Brazil’s response to COVID-19. Global Public Health, 16(8–9), 1251–1266. [Google Scholar] [CrossRef]
- Foti, G., Bondanini, G., Finstad, G. L., Alessio, F., & Giorgi, G. (2023). The relationship between occupational stress, mental health and COVID-19-related stress: Mediation analysis results. Administrative Sciences, 13(4), 116. [Google Scholar] [CrossRef]
- Freire, M. C., Sheiham, A., & Hardy, R. (2001). Adolescents’ sense of coherence, oral health status, and oral health-related behaviours. Community Dentistry and Oral Epidemiology, 29(3), 204–212. [Google Scholar] [CrossRef]
- Goldberg, D. P., Gater, R., Sartorius, N., Ustun, T. B., Piccinelli, M., Gureje, O., & Rutter, C. (1997). The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychological Medicine, 27(1), 191–197. [Google Scholar] [CrossRef]
- Gómez-Ochoa, S. A., Franco, O. H., Rojas, L. Z., Raguindin, P. F., Roa-Díaz, Z. M., Wyssmann, B. M., Guevara, S. L. R., Echeverría, L. E., Glisic, M., & Muka, T. (2021). COVID-19 in health-care workers: A living systematic review and meta-analysis of prevalence, risk factors, clinical characteristics, and outcomes. American Journal of Epidemiology, 190(1), 161–175. [Google Scholar] [CrossRef]
- Gómez-Salgado, J., Adanaque-Bravo, I., Ortega-Moreno, M., Allande-Cussó, R., Arias-Ulloa, C. A., & Ruiz-Frutos, C. (2021). Psychological distress during the first phase of the COVID-19 pandemic in Ecuador: Cross-sectional study. PLoS ONE, 16(9), e0257661. [Google Scholar] [CrossRef]
- Gómez-Salgado, J., Arias-Ulloa, C. A., Ortega-Moreno, M., García-Iglesias, J. J., Escobar-Segovia, K., & Ruiz-Frutos, C. (2022). Sense of coherence in healthcare workers during the COVID-19 pandemic in Ecuador: Association with work engagement, work environment and psychological distress factors. International Journal of Public Health, 67, 1605428. [Google Scholar] [CrossRef]
- Haldane, V., De Foo, C., Abdalla, S. M., Jung, A. S., Tan, M., Wu, S., Chua, A., Verma, M., Shrestha, P., Singh, S., Perez, T., Tan, S. M., Bartos, M., Mabuchi, S., Bonk, M., McNab, C., Werner, G. K., Panjabi, R., Nordström, A., & Legido-Quigley, H. (2021). Health systems resilience in managing the COVID-19 pandemic: Lessons from 28 countries. Nature Medicine, 27(6), 964–980. [Google Scholar] [CrossRef]
- Hallal, P. C., Hartwig, F. P., Horta, B. L., Silveira, M. F., Struchiner, C. J., Vidaletti, L. P., Neumann, N. A., Pellanda, L. C., Dellagostin, O. A., Burattini, M. N., Victora, G. D., Menezes, A. M. B., Barros, F. C., Barros, A. J. D., & Victora, C. G. (2020). SARS-CoV-2 antibody prevalence in Brazil: Results from two successive nationwide serological household surveys. The Lancet Global Health, 8(11), e1390–e1398. [Google Scholar] [CrossRef]
- Hallal, P. C., & Victora, C. G. (2021). Overcoming Brazil’s monumental COVID-19 failure: An urgent call to action. Nature Medicine, 27(6), 933. [Google Scholar] [CrossRef]
- Harris, K. L. (2022). Positive racial identity of Black Brazilian and Colombian adolescents amidst systems of educational oppression. Journal of Research on Adolescence, 32(1), 208–225. [Google Scholar] [CrossRef]
- Hermans, L., Van den Broucke, S., Gisle, L., Demarest, S., & Charafeddine, R. (2021). Mental health, compliance with measures and health prospects during the COVID-19 epidemic: The role of health literacy. BMC Public Health, 21(1), 1365. [Google Scholar] [CrossRef]
- Hollander, J. E., & Carr, B. G. (2020). Virtually perfect? Telemedicine for COVID-19. The New England Journal of Medicine, 382(18), 1679–1681. [Google Scholar] [CrossRef]
- Honda, A., Date, Y., Abe, Y., Aoyagi, K., & Honda, S. (2014). Work-related stress, caregiver role, and depressive symptoms among Japanese workers. Safety and Health at Work, 5(1), 7–12. [Google Scholar] [CrossRef]
