The Workaholism–Technostress Interplay: Initial Evidence on Their Mutual Relationship
Abstract
:1. Introduction
2. The Relationship between Technostress and Workaholism
3. Materials and Methods
3.1. Participants and Procedure
3.2. Measures
3.3. Data Analysis
4. Results
4.1. Characteristics of Participants
4.2. Items Analysis
4.3. Attrition Analysis
4.4. Bivariate Correlations
4.5. Test of Measurement Model
4.6. Analysis of the Cross-Lagged Paths
5. Discussion
5.1. Practical Implications
5.2. Limitations and Further Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
T1 | T2 | |||||||
---|---|---|---|---|---|---|---|---|
Variables | M | SD | SK | K | M | SD | SK | K |
Multidimensional workaholism scale | ||||||||
| 3.05 | 1.10 | −0.31 | −0.70 | 3.03 | 1.13 | −0.01 | −0.79 |
| 3.23 | 1.24 | −0.16 | −0.93 | 3.27 | 1.16 | −0.22 | −0.73 |
| 2.90 | 1.24 | 0.04 | −0.93 | 2.73 | 1.11 | 0.20 | −0.65 |
| 3.03 | 1.14 | −0.27 | −0.76 | 3.02 | 1.14 | −0.11 | −0.67 |
| 2.73 | 1.23 | 0.32 | −0.85 | 2.63 | 1.10 | 0.42 | −0.51 |
| 2.62 | 1.09 | 0.31 | −0.55 | 2.66 | 1.06 | 0.39 | −0.46 |
| 2.43 | 1.09 | 0.65 | −0.19 | 2.37 | 1.11 | 0.41 | −0.75 |
| 2.55 | 1.22 | 0.39 | −0.96 | 2.63 | 1.11 | 0.38 | −0.69 |
| 2.22 | 1.22 | 0.82 | −0.24 | 2.27 | 1.21 | 0.58 | −0.73 |
| 1.89 | 0.94 | 1.20 | 1.67 | 2.09 | 1.15 | 0.78 | −0.47 |
| 2.25 | 1.15 | 0.73 | −0.18 | 2.37 | 1.15 | 0.52 | −0.60 |
| 2.68 | 1.22 | 0.30 | −0.84 | 2.65 | 1.15 | 0.46 | −0.46 |
| 2.42 | 1.09 | 0.34 | −0.74 | 2.38 | 1.13 | 0.57 | −0.48 |
| 3.25 | 1.21 | −0.15 | −0.81 | 3.16 | 1.17 | 0.09 | −0.89 |
| 2.85 | 1.32 | 0.09 | −1.08 | 2.68 | 1.23 | 0.40 | −0.78 |
| 3.13 | 1.37 | −0.09 | −1.23 | 2.98 | 1.28 | 0.01 | −1.14 |
Technostress creators scale | ||||||||
| 2.95 | 1.27 | −0.01 | −1.03 | 3.13 | 1.19 | −0.13 | −0.89 |
| 2.87 | 1.26 | 0.65 | −0.99 | 2.90 | 1.19 | 0.13 | −0.78 |
| 2.86 | 1.21 | 0.06 | −0.87 | 2.97 | 1.23 | −0.06 | −0.94 |
| 2.74 | 1.35 | 0.22 | −1.14 | 2.82 | 1.27 | 0.23 | −0.96 |
| 2.44 | 1.23 | 0.50 | −0.83 | 2.56 | 1.22 | 0.55 | −0.60 |
| 2.39 | 1.39 | 0.57 | −1.00 | 2.65 | 1.37 | 0.26 | −1.19 |
| 2.87 | 1.43 | 0.11 | −1.29 | 2.77 | 1.39 | 0.26 | −1.13 |
| 1.87 | 1.03 | 1.11 | 0.72 | 2.18 | 1.27 | 0.78 | −0.47 |
| 1.90 | 1.08 | 1.13 | 0.64 | 1.97 | 1.12 | 0.94 | 0.06 |
| 2.32 | 1.20 | 0.55 | −0.66 | 2.34 | 1.15 | 0.44 | −0.73 |
| 1.88 | 1.03 | 1.15 | 0.85 | 1.96 | 1.15 | 1.07 | 0.31 |
References
- Kraugusteeliana, K.; Surjati, E.; Ausat, A.M.A.; Pramono, S.A.; Prabu, H.K. A Literature Review on the Application of Technology During Covid-19 and Its Relationship to Performance. Int. J. Artif. Intell. 2023, 6. [Google Scholar]
- Kudyba, S. COVID-19 and the acceleration of digital transformation and the future of work. Inf. Syst. Manag 2020, 37, 284–287. [Google Scholar] [CrossRef]
- Yang, L.; Holtz, D.; Jaffe, S.; Suri, S.; Sinha, S.; Weston, J.; Joyce, C.; Shah, N.; Sherman, K.; Hecht, B.; et al. The effects of remote work on collaboration among information workers. Nat. Hum. Behav. 2022, 6, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Chesley, N. Information and communication technology use, work intensification and employee strain and distress. Work Employ. Soc. 2014, 28, 589–610. [Google Scholar] [CrossRef]
- Green, F. Work intensification, discretion, and the decline in well-being at work. East. Econ. J. 2004, 30, 615–625. [Google Scholar]
