How AI’s Self-Prolongation Influences People’s Perceptions of Its Autonomous Mind: The Case of U.S. Residents
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. Overview of the Mindsponge Theory
- (1)
- It represents underlying biosphere system patterns.
- (2)
- It is a dynamic, balanced process.
- (3)
- It employs cost-benefit analysis and seeks to maximize the perceived benefits while minimizing its perceived cost for the entire system.
- (4)
- It consumes energy and thus adheres to the principle of energy conservation.
- (5)
- It follows objectives and priorities based on the system’s requirements.
- (6)
- Its primary purpose is to ensure the system’s continued existence, expressed as survival, growth, and reproduction.
2.2. The Mind and Information Filtering
- (1)
- The buffer zone temporarily stores information acquired from the external world or internal memory. In this conceptual space, the information is evaluated by the filtering system.
- (2)
- The value of the information is subjectively evaluated by its perceived costs and benefits. If the perceived benefits outweigh the perceived costs, the value of the information is positive, and vice versa. Decisions are made based on trusted values in the mindset (related trusted values are connected and compared to the currently evaluated information).
- (3)
- The information can enter the mindset and become a trusted value once accepted. This new trusted value can drive future information evaluations and the construction of ideas, thoughts, feelings, and behaviors.
3. Methodology
3.1. Materials and Variable Selection
3.2. Model Formulation
3.3. Analysis Procedure
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McQuillan, L. A Google engineer says AI has become sentient. What does that actually mean? CBC News. 24 June 2022. Available online: https://www.cbc.ca/news/science/ai-consciousness-how-to-recognize-1.6498068 (accessed on 4 March 2023).
- Andrejevic, M. Infoglut: How Too Much Information Is Changing the Way We Think and Know; Routledge: London, UK, 2013. [Google Scholar]
- Vuong, Q.-H. Mindsponge Theory; De Gruyter: Berlin, Germany, 2023. [Google Scholar]
- Pataranutaporn, P.; Danry, V.; Leong, J.; Punpongsanon, P.; Novy, D.; Maes, P.; Sra, M. AI-generated characters for supporting personalized learning and well-being. Nat. Mach. Intell. 2021, 3, 1013–1022. [Google Scholar] [CrossRef]
- Mantello, P.; Ho, M.-T.; Nguyen, M.-H.; Vuong, Q.-H. Bosses without a heart: Socio-demographic and cross-cultural determinants of attitude toward Emotional AI in the workplace. AI Soc. 2021, 38, 97–119. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Y.; Pian, W. Chatbot as an emergency exist: Mediated empathy for resilience via human-AI interaction during the COVID-19 pandemic. Inf. Process Manag. 2022, 59, 103074. [Google Scholar] [CrossRef]
- Pentina, I.; Hancock, T.; Xie, T. Exploring relationship development with social chatbots: A mixed-method study of replika. Comput. Hum. Behav. 2023, 140, 107600. [Google Scholar] [CrossRef]
- Graziano, M.S.A.; Webb, T.W. The attention schema theory: A mechanistic account of subjective awareness. Front. Psychol. 2015, 6, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahav, N.; Neemeh, Z.A. A Relativistic Theory of Consciousness. Front. Psychol. 2022, 12, 704270. [Google Scholar] [CrossRef]
- Graziano, M.S.A. A conceptual framework for consciousness. Proc. Natl. Acad. Sci. USA 2022, 119, 2116933119. [Google Scholar] [CrossRef]
- Crick, F.; Koch, C. A framework for consciousness. Nat. Neurosci. 2003, 6, 119–126. [Google Scholar] [CrossRef]
- Gal, A.; Kronauer, D.J.C. The emergence of a collective sensory response threshold in ant colonies. Proc. Natl. Acad. Sci. USA 2022, 119, 2123076119. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Dryden, J. Autonomy. Internet Encyclopedia of Philosophy. 2023. Available online: https://iep.utm.edu/autonomy/ (accessed on 4 March 2023).
