Evaluating Influencing Factors of Audiences’ Attitudes toward Virtual Concerts: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. The TAM and Virtual Concerts
2.2. The Importance of Player Experience in Virtual Concerts
2.2.1. Autonomy
2.2.2. Relatedness
2.2.3. Engagement
2.3. Research Model
3. Methods
3.1. Instruments
3.2. Participants and Data Collection
3.3. Data Analysis Methods
4. Results
4.1. Measurement Tool Assessment
4.1.1. Results of the Reliability and Validity Tests
4.1.2. The Results of Discriminant Validity Test
4.2. Assessment of the Structural Model and the Hypotheses
4.2.1. Model Fit Index
4.2.2. Hypothesis Testing
5. Discussion
5.1. Results of the TAM and Its Antecedents
5.1.1. The Results Show That PU, PEOU, and PE Had Positive Influences on Audiences’ Attitudes
5.1.2. The Results Show That AU, RL, and EG Affect PU, PEOU, and PE in Different Degrees
5.2. Implications
5.3. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, J.; Xiao, X.; Xu, Z.; Wang, C.; Zhang, M.; Zhou, Y. The Potential of Virtual Tourism in the Recovery of Tourism Industry during the COVID-19 Pandemic. Curr. Issues Tour. 2022, 25, 441–457. [Google Scholar] [CrossRef]
- Turchet, L. Musical Metaverse: Vision, Opportunities, and Challenges. Pers. Ubiquit. Comput. 2023, 1–17. [Google Scholar] [CrossRef]
- Onderdijk, K.E.; Swarbrick, D.; Van Kerrebroeck, B.; Mantei, M.; Vuoskoski, J.K.; Maes, P.-J.; Leman, M. Livestream Experiments: The Role of COVID-19, Agency, Presence, and Social Context in Facilitating Social Connectedness. Front. Psychol. 2021, 12, 1741. [Google Scholar] [CrossRef]
- Solihah, F. Fans’ Satisfaction on Watching Virtual Concert During COVID-19 Pandemic; Atlantis Press: Amsterdam, The Netherlands, 2021; pp. 154–156. [Google Scholar] [CrossRef]
- d’Hoop, A.; Pols, J. ‘The Game Is on!’ Eventness at a Distance at a Livestream Concert during Lockdown. Ethnography 2022, 14661381221124502. [Google Scholar] [CrossRef]
- Chang, W.; Shin, H.-D. Virtual Experience in the Performing Arts: K-Live Hologram Music Concerts. Pop. Entertain. Stud. 2019, 10, 34–50. [Google Scholar]
- McLeod, K. Living in the Immaterial World: Holograms and Spirituality in Recent Popular Music. Pop. Music. Soc. 2016, 39, 501–515. [Google Scholar] [CrossRef]
- Michaud, A. Locating Liveness in Holographic Performances: Technological Anxiety and Participatory Fandom at Vocaloid Concerts. Pop. Music 2022, 41, 1–19. [Google Scholar] [CrossRef]
- Beacco, A.; Oliva, R.; Cabreira, C.; Gallego, J.; Slater, M. Disturbance and Plausibility in a Virtual Rock Concert: A Pilot Study. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisbon, Portugal, 27 March–1 April 2021; pp. 538–545. [Google Scholar] [CrossRef]
- Charron, J.-P. Music Audiences 3.0: Concert-Goers’ Psychological Motivations at the Dawn of Virtual Reality. Front. Psychol. 2017, 8, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böcker, T.; Fritsch, M.; Summers, T. Producing Game Music Concerts. In The Cambridge Companion to Video Game Music; Fritsch, M., Summers, T., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 424–432. [Google Scholar] [CrossRef]
- Jin, C.; Wu, F.; Wang, J.; Liu, Y.; Guan, Z.; Han, Z. MetaMGC: A Music Generation Framework for Concerts in Metaverse. J. Audio Speech Music Proc. 2022, 2022, 31. [Google Scholar] [CrossRef]
- In the Metaverse, Live Concerts Hold More Appeal Than Live Sports and Shopping—Morning Consult. Available online: https://morningconsult.com/2022/04/11/metaverse-activities-generations-survey/ (accessed on 8 May 2023).