- Maume, D.J.; Purcell, D.A. The ‘over-paced’ American: Recent trends in the intensification of work. Workplace Temporalities 2007, 17, 251–283. [Google Scholar]
- Afshari, L.; Hayat, A.; Ramachandran, K.K.; Bartram, T.; Balakrishnan, B.K. Threat or opportunity: Accelerated job demands during COVID-19 pandemic. Pers. Rev. 2022, 51, 2482–2501. [Google Scholar] [CrossRef]
- Kim, K.H.; Chon, M.G. When work and life boundaries are blurred: The effect of after-hours work communication through communication technology on employee outcomes. J. Commun. Manag. 2022, 26, 386–400. [Google Scholar] [CrossRef]
- Cavazotte, F.; Heloisa Lemos, A.; Villadsen, K. Corporate smart phones: Professionals’ conscious engagement in escalating work connectivity. New Technol. Work Employ. 2014, 29, 72–87. [Google Scholar] [CrossRef]
- van Zoonen, W.; Sivunen, A.E.; Treem, J.W. Examining the longitudinal relationship between visibility and persistence on stress and technology-assisted supplemental work. Hum. Commun. Res. 2023, 49, 13–23. [Google Scholar] [CrossRef]
- Kossek, E.E. Managing work-life boundaries in the digital age. Organ. Dyn. 2016, 45, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Reyes, J.; Acosta-Prado, J.C.; Sanchís-Pedregosa, C. Relationship amongst technology use, work overload, and psychological detachment from work. Int. J. Environ. Res. Public Health 2019, 16, 4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenner, G.H.; Renn, R.W. Technology-assisted supplemental work and work-to-family conflict: The role of instrumentality beliefs, organizational expectations and time management. Hum. Relat. 2010, 63, 63–82. [Google Scholar] [CrossRef]
- Davis, G.B. Anytime/anyplace computing and the future of knowledge work. Commun. ACM 2002, 45, 67–73. [Google Scholar] [CrossRef]
- Kondrysova, K.; Leugnerova, M.; Kratochvil, T. Availability Expectations and Psychological Detachment: The Role of Workrelated Smartphone Use during Non-work Hours and Segmentation Preference. J. Work. Organ. Psychol. 2022, 38, 75–84. [Google Scholar] [CrossRef]
- Cambier, R.; Vlerick, P. You’ve got mail: Does workplace telepressure relate to email communication? Cogn. Technol. Work 2020, 22, 633–640. [Google Scholar] [CrossRef]
- Shakhova, Z. Deconnection Strategies–A Solution to Decrease Workplace Telepressure and Increase Psychological Detachment? Master’s Thesis, University of Tilburg, Tilburg, The Netherlands, 2022. [Google Scholar]
- Knardahl, S.; Christensen, J.O. Working at home and expectations of being available: Effects on perceived work environment, turnover intentions, and health. Scand. J. Work. Environ. Health 2022, 48, 99. [Google Scholar] [CrossRef]
- Derks, D.; Bakker, A.B. Smartphone use, work–home interference, and burnout: A diary study on the role of recovery. J. Appl. Psychol. 2014, 63, 411–440. [Google Scholar] [CrossRef]
- Mellner, C.; Peters, P.; Dragt, M.J.; Toivanen, S. Predicting Work-Life Conflict: Types and Levels of Enacted and Preferred Work-Nonwork Boundary (In) Congruence and Perceived Boundary Control. Front. Psychol. 2021, 12, 5292. [Google Scholar] [CrossRef]
- Brod, C. Technostress: The Human Cost of the Computer Revolution; Addison-Wesley Publishing Company: Reading, MA, USA, 1984. [Google Scholar]
