Neurocircuitry of Personality Traits and Intent in Decision-Making
Abstract
:1. Introduction
2. Literature Search
3. Extraversion and Neuroticism
4. Agreeableness and Conscientiousness
5. Openness
6. Limitations
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crocetti, E.; Rubini, M.; Meeus, W. Capturing the Dynamics of Identity Formation in Various Ethnic Groups: Development and Validation of a Three-Dimensional Model. J. Adolesc. 2008, 31, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Becht, A.I.; Klapwijk, E.T.; Wierenga, L.M.; van der Cruijsen, R.; Spaans, J.; van der Aar, L.; Peters, S.; Branje, S.; Meeus, W.; Crone, E.A. Longitudinal Associations between Structural Prefrontal Cortex and Nucleus Accumbens Development and Daily Identity Formation Processes across Adolescence. Dev. Cogn. Neurosci. 2020, 46, 100880. [Google Scholar] [CrossRef] [PubMed]
- Vignoles, V.L. Identity: Personal AND Social. In The Oxford Handbook of Personality and Social Psychology; Deaux, K., Snyder, M., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 288–316. ISBN 978-0-19-022483-7. [Google Scholar]
- Rudorf, S.; Baumgartner, T.; Markett, S.; Schmelz, K.; Wiest, R.; Fischbacher, U.; Knoch, D. Intrinsic Connectivity Networks Underlying Individual Differences in Control-averse Behavior. Hum. Brain Mapp. 2018, 39, 4857–4869. [Google Scholar] [CrossRef] [PubMed]
- Falk, A.; Kosfeld, M. The Hidden Costs of Control. Am. Econ. Rev. 2006, 96, 1611–1630. [Google Scholar] [CrossRef]
- Cao, S.; Xia, L.-X. Conscientiousness Mediates the Link between Brain Structure and Consideration of Future Consequence. Neuropsychologia 2020, 141, 107435. [Google Scholar] [CrossRef]
- Fiske, D.W. Consistency of the Factorial Structures of Personality Ratings from Different Sour Sources. J. Abnorm. Psychol. 1949, 44, 329–344. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. The Five-Factor Model of Personality and Its Relevance to Personality Disorders. J. Personal. Disord. 1992, 6, 343–359. [Google Scholar] [CrossRef]
- Wright, C.I.; Feczko, E.; Dickerson, B.; Williams, D. Neuroanatomical Correlates of Personality in the Elderly. NeuroImage 2007, 35, 263–272. [Google Scholar] [CrossRef]
- Becht, A.I.; Bos, M.G.N.; Nelemans, S.A.; Peters, S.; Vollebergh, W.A.M.; Branje, S.J.T.; Meeus, W.H.J.; Crone, E.A. Goal-Directed Correlates and Neurobiological Underpinnings of Adolescent Identity: A Multimethod Multisample Longitudinal Approach. Child Dev. 2018, 89, 823–836. [Google Scholar] [CrossRef]
- Becht, A.I.; Nelemans, S.A.; Branje, S.J.T.; Vollebergh, W.A.M.; Meeus, W.H.J. Daily Identity Dynamics in Adolescence Shaping Identity in Emerging Adulthood: An 11-Year Longitudinal Study on Continuity in Development. J. Youth Adolesc. 2021, 50, 1616–1633. [Google Scholar] [CrossRef]
- Vijayakumar, N.; Ball, G.; Seal, M.L.; Mundy, L.; Whittle, S.; Silk, T. The Development of Structural Covariance Networks during the Transition from Childhood to Adolescence. Sci. Rep. 2021, 11, 9451. [Google Scholar] [CrossRef] [PubMed]
- Moura, L.M.; Crossley, N.A.; Zugman, A.; Pan, P.M.; Gadelha, A.; Del Aquilla, M.A.G.; Picon, F.A.; Anés, M.; Amaro, E.; de Jesus Mari, J.; et al. Coordinated Brain Development: Exploring the Synchrony between Changes in Grey and White Matter during Childhood Maturation. Brain Imaging Behav. 2017, 11, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Sandini, C.; Zöller, D.; Scariati, E.; Padula, M.C.; Schneider, M.; Schaer, M.; Van De Ville, D.; Eliez, S. Development of Structural Covariance From Childhood to Adolescence: A Longitudinal Study in 22q11.2DS. Front. Neurosci. 2018, 12, 327. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.; Costa, V.; Smith, J.C.; Sabatinelli, D.; McGinnis, E.M.; Bradley, M.M.; Lang, P.J. Tagging Cortical Networks in Emotion: A Topographical Analysis. Hum. Brain Mapp. 2012, 33, 2920–2931. [Google Scholar] [CrossRef] [PubMed]