- Deacon, T.; Stockman, T.; Barthet, M. User Experience in an Interactive Music Virtual Reality System: An Exploratory Study. In Bridging People and Sound; Aramaki, M., Kronland-Martinet, R., Ystad, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 192–216. [Google Scholar] [CrossRef]
- Botstein, L. The Future of Music in America: The Challenge of the COVID-19 Pandemic. Musical Q. 2019, 102, 351–360. [Google Scholar] [CrossRef]
- Fox, M.A.; Breese, J.L.; Vaidyanathan, G. Live Music Performances and the Internet of Things. Inf. Syst. 2019, 21, 179–188. [Google Scholar]
- Zhang, X.; Wang, J.; Cheng, N.; Xiao, J. Singer Identification for Metaverse with Timbral and Middle-Level Perceptual Features. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Baym, N.K. Playing to the Crowd: Musicians, Audiences, and the Intimate Work of Connection; NYU Press: New York, NY, USA, 2018; Volume 14. [Google Scholar]
- Bennett, L. Patterns of Listening through Social Media: Online Fan Engagement with the Live Music Experience. Soc. Semiot. 2012, 22, 545–557. [Google Scholar] [CrossRef]
- Droste, M.; Letellier, J.; Sieck, J. An Interactive Classical VR Concert Featuring Multiple Views. In Proceedings of the Second African Conference for Human Computer Interaction: Thriving Communities (AfriCHI ’18); Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Hwang, S.; Koo, G. Art Marketing in the Metaverse World: Evidence from South Korea. Cogent Soc. Sci. 2023, 9, 2175429. [Google Scholar] [CrossRef]
- Vandenberg, F.; Berghman, M.; Schaap, J. The ‘Lonely Raver’: Music Livestreams during COVID-19 as a Hotline to Collective Consciousness? Eur. Soc. 2021, 23 (Suppl. S1), S141–S152. [Google Scholar] [CrossRef]
- Vandenberg, F. Put Your “Hand Emotes in the Air:” Twitch Concerts as Unsuccessful Large-Scale Interaction Rituals. Symb. Interact. 2022, 45, 425–448. [Google Scholar] [CrossRef]
- Yoon, H.; Song, C.; Ha, M.; Kim, C. Impact of COVID-19 Pandemic on Virtual Korean Wave Experience: Perspective on Experience Economy. Sustainability 2022, 14, 14806. [Google Scholar] [CrossRef]
- Chang, C.-C. Examining Users′ Intention to Continue Using Social Network Games: A Flow Experience Perspective. Telemat. Inform. 2013, 30, 311–321. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Lu, H.-P. Why Do People Play On-Line Games? An Extended TAM with Social Influences and Flow Experience. Inf. Manag. 2004, 41, 853–868. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X. Online Social Networking Sites Continuance Intention: A Model Comparison Approach. J. Comput. Inf. Syst. 2017, 57, 160–168. [Google Scholar] [CrossRef]
- Linares, M.; Gallego, M.D.; Bueno, S. Proposing a TAM-SDT-Based Model to Examine the User Acceptance of Massively Multiplayer Online Games. Int. J. Environ. Res. Public Health 2021, 18, 3687. [Google Scholar] [CrossRef]
- Moritzen, K. Opening Up Virtual Mosh Pits. J. Sound Music. Games 2022, 3, 115–140. [Google Scholar] [CrossRef]
- Bayram, A. Metaleisure: Leisure Time Habits to Be Changed with Metaverse. JMv 2022, 2, 1–7. [Google Scholar]
- Hamilton, R. Collaborative and Competitive Futures for Virtual Reality Music and Sound. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1510–1512. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Ozkale, A.; Koc, M. Investigating Academicians’ Use of Tablet PC from the Perspectives of Human Computer Interaction and Technology Acceptance Model. Int. J. Technol. Educ. Sci. 2020, 4, 37–52. [Google Scholar] [CrossRef]