- Porter, G. Organizational impact of workaholism: Suggestions for researching the negative outcomes of excessive work. J. Occup. Health Psychol. 1996, 1, 70–84. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Taris, T.W.; Bakker, A.B. It takes two to tango: Workaholism is working excessively and working compulsively. In The Long Work Hours Culture: Causes, Consequences and Choices; Burke, R.J., Cooper, C.L., Eds.; Emerald: Bingley, UK, 2008; pp. 203–226. [Google Scholar]
- Porter, G.; Kakabadse, N.K. HRM perspectives on addiction to technology and work. J. Manag. Dev. 2006, 25, 535–560. [Google Scholar] [CrossRef]
- Molino, M.; Ingusci, E.; Signore, F.; Manuti, A.; Giancaspro, M.L.; Russo, V.; Zito, M.; Cortese, C.G. Wellbeing costs of technology use during Covid-19 remote working: An investigation using the Italian translation of the technostress creators scale. Sustainability 2020, 12, 5911. [Google Scholar] [CrossRef]
- Spagnoli, P.; Molino, M.; Molinaro, D.; Giancaspro, M.L.; Manuti, A.; Ghislieri, C. Workaholism and technostress during the COVID-19 emergency: The crucial role of the leaders on remote working. Front. Psychol. 2020, 11, 620310. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. In Proceedings of the WHO European Ministerial Conference on Mental Health: Mental Health Declaration for Europe: Facing the Challenges, Building Solutions, Helsinki, Finland, 12–15 January 2005.
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological antecedents and implications. MIS Q. 2011, 35, 831–858. [Google Scholar] [CrossRef] [Green Version]
- Ragu-Nathan, T.S.; Tarafdar, M.; Ragu-Nathan, B.S.; Tu, Q. The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Inf. Syst. Res. 2008, 19, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, T.S. Impact of technostress on end-user satisfaction and performance. J. Manag. Inf. Syst. 2010, 27, 303–334. [Google Scholar] [CrossRef]
- Rohwer, E.; Flöther, J.C.; Harth, V.; Mache, S. Overcoming the “Dark Side” of Technology—A scoping review on preventing and coping with work-related technostress. Int. J. Environ. Res. Public Health 2022, 19, 3625. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, B.S.; Ragu-Nathan, T.S. The impact of technostress on role stress and productivity. J. Manag. Inf. Syst. 2007, 24, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Schaufeli, W.B.; Taris, T.W. A critical review of the job demands-resources model: Implications for improving work and health. In Bridging Occupational, Organizational and Public Health: A Transdisciplinary Approach; Bauer, G.F., Hämmig, O., Eds.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2014; pp. 43–68. [Google Scholar]
- Caesens, G.; Stinglhamber, F.; Luypaert, G. The impact of work engagement and workaholism on well-being: The role of work-related social support. Career Dev. Int. 2014, 19, 813–835. [Google Scholar] [CrossRef]
- Kouzmin, A.; Korac-Kakabadse, N. Mapping institutional impacts of lean communication in lean agencies: Information technology illiteracy and leadership failure. Adm. Soc. 2000, 32, 29–69. [Google Scholar] [CrossRef]
- Clark, M.A.; Smith, R.W.; Haynes, N.J. The Multidimensional Workaholism Scale: Linking the conceptualization and measurement of workaholism. J. Appl. Psychol. 2020, 105, 1281–1307. [Google Scholar] [CrossRef] [PubMed]
- Schaufeli, W.B.; Shimazu, A.; Taris, T.W. Being driven to work excessively hard: The evaluation of a two-factor measure of workaholism in the Netherlands and Japan. Cross Cult. Res. 2009, 43, 320–348. [Google Scholar] [CrossRef] [Green Version]
