Gender-Based Differential Item Function for the Positive and Negative Semantic Dimensions of the Relationship Satisfaction Scale with Item Response Theory
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.3. Data Analysis
3. Results
3.1. MIRT Results
3.2. DIF Results
3.3. Construct Validity
3.4. Concurrent Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Corresponding z Values in Each Iteration
z-Value | ||||||||
Identified Anchors | PN-SMD 2 | PN-SMD 4 | PN-SMD 5 | PN-SMD 7 | PN-SMD 11 | PN-SMD 12 | PN-SMD 13 | PN-SMD 14 |
PN-SMD 1 (interesting) | −2.454 * | −4.534 *** | − 2.891 ** | −4.345 *** | −4.107 *** | −4.140 *** | −3.692 *** | −3.644 *** |
PN-SMD 2 (full) | / | −2.902 ** | −1.545 | −2.731 *** | −2.988 ** | −2.909 ** | −2.564 ** | −2.476 ** |
PN-SMD 3 | 2.133 * | 0.637 | 2.093 * | 0.643 | 0.144 | 0.12 | 0.353 | 0.313 |
PN-SMD 4 | 1.578 | / | 1.844 | −0.005 | −0.446 | −0.44 | −0.204 | −0.168 |
PN-SMD 5 (good) | −0.558 | −2.694 ** | / | −2.369 ** | −2.327 ** | −2.326 * | −2.058 * | −1.973 * |
PN-SMD 6 | 2.634 ** | 1.42 | 3.227 ** | 1.564 | 0.724 | 0.697 | 0.938 | 0.943 |
PN-SMD 7 | 1.269 | −0.288 | 1.353 | / | −0.584 | −0.574 | −0.339 | −0.313 |
PN-SMD 8 | 0.632 | 1.461 | 0.774 | 1.412 | 1.96 | 2.109* | 1.714 | 1.565 |
PN-SMD 9 (lonely) | 1.071 | 2.081 * | 1.373 | 2.060 * | 3.158 ** | 3.176 ** | 2.577 ** | 2.347 * |
PN-SMD 10 (discouraging) | −2.407 * | −1.314 | −2.053 * | −1.345 | −1.444 | −1.359 | −2.162 * | −2.100 * |
PN-SMD 11 | −1.736 | −0.435 | −1.233 | −0.498 | / | −0.023 | −0.645 | −0.758 |
PN-SMD 12 | −1.588 | −0.46 | −1.243 | −0.513 | −0.169 | / | −0.897 | −0.917 |
PN-SMD 13 | −0.775 | 0.149 | −0.588 | 0.113 | 0.637 | 0.876 | / | −0.053 |
PN-SMD 14 | −0.477 | 0.275 | −0.269 | 0.249 | 0.794 | 0.933 | 0.264 | / |
Note. The detected DIF items were bold. * p < 0.05; ** p < 0.01; *** p < 0.001. |
References
- Mattson, R.E.; Rogge, R.D.; Johnson, M.D.; Davidson, E.K.; Fincham, F.D. The positive and negative semantic dimensions of relationship satisfaction. Pers. Relatsh. 2013, 20, 328–355. [Google Scholar]
- Vanhalst, J.; Luyckx, K.; Goossens, L. Experiencing loneliness in adolescence: A matter of individual characteristics, negative peer experiences, or both? Soc. Dev. 2014, 23, 100–118. [Google Scholar] [CrossRef]
- Perlman, D. Loneliness: A Sourcebook of Current Theory, Research and Therapy; John Wiley & Sons Incorporated: Hoboken, NJ, USA, 1982; Volume 36. [Google Scholar]
- Goodman-Deane, J.; Mieczakowski, A.; Johnson, D.; Goldhaber, T.; Clarkson, P.J. The impact of communication technologies on life and relationship satisfaction. Comput. Hum. Behav. 2016, 57, 219–229. [Google Scholar] [CrossRef]
- Fuller-Iglesias, H.R. Social ties and psychological well-being in late life: The mediating role of relationship satisfaction. Aging Ment. Health 2015, 19, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Shortt, J.W.; Capaldi, D.M.; Kim, H.K.; Laurent, H.K. The effects of intimate partner violence on relationship satisfaction over time for young at-risk couples: The moderating role of observed negative and positive affect. Partn. Abus. 2010, 1, 131–151. [Google Scholar] [CrossRef]
- Fincham, F.D.; Linfield, K.J. A new look at marital quality: Can spouses feel positive and negative about their marriage? J. Fam. Psychol. 1997, 11, 489. [Google Scholar] [CrossRef]
- Sciangula, A.; Morry, M.M. Self-esteem and perceived regard: How I see myself affects my relationship satisfaction. J. Soc. Psychol. 2009, 149, 143–158. [Google Scholar] [CrossRef]