- Ying, Z.; Jianqiu, Z.; Akram, U.; Rasool, H. TAM Model Evidence for Online Social Commerce Purchase Intention. Inf. Resour. Manag. J. IRMJ 2021, 34, 86–108. [Google Scholar] [CrossRef]
- Nadal, C.; Sas, C.; Doherty, G. Technology Acceptance in Mobile Health: Scoping Review of Definitions, Models, and Measurement. J. Med. Internet Res. 2020, 22, e17256. [Google Scholar] [CrossRef]
- Kurilovas, E.; Kubilinskiene, S. Lithuanian Case Study on Evaluating Suitability, Acceptance and Use of IT Tools by Students—An Example of Applying Technology Enhanced Learning Research Methods in Higher Education. Comput. Hum. Behav. 2020, 107, 106274. [Google Scholar] [CrossRef]
- Liu, K.; Tao, D. The Roles of Trust, Personalization, Loss of Privacy, and Anthropomorphism in Public Acceptance of Smart Healthcare Services. Comput. Hum. Behav. 2022, 127, 107026. [Google Scholar] [CrossRef]
- van der Heijden, H. User Acceptance of Hedonic Information Systems. MIS Q. 2004, 28, 695–704. [Google Scholar] [CrossRef]
- Magni, M.; Susan Taylor, M.; Venkatesh, V. ‘To Play or Not to Play’: A Cross-Temporal Investigation Using Hedonic and Instrumental Perspectives to Explain User Intentions to Explore a Technology. Int. J. Hum.-Comput. Stud. 2010, 68, 572–588. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Vorderer, P.; Klimmt, C.; Ritterfeld, U. Enjoyment: At the Heart of Media Entertainment. Commun. Theory 2004, 14, 388–408. [Google Scholar] [CrossRef]
- Sagnier, C.; Loup-Escande, E.; Lourdeaux, D.; Thouvenin, I.; Valléry, G. User Acceptance of Virtual Reality: An Extended Technology Acceptance Model. Int. J. Hum.-Comput. Interact. 2020, 36, 993–1007. [Google Scholar] [CrossRef]
- Rese, A.; Baier, D.; Geyer-Schulz, A.; Schreiber, S. How Augmented Reality Apps Are Accepted by Consumers: A Comparative Analysis Using Scales and Opinions. Technol. Forecast. Soc. Chang. 2017, 124, 306–319. [Google Scholar] [CrossRef]
- El-Said, O.; Aziz, H. Virtual Tours a Means to an End: An Analysis of Virtual Tours’ Role in Tourism Recovery Post COVID-19. J. Travel Res. 2022, 61, 528–548. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Chang, Y.-S.; Chang, H.-T.; Lin, Y.-W. Running on a Social Exercise Platform: Applying Self-Determination Theory to Increase Motivation to Participate in a Sporting Event. Comput. Hum. Behav. 2021, 114, 106523. [Google Scholar] [CrossRef]
- Jin, M.-J.; Kim, J.K. Customer Adoption Factors for In-Flight Entertainment and Connectivity. Res. Transp. Bus. Manag. 2022, 43, 100759. [Google Scholar] [CrossRef]
- Wiemeyer, J.; Nacke, L.; Moser, C.; ‘Floyd’ Mueller, F. Player Experience. In Serious Games: Foundations, Concepts and Practice; Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 243–271. [Google Scholar] [CrossRef]
- Drachen, A.; Mirza-Babaei, P.; Nacke, L.E. Games User Research; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Rienzo, A.; Cubillos, C. Playability and Player Experience in Digital Games for Elderly: A Systematic Literature Review. Sensors 2020, 20, 3958. [Google Scholar] [CrossRef]
- Ferdous, R.; Kifetew, F.; Prandi, D.; Susi, A. Towards Agent-Based Testing of 3D Games Using Reinforcement Learning. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–8. [Google Scholar]