- Langseth-Eide, B. It’s been a hard day’s night and I’ve been working like a dog: Workaholism and work engagement in the JD-R model. Front. Psychol. 2019, 10, 1444. [Google Scholar] [CrossRef] [PubMed]
- Schaufeli, W.B. Heavy work investment, personality and organizational climate. J. Manag. Psychol. 2016, 31, 1057–1073. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Bakker, A.B.; Bjorvatn, B.; Moen, B.E.; Magerøy, N.; Shimazu, A.; Hetland, J.; Pallesen, S. Working conditions and individual differences are weakly associated with workaholism: A 2–3-year prospective study of shift-working nurses. Front. Psychol. 2017, 8, 2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Stefano, G.; Gaudiino, M. Workaholism and work engagement: How are they similar? How are they different? A systematic review and meta-analysis. Eur. J. Work Organ. Psychol. 2019, 28, 329–347. [Google Scholar] [CrossRef]
- Molino, M.; Bakker, A.B.; Ghislieri, C. The role of workaholism in the job demands-resources model. Anxiety Stress Coping 2016, 29, 400–414. [Google Scholar] [CrossRef]
- Balducci, C.; Spagnoli, P.; Clark, M. Advancing workaholism research. Int. J. Environ. Res. Public Health 2020, 17, 9435. [Google Scholar] [CrossRef]
- Scott, K.S.; Moore, K.S.; Miceli, M.P. An exploration of the meaning and consequences of workaholism. Hum. Relat. 1997, 50, 287–314. [Google Scholar] [CrossRef]
- Balducci, C.; Spagnoli, P.; Toderi, S.; Clark, M.A. A within-individual investigation on the relationship between day level workaholism and systolic blood pressure. Work Stress 2022, 36, 337–354. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.W.; Sorensen, K.L.; Feldman, D.C. Dimensions, antecedents, and consequences of workaholism: A conceptual integration and extension. J. Organ. Behav. 2007, 28, 111–136. [Google Scholar] [CrossRef]
- Porter, G. Workaholic tendencies and the high potential for stress among co-workers. Int. J. Stress Manag 2001, 8, 147–164. [Google Scholar] [CrossRef]
- Fleeson, W. The production mechanisms of traits: Reflections on two amazing decades. J. Res. Pers. 2017, 69, 4–12. [Google Scholar] [CrossRef]
- Salanova, M.; Llorens, S.; Cifre, E. The dark side of technologies: Technostress among users of information and communication technologies. Int. J. Psychol. 2013, 48, 422–436. [Google Scholar] [CrossRef] [Green Version]
- Quinones, C.; Griffiths, M.D.; Kakabadse, N.K. Compulsive Internet use and workaholism: An exploratory two-wave longitudinal study. Comput. Hum. Behav. 2016, 60, 492–499. [Google Scholar] [CrossRef]
- Spagnoli, P.; Balducci, C.; Fabbri, M.; Molinaro, D.; Barbato, G. Workaholism, intensive smartphone use, and the sleep-wake cycle: A multiple mediation analysis. Int. J. Environ. Res. Public Health 2019, 16, 3517. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 22.0; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Little, T.D.; Cunningham, W.A.; Shahar, G.; Widaman, K.F. To parcel or not to parcel: Exploring the question, weighing the merits. Struct. Equ. Model. 2002, 9, 151–173. [Google Scholar] [CrossRef]
- George, D.; Mallery, M. SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 Update, 10th ed.; Pearson: Boston, MA, USA, 2010. [Google Scholar]