- Massey, S.H.; Stern, D.; Alden, E.C.; Petersen, J.E.; Cobia, D.J.; Wang, L.; Csernansky, J.G.; Smith, M.J. Cortical Thickness of Neural Substrates Supporting Cognitive Empathy in Individuals with Schizophrenia. Schizophr. Res. 2017, 179, 119–124. [Google Scholar] [CrossRef]
- Miskovich, T.A.; Anderson, N.E.; Harenski, C.L.; Harenski, K.A.; Baskin-Sommers, A.R.; Larson, C.L.; Newman, J.P.; Hanson, J.L.; Stout, D.M.; Koenigs, M.; et al. Abnormal Cortical Gyrification in Criminal Psychopathy. NeuroImage Clin. 2018, 19, 876–882. [Google Scholar] [CrossRef]
- Román, F.J.; Colom, R.; Hillman, C.H.; Kramer, A.F.; Cohen, N.J.; Barbey, A.K. Cognitive and Neural Architecture of Decision Making Competence. NeuroImage 2019, 199, 172–183. [Google Scholar] [CrossRef]
- Sheng, T.; Gheytanchi, A.; Aziz-Zadeh, L. Default Network Deactivations Are Correlated with Psychopathic Personality Traits. PLoS ONE 2010, 5, e12611. [Google Scholar] [CrossRef]
- Toschi, N.; Passamonti, L. Intra-Cortical Myelin Mediates Personality Differences. J. Pers. 2019, 87, 889–902. [Google Scholar] [CrossRef]
- Vartanian, O.; Wertz, C.J.; Flores, R.A.; Beatty, E.L.; Smith, I.; Blackler, K.; Lam, Q.; Jung, R.E. Structural Correlates of Openness and Intellect: Implications for the Contribution of Personality to Creativity. Hum. Brain. Mapp. 2018, 39, 2987–2996. [Google Scholar] [CrossRef]
- Wertz, C.J.; Chohan, M.O.; Flores, R.A.; Jung, R.E. Neuroanatomy of Creative Achievement. NeuroImage 2020, 209, 116487. [Google Scholar] [CrossRef] [PubMed]
- Yasuno, F.; Kudo, T.; Yamamoto, A.; Matsuoka, K.; Takahashi, M.; Iida, H.; Ihara, M.; Nagatsuka, K.; Kishimoto, T. Significant Correlation between Openness Personality in Normal Subjects and Brain Myelin Mapping with T1/T2-Weighted MR Imaging. Heliyon 2017, 3, e00411. [Google Scholar] [CrossRef]
- Yoon, L.; Kim, K.; Jung, D.; Kim, H. Roles of the MPFC and Insula in Impression Management under Social Observation. Soc. Cogn. Affect. Neurosci. 2021, 16, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, K.; Cao, A.; Zhang, Y.; Qiu, J. Personality Traits and Negative Affect Mediate the Relationship between Cortical Thickness of Superior Frontal Cortex and Aggressive Behavior. Neurosci. Lett. 2020, 718, 134728. [Google Scholar] [CrossRef] [PubMed]
- Duberstein, P.R.; Sörensen, S.; Lyness, J.M.; King, D.A.; Conwell, Y.; Seidlitz, L.; Caine, E.D. Personality Is Associated with Perceived Health and Functional Status in Older Primary Care Patients. Psychol. Aging 2003, 18, 25–37. [Google Scholar] [CrossRef]
- Khan, A.A.; Jacobson, K.C.; Gardner, C.O.; Prescott, C.A.; Kendler, K.S. Personality and Comorbidity of Common Psychiatric Disorders. Br. J. Psychiatry 2005, 186, 190–196. [Google Scholar] [CrossRef]
- Schneider, T.R. The Role of Neuroticism on Psychological and Physiological Stress Responses. J. Exp. Soc. Psychol. 2004, 40, 795–804. [Google Scholar] [CrossRef]
- Valk, S.L.; Hoffstaedter, F.; Camilleri, J.A.; Kochunov, P.; Yeo, B.T.T.; Eickhoff, S.B. Personality and Local Brain Structure: Their Shared Genetic Basis and Reproducibility. NeuroImage 2020, 220, 117067. [Google Scholar] [CrossRef]