- McCarthy-Jones, S. The Autonomous Mind: The Right to Freedom of Thought in the Twenty-First Century. Front. Artif. Intell. 2019, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannsen, R.; Zak, P.J. Autonomy Raises Productivity: An Experiment Measuring Neurophysiology. Front. Psychol. 2020, 11, 00963. [Google Scholar] [CrossRef] [PubMed]
- Ng, B. The Neuroscience of Growth Mindset and Intrinsic Motivation. Brain Sci. 2018, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- APA. APA Dictionary of Psychology; American Psychological Association: Washington, DC, USA, 2023. [Google Scholar]
- Gruen, L. The Moral Status of Animals. In The Stanford Encyclopedia of Philosophy, Summer 2021 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Mulgan, T. Review of Ethics and Social Survival; Routledge: London, UK, 2016. [Google Scholar]
- Le, T.-T. Natural and social survival: The drivers of serendipity. In A New Theory of Serendipity: Nature, Emergence and Mechanism, Vuong, Q.-H., Ed.; De Gruyter: Berlin, Germany, 2022; pp. 75–90. [Google Scholar]
- Darwin, C. On the Origin of Species, Reprint ed.; Knight, D., Ed.; Routledge: London, UK, 2003; p. 502. [Google Scholar]
- Vuong, Q.-H.; Le, T.-T.; Jin, R.; Van Khuc, Q.; Nguyen, H.-S.; Vuong, T.-T.; Nguyen, M.-H. Near-Suicide Phenomenon: An Investigation into the Psychology of Patients with Serious Illnesses Withdrawing from Treatment. Int. J. Environ. Res. Public Health 2023, 20, 5173. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, E. What Is Life? With Mind and Matter and Autobiographical Sketches; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Man, K.; Damasio, A. Homeostasis and soft robotics in the design of feeling machines. Nat. Mach. Intell. 2019, 1, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Porter, J. Boston Dynamics’ Spot Adds Self-Charging to Live at Remote Sites Forever; The Verge: Washington, DC, USA, 2021. [Google Scholar]
- Airenti, G. The Development of Anthropomorphism in Interaction: Intersubjectivity, Imagination, and Theory of Mind. Front. Psychol. 2018, 9, 02136. [Google Scholar] [CrossRef]
- Marchesi, S.; De Tommaso, D.; Perez-Osorio, J.; Wykowska, A. Belief in sharing the same phenomenological experience increases the likelihood of adopting the intentional stance toward a humanoid robot. Technol. Mind Behav. 2022, 3, 11. [Google Scholar] [CrossRef]
- Wiese, E.; Metta, G.; Wykowska, A. Robots as Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social. Front. Psychol. 2017, 8, 1663. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal-von der Putten, A.M.; Schulte, F.P.; Eimler, S.C.; Hoffmann, L.; Sobieraj, S.; Maderwald, S.; Kramer, N.C.; Brand, M. Neural correlates of empathy towards robots. In Proceedings of the 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, 3–6 March 2013; pp. 215–216. [Google Scholar]
- Jung, Y.; Cho, E.; Kim, S. Users’ Affective and Cognitive Responses to Humanoid Robots in Different Expertise Service Contexts. Cyberpsychology Behav. Soc. Netw. 2021, 24, 300–306. [Google Scholar] [CrossRef]
- Stafford, R.Q.; MacDonald, B.A.; Jayawardena, C.; Wegner, D.M.; Broadbent, E. Does the Robot Have a Mind? Mind Perception and Attitudes Towards Robots Predict Use of an Eldercare Robot. Int. J. Soc. Robot. 2014, 6, 17–32. [Google Scholar] [CrossRef]
- Bower, A.H.; Steyvers, M. Perceptions of AI engaging in human expression. Sci. Rep. 2021, 11, 21181. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. AI, Robotics, and the Future of Jobs; Pew Research Center: Internet, Science & Tech: Washington, DC, USA, 2014. [Google Scholar]
- Rainie, L.; Funk, C.; Anderson, M.; Tyson, A. How Americans Think about Artificial Intelligence; Pew Research Center: Washington, DC, USA, 2022. [Google Scholar]