- Erol, R.Y.; Orth, U. Development of self-esteem and relationship satisfaction in couples: Two longitudinal studies. Dev. Psychol. 2014, 50, 2291. [Google Scholar] [CrossRef]
- Weiser, D.A.; Weigel, D.J. Self-efficacy in romantic relationships: Direct and indirect effects on relationship maintenance and satisfaction. Personal. Individ. Differ. 2016, 89, 152–156. [Google Scholar] [CrossRef]
- Karney, B.R.; Bradbury, T.N. The longitudinal course of marital quality and stability: A review of theory, methods, and research. Psychol. Bull. 1995, 118, 3. [Google Scholar] [CrossRef]
- Funk, J.L.; Rogge, R.D. Testing the ruler with item response theory: Increasing precision of measurement for relationship satisfaction with the Couples Satisfaction Index. J. Fam. Psychol. 2007, 21, 572. [Google Scholar] [CrossRef]
- Rogge, R.D.; Fincham, F.D.; Crasta, D.; Maniaci, M.R. Positive and negative evaluation of relationships: Development and validation of the Positive–Negative Relationship Quality (PN-RQ) scale. Psychol. Assess. 2017, 29, 1028. [Google Scholar] [CrossRef] [PubMed]
- Locke, H.J.; Wallace, K.M. Short marital-adjustment and prediction tests: Their reliability and validity. Marriage Fam. Living 1959, 21, 251–255. [Google Scholar] [CrossRef]
- Spanier, G.B. Measuring dyadic adjustment: New scales for assessing the quality of marriage and similar dyads. J. Marriage Fam. 1976, 38, 15–28. [Google Scholar] [CrossRef]
- Weiss, R.; Pinsof, W. Family Psychology: The Art of the Science; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Jacobson, N.S. The role of observational measures in behavior therapy outcome research. Behav. Assess. 1985, 7, 297–308. [Google Scholar]
- Johnson, D.R.; White, L.K.; Edwards, J.N.; Booth, A. Dimensions of marital quality: Toward methodological and conceptual refinement. J. Fam. Issues 1986, 7, 31–49. [Google Scholar] [CrossRef]
- Fincham, F.D.; Rogge, R. Understanding relationship quality: Theoretical challenges and new tools for assessment. J. Fam. Theory Rev. 2010, 2, 227–242. [Google Scholar] [CrossRef]
- Gilford, R.; Bengtson, V. Measuring marital satisfaction in three generations: Positive and negative dimensions. J. Marriage Fam. 1979, 44, 387–398. [Google Scholar] [CrossRef]
- Osgood, C.E. Semantic differential technique in the comparative study of cultures. Am. Anthropol. 1964, 66, 171–200. [Google Scholar] [CrossRef]
- Wong, D.S.-W.; Fung, S.-F. Development of the Cybercrime Rapid Identification Tool for Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 4691. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, L.; Fung, S.-F.; Li, J.; Liu, Y.-M.; Xiong, Z.-K.; Jiang, Z.-Q.; Zhu, F.-F.; Chen, Z.-T.; Luo, S.-D. Problematic Internet Usage and Self-Esteem in Chinese Undergraduate Students: The Mediation Effects of Individual Affect and Relationship Satisfaction. Int. J. Environ. Res. Public Health 2021, 18, 6949. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.A.; Mattson, R.E.; Davila, J.; Johnson, M.D.; Cameron, N.M. Touch me just enough: The intersection of adult attachment, intimate touch, and marital satisfaction. J. Soc. Pers. Relatsh. 2020, 37, 1945–1967. [Google Scholar] [CrossRef]
- Chalmers, R.P. Mirt: A multidimensional item response theory package for the R environment. J. Stat. Softw. 2012, 48, 1–29. [Google Scholar] [CrossRef]
- Bortolotti, S.L.V.; Tezza, R.; de Andrade, D.F.; Bornia, A.C.; de Sousa Júnior, A.F. Relevance and advantages of using the item response theory. Qual. Quant. 2013, 47, 2341–2360. [Google Scholar] [CrossRef]