- Grasby, K.L.; Jahanshad, N.; Painter, J.N.; Colodro-Conde, L.; Bralten, J.; Hibar, D.P.; Lind, P.A.; Pizzagalli, F.; Ching, C.R.K.; McMahon, M.A.B.; et al. The Genetic Architecture of the Human Cerebral Cortex. Science 2020, 367, eaay6690. [Google Scholar] [CrossRef]
- Jobson, D.D.; Hase, Y.; Clarkson, A.N.; Kalaria, R.N. The Role of the Medial Prefrontal Cortex in Cognition, Ageing and Dementia. Brain Commun. 2021, 3, fcab125. [Google Scholar] [CrossRef]
- Kaye, A.P.; Ross, D.A. Predicting Posttraumatic Stress Disorder: From Circuits to Communities. Biol. Psychiatry 2017, 81, e85–e86. [Google Scholar] [CrossRef]
- Omura, K.; Todd Constable, R.; Canli, T. Amygdala Gray Matter Concentration Is Associated with Extraversion and Neuroticism. NeuroReport 2005, 16, 1905–1908. [Google Scholar] [CrossRef] [PubMed]
- Schoenbaum, G.; Roesch, M.R.; Stalnaker, T.A. Orbitofrontal Cortex, Decision-Making and Drug Addiction. Trends Neurosci. 2006, 29, 116–124. [Google Scholar] [CrossRef] [PubMed]
- TüfekçïBaşi, S.; ŞahïN, M. Investigation of the Relationship between Cognitive Flexibility Levels and Personal Features of University Students. Int. J. Psychol. Educ. Stud. 2020, 7, 142–151. [Google Scholar] [CrossRef]
- Rauch, S.L.; Shin, L.M.; Wright, C.I. Neuroimaging Studies of Amygdala Function in Anxiety Disorders. Ann. N. Y. Acad. Sci. 2006, 985, 389–410. [Google Scholar] [CrossRef]
- Ferschmann, L.; Vijayakumar, N.; Grydeland, H.; Overbye, K.; Sederevicius, D.; Due-Tønnessen, P.; Fjell, A.M.; Walhovd, K.B.; Pfeifer, J.H.; Tamnes, C.K. Prosocial Behavior Relates to the Rate and Timing of Cortical Thinning from Adolescence to Young Adulthood. Dev. Cogn. Neurosci. 2019, 40, 100734. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Damasio, A.R. The Somatic Marker Hypothesis: A Neural Theory of Economic Decision. Games Econ. Behav. 2005, 52, 336–372. [Google Scholar] [CrossRef]
- Hinson, J.M.; Jameson, T.L.; Whitney, P. Somatic Markers, Working Memory, and Decision Making. Cogn. Affect. Behav. Neurosci. 2002, 2, 341–353. [Google Scholar] [CrossRef]
- Whitney, P.; Jameson, T.; Hinson, J.M. Impulsiveness and Executive Control of Working Memory. Personal. Individ. Differ. 2004, 37, 417–428. [Google Scholar] [CrossRef]
- Schmitz, T.W.; Johnson, S.C. Relevance to Self: A Brief Review and Framework of Neural Systems Underlying Appraisal. Neurosci. Biobehav. Rev. 2007, 31, 585–596. [Google Scholar] [CrossRef]
- Joireman, J.; Balliet, D.; Sprott, D.; Spangenberg, E.; Schultz, J. Consideration of Future Consequences, Ego-Depletion, and Self-Control: Support for Distinguishing between CFC-Immediate and CFC-Future Sub-Scales. Personal. Individ. Differ. 2008, 45, 15–21. [Google Scholar] [CrossRef]
- Ormel, J.; Jeronimus, B.F.; Kotov, R.; Riese, H.; Bos, E.H.; Hankin, B.; Rosmalen, J.G.M.; Oldehinkel, A.J. Neuroticism and Common Mental Disorders: Meaning and Utility of a Complex Relationship. Clin. Psychol. Rev. 2013, 33, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Jeronimus, B.F.; Ormel, J.; Aleman, A.; Penninx, B.W.J.H.; Riese, H. Negative and Positive Life Events Are Associated with Small but Lasting Change in Neuroticism. Psychol. Med. 2013, 43, 2403–2415. [Google Scholar] [CrossRef]
- Seeley, W.W. The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J. Neurosci. 2019, 39, 9878–9882. [Google Scholar] [CrossRef]
- Smith, K.A.; Dennis, M.; Masthoff, J.; Tintarev, N. A Methodology for Creating and Validating Psychological Stories for Conveying and Measuring Psychological Traits. User Model. User-Adap. Inter. 2019, 29, 573–618. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Rangnekar, S. The Interactive Effects of Conscientiousness and Agreeableness on Career Commitment. J. Employ. Couns. 2016, 53, 14–29. [Google Scholar] [CrossRef]