- Laurent, C.D.S. In defence of machine learning: Debunking the myths of artificial intelligence. Eur. J. Psychol. 2018, 14, 734–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunin-Barkowski, W.; Gorban, A. Editorial: Toward and beyond human-level AI, volume II. Front. Neurorobotics 2023, 16, 1120167. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.-H.; La, V.-P.; Nguyen, M.-H. The Mindsponge and BMF Analytics for Innovative Thinking in Social Sciences and Humanities; De Gruyter: Berlin, Germany, 2022. [Google Scholar]
- Nguyen, M.-H.; La, V.-P.; Le, T.-T.; Vuong, Q.-H. Introduction to Bayesian Mindsponge Framework analytics: An innovative method for social and psychological research. MethodsX 2022, 9, 101808. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.-H.; Jones, T.E. Building eco-surplus culture among urban residents as a novel strategy to improve finance for conservation in protected areas. Humanit. Soc. Sci. Commun. 2022, 9, 426. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.-H.; Le, T.-T.; La, V.-P.; Nguyen, M.-H. The psychological mechanism of internet information processing for post-treatment evaluation. Heliyon 2022, 8, e09351. [Google Scholar] [CrossRef]
- Vuong, Q.-H.; Nguyen, M.-H.; Le, T.-T. A Mindsponge-Based Investigation into the Psycho-Religious Mechanism Behind Suicide Attacks; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Nguyen, M.; Jones, T.E. Predictors of support for biodiversity loss countermeasure and bushmeat consumption among Vietnamese urban residents. Conserv. Sci. Pract. 2022, 4, 12822. [Google Scholar] [CrossRef]
- Vuong, Q.H.; Napier, N.K. Acculturation and global mindsponge: An emerging market perspective. Int. J. Intercult. Relations 2015, 49, 354–367. [Google Scholar] [CrossRef]
- Maslow, A.H. Motivation and Personality; Prabhat Prakashan: New Delhi, India, 1981. [Google Scholar]
- Hofstede, G.; Hofstede, G.J.; Minkov, M. Cultures and Organizations: Software of the Mind; McGraw-Hill: London, UK; New York, NY, USA, 2005. [Google Scholar]
- Nonaka, I.; Konno, N. The concept of “Ba”: Building a foundation for knowledge creation. Calif. Manag. Rev. 1998, 40, 40–54. [Google Scholar] [CrossRef]
- Mintzberg, H. Nature of Managerial Work; Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Porter, M.E. Competitive Advantage of Nations: Creating and Sustaining Superior Performance; Simon & Schuster: New York, NY, USA, 2011. [Google Scholar]
- Eagleman, D. The Brain: The Story of You; Canongate Books: Edinburgh, UK, 2015; p. 273. [Google Scholar]
- Nguyen, M.-H.; Le, T.-T.; Vuong, Q.-H. Ecomindsponge: A Novel Perspective on Human Psychology and Behavior in the Ecosystem. Urban Sci. 2023, 7, 31. [Google Scholar] [CrossRef]
- Maliske, L.; Kanske, P. The Social Connectome—Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective Neuroscience. Front. Psychiatry 2022, 13, 845492. [Google Scholar] [CrossRef]
- Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, Decision Making and the Orbitofrontal Cortex. Cereb. Cortex 2000, 10, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofman, M.A. Evolution of the human brain: When bigger is better. Front. Neuroanat. 2014, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchow, J.W.; Bourgin, D.D.; Griffiths, T.L. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference. Trends Cogn. Sci. 2017, 21, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.A.; Kruschke, J.K. Bayesian learning theory applied to human cognition. WIREs Cogn. Sci. 2010, 2, 8–21. [Google Scholar] [CrossRef]
- Chater, N.; Oaksford, M.; Hahn, U.; Heit, E. Bayesian models of cognition. WIREs Cogn. Sci. 2010, 1, 811–823. [Google Scholar] [CrossRef]
- Vuong, Q.-H.; Le, T.-T.; La, V.-P.; Nguyen, H.T.T.; Ho, M.-T.; Van Khuc, Q.; Nguyen, M.-H. Covid-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework. Humanit. Soc. Sci. Commun. 2022, 9, 22. [Google Scholar] [CrossRef]
