Can the Spontaneous Electroencephalography Theta/Beta Power Ratio and Alpha Oscillation Measure Individuals’ Attentional Control?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Materials
2.2.1. Subjective Attentional Control Measure: ACS
2.2.2. Objective Attentional Control Measure: Flanker Task
2.3. Experimental Procedure
2.4. EEG Data
2.4.1. EEG Data Collection
2.4.2. EEG Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Preliminary Analyses
3.2. Correlation between the Theta/Beta Power Ratio and Subjective/Objective Attentional Control Measures
3.2.1. Eyes-Open Condition
3.2.2. Eyes-Closed Condition
3.3. Correlation between Alpha Power and Subjective/Objective Attentional Control Measures
3.3.1. Eyes-Open Condition
3.3.2. Eyes-Closed Condition
3.4. Correlation between Attentional Control Measures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Shipstead, Z.; Lindsey, D.R.B.; Marshall, R.L.; Engle, R.W. The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control. J. Mem. Lang. 2014, 72, 116–141. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Paulus, M.P. Cognitive control in depression and anxiety: Out of control? Curr. Opin. Behav. Sci. 2015, 1, 113–120. [Google Scholar] [CrossRef]
- Zainal, N.H.; Newman, M.G. Executive function and other cognitive deficits are distal risk factors of generalized anxiety disorder 9 years later. Psychol. Med. 2018, 48, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Kertz, S.J.; Belden, A.C.; Tillman, R.; Luby, J. Cognitive control deficits in shifting and inhibition in preschool age children are associated with increased depression and anxiety over 7.5 years of development. J. Abnorm. Child Psychol. 2016, 44, 1185–1196. [Google Scholar] [CrossRef]
- Gagne, J.R.; O’Sullivan, D.L.; Schmidt, N.L.; Spann, C.A.; Goldsmith, H.H. The shared etiology of attentional control and anxiety: An adolescent twin study. J. Res. Adolesc. 2017, 27, 122–138. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. The relations among inhibition and interference control functions: A latent-variable analysis. J. Exp. Psychol. Gen. 2004, 133, 101–135. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. The nature and organization of individual differences in executive functions: Four general conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Derryberry, D.; Reed, M.A. Anxiety-related attentional biases and their regulation by attentional control. J. Abnorm. Psychol. 2002, 111, 225. [Google Scholar] [CrossRef]
- Putman, P.; van Peer, J.; Maimari, I.; van der Werff, S. EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biol. Psychol. 2010, 83, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Putman, P.; Verkuil, B.; Arias-Garcia, E.; Pantazi, I.; van Schie, C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cogn. Affect. Behav. Neurosci. 2014, 14, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, A.; van der Does, W.; Schakel, L.; Putman, P. Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability. Biol. Psychol. 2016, 121, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, A.; Hagenaars, M.; van Son, D.; van der Does, W.; Putman, P. Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol. Psychol. 2018, 135, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Chang, L.; Huang, Q.; Zhou, R. Relation between Spontaneous Electroencephalographic Theta/Beta Power Ratio and Test Anxiety. Neurosci. Lett. 2020, 737, 135323. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Stancák, A.; Neuper, C., Jr. Event-related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. Int. J. Psychophysiol. 1996, 24, 39–46. [Google Scholar] [CrossRef]