- Izuma, K.; Saito, D.N.; Sadato, N. The Roles of the Medial Prefrontal Cortex and Striatum in Reputation Processing. Soc. Neurosci. 2010, 5, 133–147. [Google Scholar] [CrossRef]
- Müller-Pinzler, L.; Gazzola, V.; Keysers, C.; Sommer, J.; Jansen, A.; Frässle, S.; Einhäuser, W.; Paulus, F.M.; Krach, S. Neural Pathways of Embarrassment and Their Modulation by Social Anxiety. Neuroimage 2015, 119, 252–261. [Google Scholar] [CrossRef]
- Jung, D.; Sul, S.; Lee, M.; Kim, H. Social Observation Increases Functional Segregation between MPFC Subregions Predicting Prosocial Consumer Decisions. Sci. Rep. 2018, 8, 3368. [Google Scholar] [CrossRef]
- Takahashi, H.; Yahata, N.; Koeda, M.; Matsuda, T.; Asai, K.; Okubo, Y. Brain Activation Associated with Evaluative Processes of Guilt and Embarrassment: An FMRI Study. Neuroimage 2004, 23, 967–974. [Google Scholar] [CrossRef]
- Michl, P.; Meindl, T.; Meister, F.; Born, C.; Engel, R.R.; Reiser, M.; Hennig-Fast, K. Neurobiological Underpinnings of Shame and Guilt: A Pilot FMRI Study. Soc. Cogn. Affect. Neurosci. 2014, 9, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Gilead, M.; Katzir, M.; Eyal, T.; Liberman, N. Neural Correlates of Processing “Self-Conscious” vs. “Basic” Emotions. Neuropsychologia 2016, 81, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Hare, T.A.; Camerer, C.F.; Knoepfle, D.T.; O’Doherty, J.P.; Rangel, A. Value Computations in Ventral Medial Prefrontal Cortex during Charitable Decision Making Incorporate Input from Regions Involved in Social Cognition. J. Neurosci. 2010, 30, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Rameson, L.T.; Morelli, S.A.; Lieberman, M.D. The Neural Correlates of Empathy: Experience, Automaticity, and Prosocial Behavior. J. Cogn. Neurosci. 2012, 24, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Tusche, A.; Böckler, A.; Kanske, P.; Trautwein, F.-M.; Singer, T. Decoding the Charitable Brain: Empathy, Perspective Taking, and Attention Shifts Differentially Predict Altruistic Giving. J. Neurosci. 2016, 36, 4719–4732. [Google Scholar] [CrossRef]
- Beer, J.S.; Hughes, B.L. Neural Systems of Social Comparison and the “above-Average” Effect. Neuroimage 2010, 49, 2671–2679. [Google Scholar] [CrossRef]
- Hughes, B.L.; Beer, J.S. Protecting the Self: The Effect of Social-Evaluative Threat on Neural Representations of Self. J. Cogn. Neurosci. 2013, 25, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Rosen, H.J.; Gorno-Tempini, M.L.; Goldman, W.P.; Perry, R.J.; Schuff, N.; Weiner, M.; Feiwell, R.; Kramer, J.H.; Miller, B.L. Patterns of Brain Atrophy in Frontotemporal Dementia and Semantic Dementia. Neurology 2002, 58, 198–208. [Google Scholar] [CrossRef]
- Crone, E.A.; Fuligni, A.J. Self and Others in Adolescence. Annu. Rev. Psychol. 2020, 71, 447–469. [Google Scholar] [CrossRef]
- Tamnes, C.K.; Herting, M.M.; Goddings, A.-L.; Meuwese, R.; Blakemore, S.-J.; Dahl, R.E.; Güroğlu, B.; Raznahan, A.; Sowell, E.R.; Crone, E.A.; et al. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. J. Neurosci. 2017, 37, 3402–3412. [Google Scholar] [CrossRef]
- Urošević, S.; Collins, P.; Muetzel, R.; Lim, K.; Luciana, M. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence. Dev. Psychol. 2012, 48, 1488–1500. [Google Scholar] [CrossRef]
- Sutin, A.R.; Beason-Held, L.L.; Resnick, S.M.; Costa, P.T. Sex Differences in Resting-State Neural Correlates of Openness to Experience among Older Adults. Cereb. Cortex 2009, 19, 2797–2802. [Google Scholar] [CrossRef]