- Drakopoulos, G.; Voutos, Y.; Mylonas, P. Annotation-Assisted Clustering of Player Profiles in Cultural Games: A Case for Tensor Analytics in Julia. Big Data Cogn. Comput. 2020, 4, 39. [Google Scholar] [CrossRef]
- Robinson, R.; Wiley, K.; Rezaeivahdati, A.; Klarkowski, M.; Mandryk, R.L. “Let’s Get Physiological, Physiological!”: A Systematic Review of Affective Gaming. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’20); Association for Computing Machinery: New York, NY, USA, 2020; pp. 132–147. [Google Scholar] [CrossRef]
- Abeele, V.V.; Spiel, K.; Nacke, L.; Johnson, D.; Gerling, K. Development and Validation of the Player Experience Inventory: A Scale to Measure Player Experiences at the Level of Functional and Psychosocial Consequences. Int. J. Hum.-Comput. Stud. 2020, 135, 102370. [Google Scholar] [CrossRef]
- Frommel, J.; Phillips, C.; Mandryk, R.L. Gathering Self-Report Data in Games Through NPC Dialogues: Effects on Data Quality, Data Quantity, Player Experience, and Information Intimacy. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21); Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Ryan, R.M.; Rigby, C.S.; Przybylski, A. The Motivational Pull of Video Games: A Self-Determination Theory Approach. Motiv. Emot. 2006, 30, 344–360. [Google Scholar] [CrossRef]
- Azadvar, A.; Canossa, A. UPEQ: Ubisoft Perceived Experience Questionnaire: A Self-Determination Evaluation Tool for Video Games. In Proceedings of the 13th International Conference on the Foundations of Digital Games; ACM: Malmö, Sweden, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Haider, A.; Harteveld, C.; Johnson, D.; Birk, M.; Mandryk, R.; El-Nasr, M.; Nacke, L.; Gerling, K.; Vanden Abeele, V. MiniPXI: Development and Validation of an Eleven-Item Measure of the Player Experience Inventory. Proc. ACM Hum.-Comput. Interact. 2022, 6, 1–26. [Google Scholar] [CrossRef]
- Phan, M.H.; Keebler, J.R.; Chaparro, B.S. The Development and Validation of the Game User Experience Satisfaction Scale (GUESS). Hum. Factors 2016, 58, 1217–1247. [Google Scholar] [CrossRef] [PubMed]
- Ijsselsteijn, W.; Poels, K.; Ravaja, N.; Turpeinen, M.; Vorderer, P. Measuring the Experience of Digital Game Enjoyment. In Proceedings of Measuring Behavior; Noldus: Maastricht, The Netherlands, 2008; Volume 2008, pp. 88–89. [Google Scholar]
- Jennett, C.; Cox, A.L.; Cairns, P.; Dhoparee, S.; Epps, A.; Tijs, T.; Walton, A. Measuring and Defining the Experience of Immersion in Games. Int. J. Hum.-Comput. Stud. 2008, 66, 641–661. [Google Scholar] [CrossRef]
- Eppmann, R.; Bekk, M.; Klein, K. Gameful Experience in Gamification: Construction and Validation of a Gameful Experience Scale [GAMEX]. J. Interact. Mark. 2018, 43, 98–115. [Google Scholar] [CrossRef]
- Högberg, J.; Hamari, J.; Wästlund, E. Gameful Experience Questionnaire (GAMEFULQUEST): An Instrument for Measuring the Perceived Gamefulness of System Use. User Model. User-Adap. Inter. 2019, 29, 619–660. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.; Gardner, M.J.; Perry, R. Validation of Two Game Experience Scales: The Player Experience of Need Satisfaction (PENS) and Game Experience Questionnaire (GEQ). Int. J. Hum. -Comput. Stud. 2018, 118, 38–46. [Google Scholar] [CrossRef]