- Morillas-Romero, A.; Tortella-Feliu, M.; Bornas, X.; Putman, P. Spontaneous EEG theta/beta ratio and delta–beta coupling in relation to attentional network functioning and self-reported attentional control. Cogn. Affect. Behav. Neurosci. 2015, 15, 598–606. [Google Scholar] [CrossRef]
- Clarke, A.R.; Barry, R.J.; Karamacoska, D.; Johnstone, S.J. The EEG Theta/Beta Ratio: A marker of Arousal or Cognitive Processing Capacity? Appl. Psychophysiol. Biofeedback 2019, 44, 123–129. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Li, H.; Wu, Z.; Zhao, Q.; Song, Y.; Liu, L.; Qian, Q.; Wang, Y.; Roodenrys, S.; Johnstone, S.J.; et al. Electroencephalogram theta/beta ratio and spectral power correlates of executive functions in children and adolescents with AD/HD. J. Atten. Disord. 2019, 23, 721–732. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Savostyanov, A.N.; Levin, E.A. Alpha oscillations as a correlate of trait anxiety. Int. J. Psychophysiol. 2004, 53, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Keune, P.M.; Hansen, S.; Weber, E.; Zapf, F.; Habich, J.; Muenssinger, J.; Wolf, S.; Schönenberg, M.; Oschmann, P. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis. Clin. Neurophysiol. 2017, 128, 1746. [Google Scholar] [CrossRef]
- Jensen, O.; Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef]
- Händel, B.F.; Haarmeier, T.; Jensen, O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. J. Cogn. Neurosci. 2011, 23, 2494–2502. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Chen, X.; Wang, Y.-J.; Zhao, W.; Yuan, H.; Lei, X. Reproducibility of power spectrum, functional connectivity and network construction in resting-state EEG. J. Neurosci. Methods 2021, 348, 11. [Google Scholar] [CrossRef]
- Todd, J.; Notebaert, L.; Clarke, P.J. The association between self-report and behavioural measure of attentional control: Evidence of no relationship between ACS scores and antisaccade performance. Personal. Individ. Differ. 2022, 184, 5. [Google Scholar] [CrossRef]
- Quigley, L.; Wright, C.A.; Dobson, K.S.; Sears, C.R. Measuring Attentional Control Ability or Beliefs? Evaluation of the Factor Structure and Convergent Validity of the Attentional Control Scale. J. Psychopathol. Behav. Assess. 2017, 39, 742–754. [Google Scholar] [CrossRef]
- Groom, M.J.; Cragg, L. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition. Brain Cogn. 2015, 97, 1–9. [Google Scholar] [CrossRef]
- Kopp, B.; Rist, F.; Mattler, U. N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology 1996, 33, 282–294. [Google Scholar] [CrossRef]
- Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef]
- Scharinger, C.; Soutschek, A.; Schubert, T.; Gerjets, P. When flanker meets the n-back: What EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology 2015, 52, 1293–1304. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ye, M.; Chang, L.; Chen, W.; Zhou, R. Effect of working memory updating training on retrieving symptoms of children with learning disabilities. J. Learn. Disabil. 2018, 51, 507–519. [Google Scholar] [CrossRef] [PubMed]
- González-Villar, A.J.; Carrillo-De-La-Peña, M.T. Brain electrical activity signatures during performance of the multisource interference task. Psychophysiology 2017, 54, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. The Effects of Emotion, Emotion Regulation Strategy and Attentional Control on Athletes’ Attentional Bias; Beijing Sport University: Beijing, China, 2015. [Google Scholar]
- Tillman, C.M.; Wiens, S. Behavioral and ERP indices of response conflict in Stroop and Flanker tasks. Psychophysiology 2011, 48, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Kałamała, P.; Szewczyk, J.; Senderecka, M.; Wodniecka, Z. Flanker task with equiprobable congruent and incongruent conditions does not elicit the conflict N2. Psychophysiology 2018, 55, e12980. [Google Scholar] [CrossRef] [PubMed]