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. [Google Scholar] [CrossRef]
- Kim, J. H., An, J. A. R., Min, P. K., Bitton, A., & Gawande, A. A. (2020). How South Korea responded to the COVID-19 outbreak in Daegu. NEJM Catalyst Innovations in Care Delivery, 1(4). [Google Scholar] [CrossRef]
- Koontalay, A., Suksatan, W., Prabsangob, K., & Sadang, J. M. (2021). Healthcare workers’ burdens during the COVID-19 pandemic: A qualitative systematic review. Journal of Multidisciplinary Healthcare, 14, 3015–3025. [Google Scholar] [CrossRef]
- Krishnamoorthy, Y., Nagarajan, R., Saya, G. K., & Menon, V. (2020). Prevalence of psychological morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: A systematic review and meta-analysis. Psychiatry Research, 293, 113382. [Google Scholar] [CrossRef]
- Kunzler, A. M., Röthke, N., Günthner, L., Stoffers-Winterling, J., Tüscher, O., Coenen, M., Rehfuess, E., Schwarzer, G., Binder, H., Schmucker, C., Meerpohl, J. J., & Lieb, K. (2021). Mental burden and its risk and protective factors during the early phase of the SARS-CoV-2 pandemic: Systematic review and meta-analyses. Globalization and Health, 17(1), 34. [Google Scholar] [CrossRef]
- Lai, J., Ma, S., Wang, Y., Cai, Z., Hu, J., Wei, N., Wu, J., Du, H., Chen, T., Li, R., & Tan, H. (2020). Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Network Open, 3(3), e203976. [Google Scholar] [CrossRef]
- Lötsch, J., & Ultsch, A. (2020). A non-parametric effect-size measure capturing changes in central tendency and data distribution shape. PLoS ONE, 15(9), e0239623. [Google Scholar] [CrossRef]
- Luo, M., Guo, L., Yu, M., Jiang, W., & Wang, H. (2020). The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public—A systematic review and meta-analysis. Psychiatry Research, 291, 113190. [Google Scholar] [CrossRef]
- Lutgendorf, S. K., Vitaliano, P. P., Tripp-Reimer, T., Harvey, J. H., & Lubaroff, D. M. (1999). Sense of coherence moderates the relationship between life stress and natural killer cell activity in healthy older adults. Psychology and Aging, 14(4), 552–563. [Google Scholar] [CrossRef]
- Mediavilla, R., Fernández-Jiménez, E., Martínez-Alés, G., Moreno-Küstner, B., Martínez-Morata, I., Jaramillo, F., Morán-Sánchez, I., Minué, S., Torres-Cantero, A., Alvarado, R., Ayuso-Mateos, J. L., Mascayano, F., Susser, E., Bravo-Ortiz, M. F., & COVID-19 Health Care Workers (C19-HCW) Working Group. (2021). Role of access to personal protective equipment, treatment prioritization decisions, and changes in job functions on health workers’ mental health outcomes during the initial outbreak of the COVID-19 pandemic. Journal of Affective Disorders, 295, 405–409. [Google Scholar] [CrossRef]
- Menon, G. R., Yadav, J., Aggarwal, S., Singh, R., Kaur, S., Chakma, T., Periyasamy, M., Venkateswaran, C., Singh, P. K., Balachandar, R., Kulkarni, R., Grover, A., Mishra, B. K., Viray, M., Devi, K. R., Singh, K. H. J., Saha, K. B., Barde, P. V., Thomas, B., … Panda, S. (2022). Psychological distress and burnout among healthcare worker during COVID-19 pandemic in India-A cross-sectional study. PLoS ONE, 17(3), e0264956. [Google Scholar] [CrossRef] [PubMed]
- Mopkins, D. (2022). Workplace psychological distress: A concept analysis. Workplace Health & Safety, 70(10), 436–444. [Google Scholar] [CrossRef]
- Mosheva, M., Gross, R., Hertz-Palmor, N., Hasson-Ohayon, I., Kaplan, R., Cleper, R., Kreiss, Y., Gothelf, D., & Pessach, I. M. (2021). The association between witnessing patient death and mental health outcomes in frontline COVID-19 healthcare workers. Depression and Anxiety, 38(4), 468–479. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health. (2008). Exposure to stress: Occupational hazards in hospitals; Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/niosh/docs/2008-136/default.html (accessed on 20 August 2024).