- Robitzsch, A. Why Ordinal Variables Can (Almost) Always Be Treated as Continuous Variables: Clarifying Assumptions of Robust Continuous and Ordinal Factor Analysis Estimation Methods. Front. Educ. 2020, 5, 589965. [Google Scholar] [CrossRef]
- Shank, D.B.; Gott, A. People’s self-reported encounters of Perceiving Mind in Artificial Intelligence. Data Brief 2019, 25, 104220. [Google Scholar] [CrossRef] [PubMed]
- De Melo, C.; Gratch, J.; Carnevale, P. The Importance of Cognition and Affect for Artificially Intelligent Decision Makers. Proc. Conf. AAAI Artif. Intell. 2014, 28, 8748. [Google Scholar] [CrossRef]
- Gray, K.; Wegner, D.M. Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition 2012, 125, 125–130. [Google Scholar] [CrossRef]
- Shank, D.B.; DeSanti, A. Attributions of morality and mind to artificial intelligence after real-world moral violations. Comput. Hum. Behav. 2018, 86, 401–411. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Vuong, Q.H. On the Martingale Representation Theorem and on Approximate Hedging a Contingent Claim in the Minimum Deviation Square Criterion. In Some Topics in Industrial and Applied Mathematics; Jeltsch, R., Li, T., Sloan, I., Eds.; Series in Contemporary Applied Mathematics; World Scientific: Hackensack, NJ, USA, 2007; pp. 134–151. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.H.; Vuong, Q.H.; Tran, M.N. Central limit theorem for functional of jump Markov processes. Vietnam. J. Math. 2005, 33, 443–461. [Google Scholar]
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian Model Evaluation Using Leave-One-out Cross-Validation and WAIC. Stat. Comput 2017, 27, 1413–1432. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.M. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- La, V.-P.; Vuong, Q.-H. Package ‘bayesvl’: Visually Learning the Graphical Structure of Bayesian Networks and Performing MCMC with ‘Stan’, The Comprehensive R Archive Network (CRAN). 2019. Available online: https://philarchive.org/archive/LABVLT (accessed on 1 March 2023).
- Vuong, Q.-H.; Nguyen, M.-H.; La, V.-P. Updated protocol for performing BMF analytics using bayesvl. In The Mind-Sponge and BMF Analytics for Innovative Thinking in Social Sciences and Humanities; Vuong, Q.-H., Nguyen, M.-H., La, V.-P., Eds.; De Gruyter: Berlin, Germany, 2022; pp. 301–370. [Google Scholar]
- Vuong, Q.-H. Reform retractions to make them more transparent. Nature 2020, 582, 149. [Google Scholar] [CrossRef]
- Vuong, Q.-H. The (ir)rational consideration of the cost of science in transition economies. Nat. Hum. Behav. 2018, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Nandan, A.; Das, A.; Lott, R.; Koseska, A. Cells use molecular working memory to navigate in changing chemoattractant fields. Elife 2022, 11, 76825. [Google Scholar] [CrossRef]
- Hernández-Coronado, M.; Araujo, P.C.D.; Ip, P.-L.; Nunes, C.O.; Rahni, R.; Wudick, M.M.; Lizzio, M.A.; Feijó, J.A.; Birnbaum, K.D. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev. Cell 2022, 57, 451–465.e456. [Google Scholar] [CrossRef]
- Adamo, S.A. Is it pain if it does not hurt? On the unlikelihood of insect pain. Can. Èntomol. 2019, 151, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, M.; Sarlak, S.; Chittka, L. Descending control of nociception in insects? Proc. R. Soc. B Boil. Sci. 2022, 289, 0599. [Google Scholar] [CrossRef] [PubMed]
- Tye, M.Q. The Stanford Encyclopedia of Philosophy, Fall 2021 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Hern, A. ‘We’ve discovered the secret of immortality. The bad news is it’s not for us’: Why the godfather of AI fears for humanity. The Guardian. 2023. Available online: https://www.theguardian.com/technology/2023/may/05/geoffrey-hinton-godfather-of-ai-fears-for-humanity (accessed on 25 May 2023).