- Easley, D.; Ghosh, A. Incentives, Gamification, and Game Theory: An Economic Approach to Badge Design. ACM Trans. Econ. Comput. 2016, 4, 1–26. [Google Scholar] [CrossRef]
- Venkatesh, V.; Speier, C. Creating an Effective Training Environment for Enhancing Telework. Int. J. Hum. -Comput. Stud. 2000, 52, 991–1005. [Google Scholar] [CrossRef] [Green Version]
- Godovykh, M.; Fyall, A.; Pizam, A.; Hancer, M.; Cassisi, J. Virtual Versus Face-to-face Events: The Effects of Event Type on Attendees’ Attitudes and Behavioral Intentions. Available online: https://www.ingentaconnect.com/content/cog/em/2022/00000026/00000008/art00002 (accessed on 3 April 2023). [CrossRef]
- Bayrak, A.T. Compassionate Game Design: A Holistic Perspective for a Player-Centric Game Design Paradigm for Games4health. Int. J. Adv. Intell. Syst. 2020, 13, 1–8. [Google Scholar]
- Wauck, H.; Woodard, B.S.; Xiao, Z.; Li, T.W.; Bailey, B.P. A Data-Driven, Player-Centric Approach to Evaluating Spatial Skill Training Games. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’20); Association for Computing Machinery: New York, NY, USA, 2020; pp. 349–361. [Google Scholar] [CrossRef]
- Chan, H.-Y.; Liu, S.-W.; Hou, H.-T. Interacting with Real-Person Non-Player Characters to Learn History: Development and Playing Behavior Pattern Analysis of a Remote Scaffolding-Based Situated Educational Game. Interact. Learn. Environ. 2023, 1–21. [Google Scholar] [CrossRef]
- Venkatesh, V. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef] [Green Version]
- Mekler, E.D.; Bopp, J.A.; Tuch, A.N.; Opwis, K. A Systematic Review of Quantitative Studies on the Enjoyment of Digital Entertainment Games. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14); Association for Computing Machinery: New York, NY, USA, 2014; pp. 927–936. [Google Scholar] [CrossRef]
- Park, E.; Baek, S.; Ohm, J.; Chang, H.J. Determinants of Player Acceptance of Mobile Social Network Games: An Application of Extended Technology Acceptance Model. Telemat. Inform. 2014, 31, 3–15. [Google Scholar] [CrossRef]
- Estriegana, R.; Medina-Merodio, J.-A.; Barchino, R. Student Acceptance of Virtual Laboratory and Practical Work: An Extension of the Technology Acceptance Model. Comput. Educ. 2019, 135, 1–14. [Google Scholar] [CrossRef]
- Cresswell Jones, A. The Digital Evolution of Live Music; Chandos Information Professional Series; Chandos Publishing: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Kim, K.; Schmierbach, M.G.; Bellur, S.; Chung, M.-Y.; Fraustino, J.D.; Dardis, F.; Ahern, L. Is It a Sense of Autonomy, Control, or Attachment? Exploring the Effects of in-Game Customization on Game Enjoyment. Comput. Hum. Behav. 2015, 48, 695–705. [Google Scholar] [CrossRef]
- Kneer, J.; Zhang, Y.; Żerebecki, B.G.; Wulf, T. Same Gaming: An Exploration of Relationships Between Gender Traits, Sexual Orientation, Motivations, and Enjoyment of Playing Video Games. Simul. Gaming 2022, 53, 423–445. [Google Scholar] [CrossRef]
- Reer, F.; Wehden, L.-O.; Janzik, R.; Tang, W.Y.; Quandt, T. Virtual Reality Technology and Game Enjoyment: The Contributions of Natural Mapping and Need Satisfaction. Comput. Hum. Behav. 2022, 132, 107242. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.; Alavi, S. Motivating EFL Students: E-Learning Enjoyment as a Predictor of Vocabulary Learning through Digital Video Games. Cogent Educ. 2016, 3, 1255400. [Google Scholar] [CrossRef]