- Nishihara, T., Yoshihara, K., Ohashi, A., Kuroiwa, M., & Sudo, N. (2022). Occupational stress, psychological distress, physical symptoms, and their interrelationships among frontline nurses caring for COVID-19 patients in Japan. Medicine, 101(48), e31687. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhanunni, A. (2022). Psychological distress in the time of COVID-19: The relationship between anxiety, hopelessness, and depression and the mediating role of sense of coherence. Traumatology, 28(3), 376–382. [Google Scholar] [CrossRef]
- Pappa, S., Ntella, V., Giannakas, T., Giannakoulis, V. G., Papoutsi, E., & Katsaounou, P. (2020). Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 88, 901–907. [Google Scholar] [CrossRef]
- Perraud, F., Ecarnot, F., Loiseau, M., Laurent, A., Fournier, A., Lheureux, F., Binquet, C., Rigaud, J. P., Meunier-Beillard, N., & Quenot, J. P. (2022). A qualitative study of reinforcement workers’ perceptions and experiences of working in intensive care during the COVID-19 pandemic: A PsyCOVID-ICU substudy. PLoS ONE, 17(3), e0264287. [Google Scholar] [CrossRef] [PubMed]
- Phiri, P., Ramakrishnan, R., Rathod, S., Elliot, K., Thayanandan, T., Sandle, N., Haque, N., Chau, S. W., Wong, O. W., Chan, S. S., Wong, E. K., Raymont, V., Au-Yeung, S. K., Kingdon, D., & Delanerolle, G. (2021). An evaluation of the mental health impact of SARS-CoV-2 on patients, general public and healthcare professionals: A systematic review and meta-analysis. eClinicalMedicine, 34, 100806. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M., McManus, S., Jessop, C., John, A., Hotopf, M., Ford, T., Hatch, S., Wessely, S., & Abel, K. M. (2020). Says who? The significance of sampling in mental health surveys during COVID-19. The Lancet Psychiatry, 7(7), 567–568. [Google Scholar] [CrossRef] [PubMed]
- Portoghese, I., Galletta, M., Meloni, F., Piras, I., Finco, G., D’Aloja, E., & Campagna, M. (2021). Dealing with COVID-19 patients: A moderated mediation model of exposure to patients’ death and mental health of italian health care workers. Frontiers in Psychology, 12, 622415. [Google Scholar] [CrossRef]
- Portugal, L. C. L., Gama, C. M. F., Gonçalves, R. M., Mendlowicz, M. V., Erthal, F. S., Mocaiber, I., Tsirlis, K., Volchan, E., David, I. A., Pereira, M. G., & de Oliveira, L. (2022). Vulnerability and protective factors for PTSD and depression symptoms among healthcare workers during COVID-19: A machine learning approach. Frontiers in Psychiatry, 12, 752870. [Google Scholar] [CrossRef]
- Ranney, M. L., Griffeth, V., & Jha, A. K. (2020). Critical supply shortages—The need for ventilators and personal protective equipment during the COVID-19 pandemic. The New England Journal of Medicine, 382(18), e41. [Google Scholar] [CrossRef]
- Ravikumar, T. (2023). Occupational stress and psychological wellbeing during COVID 19: Mediating role of positive psychological capital. Current Psychology, 42, 20157–20164. [Google Scholar] [CrossRef]
- Ridner, S. H. (2004). Psychological distress: Concept analysis. Journal of Advanced Nursing, 45(5), 536–545. [Google Scholar] [CrossRef]
- Rocha, R., Atun, R., Massuda, A., Rache, B., Spinola, P., Nunes, L., Lago, M., & Castro, M. C. (2021). Effect of socioeconomic inequalities and vulnerabilities on health-system preparedness and response to COVID-19 in Brazil: A comprehensive analysis. The Lancet Global Health, 9(6), e782–e792. [Google Scholar] [CrossRef]