- Harty, S.; Kadosh, R.C. Suboptimal Engagement of High-Level Cortical Regions Predicts Random-Noise-Related Gains in Sustained Attention. Psychol. Sci. 2019, 30, 1318–1332. [Google Scholar] [CrossRef]
- Pratt, N.; Willoughby, A.; Swick, D. Effects of working memory load on visual selective attention: Behavioral and electrophysiological evidence. Front. Hum. Neurosci. 2011, 5, 57. [Google Scholar] [CrossRef]
- Qi, S.; Zeng, Q.; Luo, Y.; Duan, H.; Ding, C.; Hu, W.; Li, H. Impact of working memory load on cognitive control in trait anxiety: An ERP study. PLoS ONE 2014, 9, e111791. [Google Scholar] [CrossRef]
Theta/Beta Power Ratio | Alpha Power | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Open | Close | Open | Close | |||||||||
Fz | Cz | Pz | Fz | Cz | Pz | Fz | Cz | Pz | Fz | Cz | Pz | |
M | 2.33 | 2.39 | 2.08 | 2.49 | 2.48 | 2.20 | 1.93 | 1.98 | 2.00 | 3.95 | 4.06 | 4.10 |
SE | 0.069 | 0.062 | 0.056 | 0.080 | 0.082 | 0.082 | 0.079 | 0.080 | 0.095 | 0.230 | 0.236 | 0.277 |
ACS | RT_Interference | N2d | P3d | ||
---|---|---|---|---|---|
Open_θ/β_Fz | r | −0.263 | −0.092 | −0.005 | 0.056 |
p | 0.046 * | 0.491 | 0.97 | 0.677 | |
Open_θ/β_Cz | r | −0.249 | −0.015 | −0.051 | −0.035 |
p | 0.059 | 0.913 | 0.703 | 0.796 | |
Open_θ/β_Pz | r | −0.263 | 0.058 | −0.066 | −0.027 |
p | 0.046 * | 0.668 | 0.624 | 0.843 | |
Close_θ/β_Fz | r | −0.223 | −0.045 | −0.055 | 0.053 |
p | 0.093 | 0.736 | 0.679 | 0.695 | |
Close_θ/β_Cz | r | −0.238 | −0.025 | −0.082 | 0.010 |
p | 0.072 | 0.851 | 0.540 | 0.943 | |
Close_θ/β_Pz | r | −0.246 | 0.047 | −0.081 | −0.037 |
p | 0.063 | 0.729 | 0.544 | 0.785 |
ACS | RT_Interference | N2d | P3d | ||
---|---|---|---|---|---|
Open_α_Fz | r | −0.131 | −0.161 | 0.007 | 0.081 |
p | 0.326 | 0.228 | 0.956 | 0.548 | |
Open_α_Cz | r | −0.086 | −0.188 | 0.058 | 0.155 |
p | 0.522 | 0.156 | 0.667 | 0.245 | |
Open_α_Pz | r | −0.096 | −0.266 | 0.067 | 0.186 |
p | 0.474 | 0.044 * | 0.618 | 0.162 | |
Close_α_Fz | r | −0.046 | −0.05 | 0.235 | 0.254 |
p | 0.734 | 0.711 | 0.076 | 0.054 | |
Close_α_Cz | r | −0.055 | −0.095 | 0.235 | 0.292 |
p | 0.682 | 0.478 | 0.076 | 0.026 * | |
Close_α_Pz | r | 0.006 | −0.166 | 0.220 | 0.285 |
p | 0.964 | 0.214 | 0.096 | 0.030 * |
ACS | RT_Interference | N2d | P3d | ||
---|---|---|---|---|---|
ACS | r | — | |||
p | — | ||||
RT_Interference | r | 0.305 | — | ||
p | 0.020 * | — | |||
N2d | r | 0.204 | 0.092 | — | |
p | 0.124 | 0.493 | — | ||
P3d | r | 0.152 | −0.261 | 0.413 | — |
p | 0.255 | 0.047 * | 0.001 * | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Chen, L.; Zhao, L. Can the Spontaneous Electroencephalography Theta/Beta Power Ratio and Alpha Oscillation Measure Individuals’ Attentional Control? Behav. Sci. 2024, 14, 227. https://doi.org/10.3390/bs14030227
Wei H, Chen L, Zhao L. Can the Spontaneous Electroencephalography Theta/Beta Power Ratio and Alpha Oscillation Measure Individuals’ Attentional Control? Behavioral Sciences. 2024; 14(3):227. https://doi.org/10.3390/bs14030227
Chicago/Turabian StyleWei, Hua, Lele Chen, and Lijun Zhao. 2024. "Can the Spontaneous Electroencephalography Theta/Beta Power Ratio and Alpha Oscillation Measure Individuals’ Attentional Control?" Behavioral Sciences 14, no. 3: 227. https://doi.org/10.3390/bs14030227
APA StyleWei, H., Chen, L., & Zhao, L. (2024). Can the Spontaneous Electroencephalography Theta/Beta Power Ratio and Alpha Oscillation Measure Individuals’ Attentional Control? Behavioral Sciences, 14(3), 227. https://doi.org/10.3390/bs14030227