- Pe-Than, E.P.P.; Goh, D.H.-L.; Lee, C.S. Making Work Fun: Investigating Antecedents of Perceived Enjoyment in Human Computation Games for Information Sharing. Comput. Hum. Behav. 2014, 39, 88–99. [Google Scholar] [CrossRef]
- Ho, C.-I.; Chang, C.-C.; Lee, S.-S. Exploring Key Determinants of Gamer Behavior for Somatosensory Video Games: An Application of the Extended Technology Acceptance Model and Game Flow Theory. Glob. J. Emerg. Trends e-Bus. Mark. Consum. Psychol. 2014, 1, 154–171. [Google Scholar]
- Gorisse, G.; Christmann, O.; Amato, E.A.; Richir, S. First- and Third-Person Perspectives in Immersive Virtual Environments: Presence and Performance Analysis of Embodied Users. Front. Robot. AI 2017, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Swarbrick, D.; Seibt, B.; Grinspun, N.; Vuoskoski, J.K. Corona Concerts: The Effect of Virtual Concert Characteristics on Social Connection and Kama Muta. Front. Psychol. 2021, 12, 648448. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.F.; Oliveira, A.; Costa, C.J. Does Ease-of-Use Contributes to the Perception of Enjoyment? A Case of Gamification in e-Banking. Comput. Hum. Behav. 2016, 61, 114–126. [Google Scholar] [CrossRef]
- Pfafff, S.; Lervik, O.; Spoerri, R.; Berra, E.; Jahrmann, M.; Neukom, M. Games in Concert: Collaborative Music Making in Virtual Reality. In SIGGRAPH Asia 2018 Virtual & Augmented Reality (SA ’18); Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Grinberg, A.M.; Careaga, J.S.; Mehl, M.R.; O’Connor, M.-F. Social Engagement and User Immersion in a Socially Based Virtual World. Comput. Hum. Behav. 2014, 36, 479–486. [Google Scholar] [CrossRef]
- Brockmyer, J.H.; Fox, C.M.; Curtiss, K.A.; McBroom, E.; Burkhart, K.M.; Pidruzny, J.N. The Development of the Game Engagement Questionnaire: A Measure of Engagement in Video Game-Playing. J. Exp. Soc. Psychol. 2009, 45, 624–634. [Google Scholar] [CrossRef]
- Kniestedt, I.; Lefter, I.; Lukosch, S.; Brazier, F.M. Re-Framing Engagement for Applied Games: A Conceptual Framework. Entertain. Comput. 2022, 41, 100475. [Google Scholar] [CrossRef]
- Procci, K.; Bowers, C.A.; Jentsch, F.; Sims, V.K.; McDaniel, R. The Revised Game Engagement Model: Capturing The Subjective Gameplay Experience. Entertain. Comput. 2018, 27, 157–169. [Google Scholar] [CrossRef]
- Boyle, E.A.; Connolly, T.M.; Hainey, T.; Boyle, J.M. Engagement in Digital Entertainment Games: A Systematic Review. Comput. Hum. Behav. 2012, 28, 771–780. [Google Scholar] [CrossRef]
- Lowry, P.; Gaskin, J.; Twyman, N.; Hammer, B.; Roberts, T. Taking “Fun and Games” Seriously: Proposing the Hedonic-Motivation System Adoption Model (HMSAM). J. Assoc. Inf. Syst. 2013, 14, 617–671. [Google Scholar] [CrossRef]
- Wu, S.-H.; Wei, N.-C.; Hsu, H.-C.; Pu, T.-C. Exploring The Intention of Visiting the Museum Using Immersive Virtual Reality Technique and Flow Experience. Int. J. Organ. Innov. 2021, 14, 25–40. [Google Scholar]
- Loepthien, T.; Leipold, B. Flow in Music Performance and Music-Listening: Differences in Intensity, Predictors, and the Relationship between Flow and Subjective Well-Being. Psychol. Music. 2022, 50, 111–126. [Google Scholar] [CrossRef]