- Ruengorn, C., Awiphan, R., Wongpakaran, N., Wongpakaran, T., Nochaiwong, S., & Health Outcomes and Mental Health Care Evaluation Survey Research Group (HOME-Survey). (2021). Association of job loss, income loss, and financial burden with adverse mental health outcomes during coronavirus disease 2019 pandemic in Thailand: A nationwide cross-sectional study. Depression and Anxiety, 38(6), 648–660. [Google Scholar] [CrossRef]
- Schäfer, S. K., Sopp, M. R., Koch, M., Göritz, A. S., & Michael, T. (2022). The long-term buffering effect of sense of coherence on psychopathological symptoms during the first year of the COVID-19 pandemic: A prospective observational study. Journal of Psychiatric Research, 153, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T., Ripp, J., & Trockel, M. (2020). Understanding and addressing sources of anxiety among health care professionals during the COVID-19 pandemic. JAMA, 323(21), 2133–2134. [Google Scholar] [CrossRef]
- Tauber, J., Tingley, J., Rabbanifar, S., Bitners, A., Shrivastava, A., & Skae, C. (2021). Experiences and perceptions from non-internal medicine clinicians deployed to COVID-19 units. European Psychiatry, 64(Suppl. 1), S670. [Google Scholar] [CrossRef]
- van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67. [Google Scholar] [CrossRef]
- van Buuren, S., Groothuis-Oudshoorn, K., Vink, G., Schouten, R., Robitzsch, A., Rockenschaub, P., Doove, L., Jolani, S., Moreno-Betancur, M., White, I., Gaffert, P., Meinfelder, F., Gray, B., Arel-Bundock, V., Cai, M., Volker, T., Costantini, E., van Lissa, C., Oberman, H., & Wade, S. (2021). mice: Multivariate imputation by chained equations (Version 3.13.0) [Computer software R package version 4.1.1]. Available online: https://www.rdocumentation.org/packages/mice/versions/3.13.0 (accessed on 20 August 2024).
- Vazquez, A. C. S., Magnan, E. d. S., Pacico, J. C., Hutz, C. S., & Schaufeli, W. B. (2015). Adaptation and validation of the Brazilian version of the Utrecht work engagement scale. Psico-USF, 20(2), 207–217. [Google Scholar] [CrossRef]
- Xiao, Y., Becerik-Gerber, B., Lucas, G., & Roll, S. C. (2021). Impacts of working from home during COVID-19 pandemic on physical and mental well-being of office workstation users. Journal of Occupational and Environmental Medicine, 63(3), 181–190. [Google Scholar] [CrossRef]
- Yucel, D., & Fan, W. (2023). Workplace flexibility, work-family interface, and psychological distress: Differences by family caregiving obligations and gender. Applied Research in Quality of Life, 18, 1825–1847. [Google Scholar] [CrossRef]
Variable | p-Value |
---|---|
Living with someone with a physical disability | 0.676 |
Living with someone with an intellectual disability | 0.478 |
Living with someone with a visual, auditive, or multiple disabilities | 0.801 |
Employer provided all materials and means necessary to work efficiently | 0.307 |
Experienced an increase in workload | 0.172 |
Current work satisfaction | 0.111 |
Self-perceived health status | 0.204 |
Self-identifying as having a disability | 0.348 |
Self-identifying as having a chronic disease | 0.402 |
Self-reported healthcare utilization | 0.423 |
Self-reported hospitalization history | 0.471 |
Clarity and accuracy of employer information | 0.747 |
Fact-checking | 0.564 |
Self-perceived COVID-19 transmission knowledge | 0.126 |
Self-perceived COVID-19 prognosis knowledge | 0.416 |
Self-perceived COVID-19 treatment knowledge | 0.536 |
COVID-19 basic knowledge score | 0.417 |