- Adelstein, J.S.; Shehzad, Z.; Mennes, M.; Deyoung, C.G.; Zuo, X.-N.; Kelly, C.; Margulies, D.S.; Bloomfield, A.; Gray, J.R.; Castellanos, F.X.; et al. Personality Is Reflected in the Brain’s Intrinsic Functional Architecture. PLoS ONE 2011, 6, e27633. [Google Scholar] [CrossRef]
- Passamonti, L.; Terracciano, A.; Riccelli, R.; Donzuso, G.; Cerasa, A.; Vaccaro, M.; Novellino, F.; Fera, F.; Quattrone, A. Increased Functional Connectivity within Mesocortical Networks in Open People. Neuroimage 2015, 104, 301–309. [Google Scholar] [CrossRef]
- Hoseinifar, J.; Siedkalan, M.M.; Zirak, S.R.; Nowrozi, M.; Shaker, A.; Meamar, E.; Ghaderi, E. An Investigation of the Relation between Creativity and Five Factors of Personality in Students. Procedia—Soc. Behav. Sci. 2011, 30, 2037–2041. [Google Scholar] [CrossRef]
- Silvia, P.J. Another Look at Creativity and Intelligence: Exploring Higher-Order Models and Probable Confounds. Personal. Individ. Differ. 2008, 44, 1012–1021. [Google Scholar] [CrossRef]
- Kim, K.H.; Cramond, B.; VanTassel-Baska, J. The Relationship between Creativity and Intelligence. In The Cambridge Handbook of Creativity; Kaufman, J.C., Sternberg, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 395–412. ISBN 978-0-511-76320-5. [Google Scholar]
- Shi, B.; Cao, X.; Chen, Q.; Zhuang, K.; Qiu, J. Different Brain Structures Associated with Artistic and Scientific Creativity: A Voxel-Based Morphometry Study. Sci. Rep. 2017, 7, 42911. [Google Scholar] [CrossRef]
- DeYoung, C.G.; Hirsh, J.B.; Shane, M.S.; Papademetris, X.; Rajeevan, N.; Gray, J.R. Testing Predictions from Personality Neuroscience: Brain Structure and the Big Five. Psychol. Sci. 2010, 21, 820–828. [Google Scholar] [CrossRef]
- Bjørnebekk, A.; Fjell, A.M.; Walhovd, K.B.; Grydeland, H.; Torgersen, S.; Westlye, L.T. Neuronal Correlates of the Five Factor Model (FFM) of Human Personality: Multimodal Imaging in a Large Healthy Sample. Neuroimage 2013, 65, 194–208. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Macrae, C.N.; Banaji, M.R. Dissociable Medial Prefrontal Contributions to Judgments of Similar and Dissimilar Others. Neuron 2006, 50, 655–663. [Google Scholar] [CrossRef]
- Welborn, B.L.; Lieberman, M.D. Person-Specific Theory of Mind in Medial PFC. J. Cogn. Neurosci. 2015, 27, 1–12. [Google Scholar] [CrossRef]
Author | Population | Design and Measurements | Main Findings * |
---|---|---|---|
Becht et al. [2] |
|
| Adolescents in the identity moratorium showed a more positive linear slope than comparison group, indicating delayed maturation and higher NAcc volume levels across assessment waves. |
Keil et al. [15] |
|
| Increased coupling for arousing content occurs for large-scale electrical activity at a cortical level, with cortical regions (right PRECUN, bilateral inferior, and superior posterior parietal lobes, left mTG, left iTG, left post-central cortex, right iFG, and right mFG), consistent with regions targeted as elements in a functional network. |
Massey et al. [16] |
|
| Individuals with schizophrenia presented deficits in cognitive empathy, associated with lower cortical thickness in iFG, INS, right SMA and TPJ, bilateral mPFC and amCC. |
Miskovic et al. [17] |
|
| Psychopathy scores were associated with reduced gyrification in the right psPL, dlPFC, and mCC, as well as reduced functional connectivity between mCC and right psPL. |
Roman et al. [18] |
|
| Decision-making competence showed association with logical reasoning, linked to individual cortical surface area differences in daCC and right psTS. |