- Schultze, U.; Leahy, M. The Avatar-Self Relationship: Enacting Presence in Second Life. In Proceedings of the ICIS 2009 Proceedings, Phoenix, AZ, USA, 15–18 December 2009. [Google Scholar]
- Chesney, T. An Acceptance Model for Useful and Fun Information Systems. Hum. Technol. Interdiscip. J. Hum. ICT Environ. 2006, 2, 225–235. [Google Scholar]
- Roberts, P.; Priest, H. Reliability and Validity in Research. Nurs. Stand. 2006, 20, 41–46. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming, Third Edition; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and Utilitarian Motivations for Online Retail Shopping Behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Holdack, E.; Lurie-Stoyanov, K.; Fromme, H.F. The Role of Perceived Enjoyment and Perceived Informativeness in Assessing the Acceptance of AR Wearables. J. Retail. Consum. Serv. 2022, 65, 102259. [Google Scholar] [CrossRef]
- Choi, B.-H. A Study on Acceptance of Online Concerts Based on Mobile Augmented Reality: Focusing on the Extended Technology Acceptance Model. J. Digit. Converg. 2021, 19, 315–325. [Google Scholar] [CrossRef]
- Yang, H.; Han, S.-Y. Understanding Virtual Reality Continuance: An Extended Perspective of Perceived Value. Online Inf. Rev. 2020, 45, 422–439. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, W. Presence and Flow in the Context of Virtual Reality Storytelling: What Influences Enjoyment in Virtual Environments? Cyberpsychol. Behav. Soc. Netw. 2022, 25, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.B.; Byon, K.K.; Hyun, Y.A.; Hahm, J. The Show Must Go on: The Mediating Role of Self-Assessment in the Relationship between Performers’ Technology Acceptance and Satisfaction Level with Remote Performances in Korea during the COVID-19 Pandemic. Technol. Soc. 2022, 68, 101855. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Deci, E.L. On Happiness and Human Potentials: A Review of Research on Hedonic and Eudaimonic Well-Being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef]
- Park, I.; Sah, Y.J.; Lee, S.; Lee, D. Avatar-Mediated Communication in Video Conferencing: Effect of Self-Affirmation on Debating Participation Focusing on Moderation Effect of Avatar. Int. J. Hum.-Comput. Interact. 2023, 39, 464–475. [Google Scholar] [CrossRef]
Variable | n (%) | Variable | n (%) |
---|---|---|---|
Age | Frequency of participation in offline concerts | ||
Under 18 | 13 (4.9) | Once a year or less | 136 (51.1) |
18–22 | 54 (20.3) | 2–4 times a year | 38 (14.3) |
23–32 | 71 (26.7) | 5–11 times a year | 18 (6.8) |
33–45 | 60 (22.6) | 12 times a year or more | 12 (4.5) |
Over 45 | 19 (7.1) | Once a month or more | 8 (3.0) |
Gender | Once a week or more | 5 (1.9) | |
Male | 116 (43.6) | Frequency of participation in virtual concerts | |
Female | 101 (38) | Once a year or less | 50 (18.8) |
Education | 1–4 times a year | 84 (31.6) | |
High school or below | 49 (18.4) | 5–11 times a year | 63 (23.7) |
Academy | 49 (18.4) | Once a month or more | 16 (6.0) |
Undergraduate | 67 (25.2) | Once a week or more | 4 (1.5) |
Graduate | 52 (19.5) | Frequency of playing online games | |
Monthly Income | Never | 11 (4.1) | |
Less than 2000 | 38 (14.3) | 1–3 times a month | 25 (9.4) |
2001–5000 | 64 (24.1) | Once a month | 64 (24.1) |
50,001–10,000 | 61 (22.9) | More than once a month | 81 (30.5) |
10,001 and above | 54 (20.3) | Everyday | 36 (13.5) |