Number of COVID-19 symptoms presented | 0.596 |
COVID-19 risk perception score | 0.060 |
Perceived effectiveness of preventive measures | 0.180 |
Variable | NHCWs | HCWs | p-Value | ES | ||
---|---|---|---|---|---|---|
n or Median | % or IQR | n or Median | % or IQR | |||
Educational attainment | ||||||
High school | 255 | 14.6 | 37 | 3.2 | <0.001 | 0.27 |
Bachelor | 561 | 32.0 | 208 | 18.2 | ||
Specialization | 420 | 24.0 | 393 | 34.1 | ||
Master | 292 | 16.6 | 265 | 23.0 | ||
PhD | 224 | 12.8 | 248 | 21.5 | ||
Brazilian region of residence | ||||||
North | 11 | 0.6 | 18 | 1.6 | <0.001 | 0.13 |
Northeast | 62 | 3.5 | 84 | 7.3 | ||
Midwest | 113 | 6.4 | 120 | 10.4 | ||
Southeast | 1379 | 78.8 | 777 | 67.5 | ||
South | 187 | 10.7 | 152 | 13.2 | ||
Major occupational group | ||||||
White collar | 1128 | 64.4 | 940 | 81.7 | <0.001 | 0.19 |
Blue collar | 109 | 6.2 | 14 | 1.2 | ||
Pink collar | 5 | 0.3 | 0 | 0.0 | ||
Others | 510 | 29.1 | 197 | 17.1 | ||
Work arrangement | ||||||
Part time at home | 341 | 19.5 | 134 | 11.6 | <0.001 | 0.40 |
Part time not at home | 165 | 9.4 | 219 | 19.0 | ||
Full time at home | 941 | 53.7 | 259 | 22.5 | ||
Full time not at home | 200 | 11.4 | 454 | 39.4 | ||
Mixed | 105 | 6.0 | 85 | 7.4 | ||
Close contact with confirmed infected person | ||||||
Yes | 26 | 1.4 | 138 | 12.0 | <0.001 | 0.22 |
No | 870 | 49.7 | 483 | 42.0 | ||
Do not know | 856 | 48.9 | 530 | 46.0 | ||
Contact with suspected infected materials or people | ||||||
Yes | 65 | 3.7 | 190 | 16.5 | <0.001 | 0.22 |
No | 331 | 18.9 | 140 | 12.2 | ||
Do not know | 1356 | 77.4 | 821 | 71.3 | ||
Acceptance of COVID-19 infection as an occupational hazard | 1 | 4 | 6 | 8 | <0.001 | 1.29 |
Variable | PR | 95% CI | p-Value |
---|---|---|---|
Sex (ref. female) | |||
Male | 0.84 | 0.76–0.93 | 0.001 |
Age | 0.99 | 0.99–0.99 | <0.001 |
Marital status (ref. single) | |||
Married/cohabiting | 0.90 | 0.82–0.98 | 0.018 |
Separated/divorced | 0.90 | 0.77–1.06 | 0.203 |
Widowed | 0.90 | 0.57–1.43 | 0.665 |
Children (ref. no) | |||
Yes | 0.90 | 0.82–0.98 | 0.014 |
Work arrangement (ref. part time at home) | |||
Part time not at home | 0.94 | 0.80–1.10 | 0.409 |
Full time at home | 0.98 | 0.87–1.11 | 0.790 |
Full time not at home | 0.96 | 0.84–1.10 | 0.563 |
Mixed | 0.85 | 0.70–1.05 | 0.133 |
Employer provided all materials and means to work efficiently | 0.97 | 0.96–0.99 | <0.001 |
Employer provided all materials and means to work safely | 0.98 | 0.97–1.00 | 0.017 |
Experienced more conflicts at work | 1.03 | 1.01–1.04 | <0.001 |
Workload increase | 1.02 | 1.01–1.03 | 0.003 |
Work-related stress increase | 1.08 | 1.06–1.09 | <0.001 |
Current work satisfaction | 0.94 | 0.93–0.96 | <0.001 |
Self-perceived health status (ref. very good) | |||
Good | 0.94 | 0.48–1.83 | 0.862 |
Fair | 0.88 | 0.47–1.65 | 0.694 |
Poor | 0.75 | 0.40–1.40 | 0.372 |
Very poor | 0.59 | 0.32–1.11 | 0.100 |
Self-reported healthcare utilization (ref. no) | |||
Yes | 1.11 | 0.95–1.29 | 0.195 |
Clarity and accuracy of employer information | 0.98 | 0.97–0.99 | 0.021 |
Hours per day exposed to COVID-19 information (ref. up to 1 h) | |||
>1 up to 4 h | 1.07 | 0.96–1.20 | 0.238 |
>4 up to 8 h | 1.15 | 1.01–1.32 | 0.042 |
>8 h | 1.18 | 1.02–1.37 | 0.029 |
Self-perceived COVID-19 prognosis knowledge | 0.99 | 0.97–1.01 | 0.194 |
Self-perceived COVID-19 treatment knowledge | 0.98 | 0.96–0.99 | 0.008 |
COVID-19 basic knowledge score | 0.95 | 0.90–1.00 | 0.050 |