- Gravetter, F.; Wallnau, L. Essentials of Statistics for the Behavioral Sciences, 8th ed.; Wadsworth: Belmont, CA, USA, 2014. [Google Scholar]
- McDonald, R.P.; Marsh, H.W. Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychol. Bull. 1990, 107, 247–255. [Google Scholar] [CrossRef]
- Steiger, J.H. Understanding the limitations of global fit assessment in structural equation modeling. Pers. Individ. Differ. 2007, 42, 893–898. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Arbuckle, J.L.; Wothke, W. Amos 4.0 User’s Guide. Chicago: Marketing Department; SPSS Incorporated: Chicago, IL, USA, 1999. [Google Scholar]
- Kenny, D.A.; Kaniskan, B.; McCoach, D.B. The performance of RMSEA in models with small degrees of freedom. Sociol. Methods Res. 2015, 44, 486–507. [Google Scholar] [CrossRef]
- Joreskog, K.G.; Sorbom, D. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language; Scientific Software International: Chicago, IL, USA, 1993. [Google Scholar]
- Clark, M.A.; Michel, J.S.; Zhdanova, L.; Pui, S.Y.; Baltes, B.B. All work and no play? A meta-analytic examination of the correlates and outcomes of workaholism. J. Manag. 2016, 42, 1836–1873. [Google Scholar] [CrossRef]
- Clark, M.A.; Michel, J.S.; Stevens, G.W.; Howell, J.W.; Scruggs, R.S. Workaholism, work engagement and work–home outcomes: Exploring the mediating role of positive and negative emotions. Stress Health 2014, 30, 287–300. [Google Scholar] [CrossRef]
- Bala, H.; Bhagwatwar, A. Employee dispositions to job and organization as antecedents and consequences of information systems use. Inf. Syst. J. 2018, 28, 650–683. [Google Scholar] [CrossRef]
- Korzynski, P.; Rook, C.; Florent Treacy, E.; Kets de Vries, M. The impact of self-esteem, conscientiousness and pseudo-personality on technostress. Internet Res. 2021, 31, 59–79. [Google Scholar] [CrossRef]
- Ma, Y.; Turel, O. Information technology use for work and technostress: Effects of power distance and masculinity culture dimensions. Cogn. Technol. Work 2019, 21, 145–157. [Google Scholar] [CrossRef]
- Geurts, S.A.E.; Sonnentag, S. Recovery as an explanatory mechanism in the relation between acute stress reactions and chronic health impairment. Scand. J. Work. Environ. Health 2006, 32, 482–492. [Google Scholar] [CrossRef] [Green Version]
- European Agency for Safety and Health at Work. Available online: https://osha.europa.eu/en/highlights/new-eu-survey-reveals-workplace-stress-rise-europe-covid-19 (accessed on 16 May 2023).
- Huyghebaert, T.; Fouquereau, E.; Lahiani, F.J.; Beltou, N.; Gimenes, G.; Gillet, N. Examining the longitudinal effects of workload on ill-being through each dimension of workaholism. Int. J. Stress Manag. 2018, 25, 144–162. [Google Scholar] [CrossRef]
- Falco, A.; Girardi, D.; Kravina, L.; Trifiletti, E.; Bartolucci, G.B.; Capozza, D.; De Carlo, N.A. The Mediating Role of Psychophysic Strain in the Relationship Between Workaholism, Job Performance, and Sickness Absence: A longitudinal study. J. Occup. Environ. Med. 2013, 55, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, C.S.; Pallesen, S.; Torsheim, T. Workaholism as a mediator between work-related stressors and health outcomes. Int. J. Environ. Res. Public Health 2018, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassler, M.; Rau, R.; Hupfeld, J.; Paridon, W.; Schuchart, U. Auswirkungen von Ständiger Erreichbarkeit und Präventionsmöglichkeiten, iga. Report 23; Initiative Gesundheit und Arbeit: Berlin, Germany, 2014. [Google Scholar]