Occupation | |||
Civil servant | 26 (9.8) | ||
Employee | 47 (17.7) | ||
Self-employed | 28 (10.5) | ||
Free occupation | 23 (8.6) | ||
Student | 70 (26.3) | ||
Others | 23 (8.6) |
Variable | Mean | SD | Loading | CR | CA | AVE |
---|---|---|---|---|---|---|
Perceived Usefulness | 0.839 | 0.882 | 0.567 | |||
PU1 | 5.06 | 1.678 | 0.702 | |||
PU2 | 5.04 | 1.631 | 0.769 | |||
PU3 | 5.05 | 1.659 | 0.715 | |||
PU4 | 5.17 | 1.575 | 0.820 | |||
Perceived Ease of Use | 0.831 | 0.878 | 0.552 | |||
PEOU1 | 4.94 | 1.435 | 0.661 | |||
PEOU 2 | 4.89 | 1.399 | 0.816 | |||
PEOU 3 | 4.99 | 1.467 | 0.742 | |||
PEOU 4 | 5.06 | 1.369 | 0.746 | |||
Perceived Enjoyment | 0.854 | 0.876 | 0.662 | |||
PE1 | 5.30 | 1.371 | 0.774 | |||
PE 2 | 5.22 | 1.352 | 0.827 | |||
PE 3 | 5.35 | 1.374 | 0.838 | |||
Autonomy | 0.752 | 0.823 | 0.504 | |||
AU1 | 4.93 | 1.472 | 0.696 | |||
AU2 | 5.02 | 1.508 | 0.781 | |||
AU3 | 5.00 | 1.532 | 0.647 | |||
Relatedness | 0.817 | 0.864 | 0.523 | |||
RL1 | 5.14 | 1.478 | 0.687 | |||
RL2 | 5.04 | 1.509 | 0.725 | |||
RL3 | 5.17 | 1.467 | 0.722 | |||
RL4 | 5.14 | 1.513 | 0.770 | |||
Engagement | 0.814 | 0.865 | 0.523 | |||
EG1 | 5.08 | 1.496 | 0.736 | |||
EG2 | 4.94 | 1.489 | 0.740 | |||
EG3 | 5.14 | 1.473 | 0.761 | |||
EG4 | 5.08 | 1.521 | 0.651 | |||
Attitude | 0.765 | 0.824 | 0.520 | |||
ATT1 | 5.38 | 1.399 | 0.713 | |||
ATT2 | 5.28 | 1.363 | 0.720 | |||
ATT3 | 5.51 | 1.385 | 0.732 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1. AU | 0.710 | ||||||
2. RL | 0.351 | 0.723 | |||||
3. EG | 0.445 | 0.389 | 0.814 | ||||
4. PU | 0.341 | 0.291 | 0.419 | 0.753 | |||
5. PEOU | 0.211 | 0.317 | 0.317 | 0.29 | 0.743 | ||
6. PE | 0.251 | 0.179 | 0.304 | 0.251 | 0.219 | 0.723 | |
7. ATT | 0.477 | 0.597 | 0.611 | 0.572 | 0.468 | 0.471 | 0.721 |
Hypothesis/Path | Estimate | S.E. | C.R. | Results |
---|---|---|---|---|
Hypothesis 1: PU→ATT | 0.572 *** | 0.128 | 5.673 | Supported |
Hypothesis 2: PEOU→ATT | 0.468 *** | 0.098 | 4.897 | Supported |
Hypothesis 3: PE→ATT | 0.611 *** | 0.104 | 5.783 | Supported |
Hypothesis 4: AU→PEOU | 0.211 ** | 0.097 | 2.578 | Supported |
Hypothesis 5: AU→PE | 0.445 *** | 0.105 | 4.809 | Supported |
Hypothesis 6: RL→PU | 0.291 *** | 0.12 | 3.524 | Supported |
Hypothesis 7: RL→PEOU | 0.317 *** | 0.099 | 3.741 | Supported |
Hypothesis 8: RL→PE | 0.389 *** | 0.098 | 4.418 | Supported |
Hypothesis 9: EG→PU | 0.251 ** | 0.122 | 3.100 | Supported |
Hypothesis 10: EG→PE | 0.304 *** | 0.097 | 3.644 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Pan, Y. Evaluating Influencing Factors of Audiences’ Attitudes toward Virtual Concerts: Evidence from China. Behav. Sci. 2023, 13, 478. https://doi.org/10.3390/bs13060478
Deng J, Pan Y. Evaluating Influencing Factors of Audiences’ Attitudes toward Virtual Concerts: Evidence from China. Behavioral Sciences. 2023; 13(6):478. https://doi.org/10.3390/bs13060478
Chicago/Turabian StyleDeng, Jing, and Younghwan Pan. 2023. "Evaluating Influencing Factors of Audiences’ Attitudes toward Virtual Concerts: Evidence from China" Behavioral Sciences 13, no. 6: 478. https://doi.org/10.3390/bs13060478
APA StyleDeng, J., & Pan, Y. (2023). Evaluating Influencing Factors of Audiences’ Attitudes toward Virtual Concerts: Evidence from China. Behavioral Sciences, 13(6), 478. https://doi.org/10.3390/bs13060478