Living with an infected family member (ref. yes) | |||
No | 1.69 | 1.46–1.96 | <0.001 |
Have not had an infected family member | 2.30 | 2.05–2.57 | <0.001 |
Any co-worker infected (ref. yes) | |||
No | 0.92 | 0.81–1.04 | 0.168 |
Do not know | 0.98 | 0.86–1.11 | 0.757 |
Contact with suspected infected materials or people (ref. yes) | |||
No | 0.99 | 0.84–1.18 | 0.932 |
Do not know | 0.88 | 0.76–1.02 | 0.082 |
Tested for COVID-19 (ref. yes) | |||
No | 1.14 | 0.94–1.38 | 0.188 |
Number of COVID-19 symptoms presented (ref. none) | |||
One | 1.22 | 1.06–1.41 | 0.007 |
Between two and four | 1.35 | 1.19–1.53 | <0.001 |
Between five and seven | 1.55 | 1.32–1.82 | <0.001 |
Between eight and ten | 1.76 | 1.15–2.69 | 0.009 |
COVID-19 risk perception score | 1.02 | 1.01–1.02 | <0.001 |
Self-perception of work as a risk for COVID-19 | 1.01 | 1.00–1.02 | 0.134 |
Perceived effectiveness of preventive measures | 0.97 | 0.95–0.99 | 0.032 |
Sense of coherence | 0.99 | 0.98–0.99 | <0.001 |
Work engagement | 0.87 | 0.84–0.90 | <0.001 |
Variable | PR | 95% CI | p-Value |
---|---|---|---|
Work-related stress increase | 1.04 | 1.02–1.05 | <0.001 |
Living with an infected family member (ref. yes) | |||
No | 1.49 | 1.28–1.73 | <0.001 |
Have not had an infected family member | 1.82 | 1.60–2.06 | <0.001 |
Sense of coherence | 0.99 | 0.96–0.99 | 0.024 |
Variable | PR | 95% CI | p-Value |
---|---|---|---|
Sense of coherence X Living with an infected family member | |||
Sense of coherence X Living with an infected family member | 0.989 | 0.987–0.991 | <0.001 |
Sense of coherence X Not living with an infected family member | 0.994 | 0.991–0.995 | <0.001 |
Sense of coherence X Not having an infected family member | 0.998 | 0.996–0.999 | 0.044 |
Work stress increase X Living with an infected family member | |||
Work stress increase X Living with an infected family member | 1.086 | 1.057–1.115 | <0.001 |
Work stress increase X Not living with an infected family member | 1.056 | 1.025–1.087 | <0.001 |
Work stress increase X Not having an infected family member | 1.014 | 0.997–1.031 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, M.S.; Lima, M.C.P.; Dias, A.; Nunes, H.R.d.C.; Ruiz-Frutos, C.; Fagundo-Rivera, J.; Gómez-Salgado, J.; Bernardes, J.M. Workers’ Psychological Distress During the Early Months of the COVID-19 Pandemic in Brazil: A Cross-Sectional Study. Behav. Sci. 2025, 15, 358. https://doi.org/10.3390/bs15030358
Alonso MS, Lima MCP, Dias A, Nunes HRdC, Ruiz-Frutos C, Fagundo-Rivera J, Gómez-Salgado J, Bernardes JM. Workers’ Psychological Distress During the Early Months of the COVID-19 Pandemic in Brazil: A Cross-Sectional Study. Behavioral Sciences. 2025; 15(3):358. https://doi.org/10.3390/bs15030358
Chicago/Turabian StyleAlonso, Melissa Spröesser, Maria Cristina Pereira Lima, Adriano Dias, Hélio Rubens de Carvalho Nunes, Carlos Ruiz-Frutos, Javier Fagundo-Rivera, Juan Gómez-Salgado, and João Marcos Bernardes. 2025. "Workers’ Psychological Distress During the Early Months of the COVID-19 Pandemic in Brazil: A Cross-Sectional Study" Behavioral Sciences 15, no. 3: 358. https://doi.org/10.3390/bs15030358
APA StyleAlonso, M. S., Lima, M. C. P., Dias, A., Nunes, H. R. d. C., Ruiz-Frutos, C., Fagundo-Rivera, J., Gómez-Salgado, J., & Bernardes, J. M. (2025). Workers’ Psychological Distress During the Early Months of the COVID-19 Pandemic in Brazil: A Cross-Sectional Study. Behavioral Sciences, 15(3), 358. https://doi.org/10.3390/bs15030358