- Fry, L.W.; Cohen, M.P. Spiritual leadership as a paradigm for organizational transformation and recovery from extended work hours cultures. J. Bus. Ethics 2009, 84, 265–278. [Google Scholar] [CrossRef]
- Mäkikangas, A.; Schaufeli, W.; Tolvanen, A.; Feldt, T. Engaged managers are not workaholics: Evidence from a longitudinal person-centered analysis. Eur. J. Work Organ. Psychol. 2013, 29, 135–143. [Google Scholar]
- Cossin, T.; Thaon, I.; Lalanne, L. Workaholism prevention in occupational medicine: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 7109. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Tang, R.; Posner, M.I. Mindfulness meditation improves emotion regulation and reduces drug abuse. Drug Alcohol Depend. 2016, 163, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Hassard, J.; Teoh, K.R.H.; Visockaite, G.; Dewe, P.; Cox, T. The cost of work-related stress to society: A systematic review. J. Occup. Health Psychol. 2018, 23, 1–17. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Burisch, M. A longitudinal study of burnout: The relative importance of dispositions and experiences. Work Stress 2002, 16, 1–17. [Google Scholar] [CrossRef]
Variables | M | S.D. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|
| 2.70 | 0.72 | (0.88) | |||||
| 2.46 | 0.85 | 0.26 ** | (0.89) | ||||
| 2.57 | 0.89 | 0.77 ** | 0.28 ** | (0.93) | |||
| 3.01 | 0.94 | 0.33 ** | 0.77 ** | 0.42 ** | (0.91) | ||
| – | – | 0.18 | 0.12 | 0.19 * | 0.09 | – | |
| 34.31 | 11.08 | −0.03 | 0.11 | −0.05 | 0.10 | −0.05 | – |
Models | χ2 (df) | CFI | TLI | RMSEA | SRMR |
---|---|---|---|---|---|
Workaholism (T1) | 148,952 (98) | 0.946 | 0.933 | 0.068 | 0.084 |
Workaholism (T2) | 150,509 (98) | 0.961 | 0.952 | 0.069 | 0.074 |
Technostress (T1) | 59,262 (41) | 0.977 | 0.969 | 0.063 | 0.064 |
Technostress (T2) | 75,967 (41) | 0.962 | 0.949 | 0.087 | 0.053 |
Models | χ2 (df) | CFI | TLI | RMSEA | SRMR |
---|---|---|---|---|---|
Model 1 Autoregressive | 96,286 (67) | 0.966 | 0.954 | 0.062 | 0.069 |
Model 2 Cross-lagged | 82,550 (65) | 0.980 | 0.971 | 0.049 | 0.057 |
Model 3 Cross-lagged | 85,132 (65) | 0.977 | 0.967 | 0.053 | 0.059 |
Model 4 Reciprocal cross-lagged | 81,092 (64) | 0.980 | 0.972 | 0.049 | 0.056 |
Paths | B | S.E. | C.R. |
---|---|---|---|
Model 1 Relationship between workaholism and technostress | |||
Technostress (T1) → Technostress (T2) | 0.95 ** | 0.116 | 8.160 |
Workaholism (T1) → Workaholism (T2) | 0.97 ** | 0.140 | 6.904 |
Workaholism (T1) → Technostress (T2) | 0.25 * | 0.126 | 1.966 |
Technostress (T1) → Workaholism (T2) | 0.08 | 0.065 | 1.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buono, C.; Farnese, M.L.; Spagnoli, P. The Workaholism–Technostress Interplay: Initial Evidence on Their Mutual Relationship. Behav. Sci. 2023, 13, 599. https://doi.org/10.3390/bs13070599
Buono C, Farnese ML, Spagnoli P. The Workaholism–Technostress Interplay: Initial Evidence on Their Mutual Relationship. Behavioral Sciences. 2023; 13(7):599. https://doi.org/10.3390/bs13070599
Chicago/Turabian StyleBuono, Carmela, Maria Luisa Farnese, and Paola Spagnoli. 2023. "The Workaholism–Technostress Interplay: Initial Evidence on Their Mutual Relationship" Behavioral Sciences 13, no. 7: 599. https://doi.org/10.3390/bs13070599