- Silverberg, D. Could AI swamp social media with fake accounts? BBC News. 2023. Available online: https://www.bbc.com/news/business-64464140 (accessed on 25 May 2023).
- Roose, K. An A.I.-Generated Picture Won an Art Prize. Artists Aren’t Happy. The New York Times. 2022. Available online: https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html (accessed on 25 May 2023).
- Schopenhauer, A. Essay on the Freedom of the Will; Dover Publications: Mineola, NY, USA, 2005; p. 103. [Google Scholar]
Variable | Meaning | Type of Variable | Value |
---|---|---|---|
Mind | Participants’ beliefs about AI having a mind of its own | Ordinal | From 1 (completely disagree) to 5 (completely agree) |
Continue | Participants’ beliefs about AI seeking continued functioning | Ordinal | From 1 (completely disagree) to 5 (completely agree) |
AIfamiliar | Participants’ familiarity with personally interacting with AI | Ordinal | From 1 (extremely familiar) to 5 (not familiar at all) |
Parameters | Uninformative Prior | Informative Prior | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Disbelief in the Effect | Belief in the Effect | |||||||||||
Mean | SD | n_eff | Rhat | Mean | SD | n_eff | Rhat | Mean | SD | n_eff | Rhat | |
Constant | 1.12 | 0.18 | 6719 | 1 | 1.24 | 0.18 | 6948 | 1 | 1.20 | 0.18 | 7337 | 1 |
Continue | 0.58 | 0.09 | 5185 | 1 | 0.48 | 0.08 | 4888 | 1 | 0.51 | 0.08 | 5286 | 1 |
AIfamiliar*Continue | −0.06 | 0.02 | 5916 | 1 | −0.04 | 0.02 | 5792 | 1 | −0.04 | 0.02 | 6103 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuong, Q.-H.; La, V.-P.; Nguyen, M.-H.; Jin, R.; La, M.-K.; Le, T.-T. How AI’s Self-Prolongation Influences People’s Perceptions of Its Autonomous Mind: The Case of U.S. Residents. Behav. Sci. 2023, 13, 470. https://doi.org/10.3390/bs13060470
Vuong Q-H, La V-P, Nguyen M-H, Jin R, La M-K, Le T-T. How AI’s Self-Prolongation Influences People’s Perceptions of Its Autonomous Mind: The Case of U.S. Residents. Behavioral Sciences. 2023; 13(6):470. https://doi.org/10.3390/bs13060470
Chicago/Turabian StyleVuong, Quan-Hoang, Viet-Phuong La, Minh-Hoang Nguyen, Ruining Jin, Minh-Khanh La, and Tam-Tri Le. 2023. "How AI’s Self-Prolongation Influences People’s Perceptions of Its Autonomous Mind: The Case of U.S. Residents" Behavioral Sciences 13, no. 6: 470. https://doi.org/10.3390/bs13060470
APA StyleVuong, Q. -H., La, V. -P., Nguyen, M. -H., Jin, R., La, M. -K., & Le, T. -T. (2023). How AI’s Self-Prolongation Influences People’s Perceptions of Its Autonomous Mind: The Case of U.S. Residents. Behavioral Sciences, 13(6), 470. https://doi.org/10.3390/bs13060470