Rudorf et al. [4] |
|
| SN connectivity was associated with individual behavioral tendencies for cooperation with peak locations being piPL, psPL, postcentral gyrus, mFG, OFC, INS, aCC, PUT, iFG, pCC, PRECUN and mPFC. |
Cao and Xia [6] |
|
| Surface area of the vmPFC positively relates to most traits of conscientiousness, except for deliberation. |
Sheng et al. [19] |
|
| Carefree nonplanfulness subscale scores correlated with mPFC deactivation during task. |
Toschi and Passamonti [20] ** |
|
| Neuroticism related positively to intracortical myelin in the visual cortex, and negatively to FPC myelin content. Extraversion related positively to myelin levels in the psPL, and negatively in the aCC. Aggreableness related positively to myelin levels in the OFC. Conscientiousness related positively to intracortical myelin content in the FPC and negatively in the daCC. The negative association between openness and myelin is spread throughout the telencephalon. |
Vartanian et al. [21] |
|
| Openness and intellect were negatively correlated with cortical thickness in rostral and superior prefrontal regions, and positively correlated with surface area and folding in the OFC, parietal and temporal areas. |
Vijayakumar et al. [12] |
|
| Transition from childhood to adolescence was characterized by global increases in structural covariance, followed by reductions in mid-adolescence. Developmental patterns in nodal and modular properties are consistent with earlier development of motor skills, with consistent refinement of emotion modulation, social cognition, and executive faculties. |
Wertz et al. [22] |
|
| Lower CTh on the left OFC and increased on the right angular gyrus were associated with CAQ scores. Results show that highly creative individuals exhibited cortical structure differences across bilateral sTG, isthmus cingulate, INS, psPL and SMA. Within artistic creativity measurements, authors describe inverse relationship to CTh in the left sTG-mTG, and right psPL. Higher artistic creativity was also related to decreased left AM volume and increased left CAU volume. |
Wright et al. [9] |
|
| PFC subregions were associated with extraversion (increased CTh of the right sFG and left mFG) or neuroticism (decreased CTh of the same regions) in elderly. In the right aTL, only neuroticism, was significantly associated with CTh. |
Yasuno et al. [23] |
|
| Openness associated with myelination in the right aCC, mPFC, pCC, pINS, and PUT. |
Yoon et al. [24] |
|
| Confirmation of the observer role linked to increased mPFC and aINS activity in impression management. Increased OFC activity in self-enhancement and self-serving behavior. |
Zhu et al. [25] ** |
|
| Relationship between aggressive behavior and negative affect with CTh in the dPFC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo, F.; Carson, F. Neurocircuitry of Personality Traits and Intent in Decision-Making. Behav. Sci. 2023, 13, 351. https://doi.org/10.3390/bs13050351
Toledo F, Carson F. Neurocircuitry of Personality Traits and Intent in Decision-Making. Behavioral Sciences. 2023; 13(5):351. https://doi.org/10.3390/bs13050351
Chicago/Turabian StyleToledo, Felippe, and Fraser Carson. 2023. "Neurocircuitry of Personality Traits and Intent in Decision-Making" Behavioral Sciences 13, no. 5: 351. https://doi.org/10.3390/bs13050351
APA StyleToledo, F., & Carson, F. (2023). Neurocircuitry of Personality Traits and Intent in Decision-Making. Behavioral Sciences, 13(5), 351. https://doi.org/10.3390/bs13050351