- Edelen, M.O.; Stucky, B.D.; Chandra, A. Quantifying ‘problematic’ DIF within an IRT framework: Application to a cancer stigma index. Qual. Life Res. 2015, 24, 95–103. [Google Scholar] [CrossRef]
- Huang, S.J.; Valdivia, D.S. Wald & chi2 Test for Differential Item Functioning Detection with Polytomous Items in Multilevel Data. Educ. Psychol. Meas. 2023. [Google Scholar] [CrossRef]
- Teresi, J.A. Overview of quantitative measurement methods: Equivalence, invariance, and differential item functioning in health applications. Med. Care 2006, 44, S39–S49. [Google Scholar] [CrossRef]
- Cheng, Y.; Shao, C.; Lathrop, Q.N. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF. Educ. Psychol. Meas. 2016, 76, 43–63. [Google Scholar] [CrossRef]
- Tsaousis, I.; Sideridis, G.D.; AlGhamdi, H.M. Measurement Invariance and Differential Item Functioning Across Gender Within a Latent Class Analysis Framework: Evidence From a High-Stakes Test for University Admission in Saudi Arabia. Front. Psychol. 2020, 11, 622. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, J.; Teng, C.; Zhao, K.; Su, K.-P.; Wang, Z.; Tang, W.; Zhang, C. Depressive symptoms in the front-line non-medical workers during the COVID-19 outbreak in Wuhan. J. Affect. Disord. 2020, 276, 441–445. [Google Scholar] [CrossRef]
- Liu, J.-D.; You, R.-H.; Liu, H.; Chung, P.-K. Chinese version of the international positive and negative affect schedule short form: Factor structure and measurement invariance. Health Qual. Life Outcomes 2020, 18, 285. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, D. Subjective well-being of Chinese landless peasants in relatively developed regions: Measurement using PANAS and SWLS. Soc. Indic. Res. 2015, 123, 817–835. [Google Scholar] [CrossRef]
- Smith, B.W.; Dalen, J.; Wiggins, K.; Tooley, E.; Christopher, P.; Bernard, J. The brief resilience scale: Assessing the ability to bounce back. Int. J. Behav. Med. 2008, 15, 194–200. [Google Scholar] [CrossRef]
- Fung, S.-F. Validity of the Brief Resilience Scale and Brief Resilient Coping Scale in a Chinese Sample. Int. J. Environ. Res. Public Health 2020, 17, 1265. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The satisfaction with life scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Zhao, J.; You, X. Emotional intelligence and life satisfaction in Chinese university students: The mediating role of self-esteem and social support. Personal. Individ. Differ. 2012, 53, 1039–1043. [Google Scholar] [CrossRef]
- Wu, Y.; Zuo, B.; Wen, F.; Yan, L. Rosenberg Self-Esteem Scale: Method effects, factorial structure and scale invariance across migrant child and urban child populations in China. J. Personal. Assess. 2017, 99, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Cai, H.; Brown, J.D.; Grimm, K.J. Differential item functioning of the Rosenberg self-esteem scale in the US and China: Measurement bias matters. Asian J. Soc. Psychol. 2011, 14, 176–188. [Google Scholar] [CrossRef]
- Schwarzer, R.; Jerusalem, M. Generalized self-efficacy scale. In Measures in Health Psychology: A User’s Portforlio. Causal and Control Beliefs; NFER-Nelson: Windsor, UK, 1995; Volume 1, pp. 35–37. [Google Scholar]
- Zhang, J.X.; Schwarzer, R. Measuring optimistic self-beliefs: A Chinese adaptation of the General Self-Efficacy Scale. Psychol. Int. J. Psychol. Orient 1995, 38, 174–181. [Google Scholar]
- Zeng, G.; Fung, S.-F.; Li, J.; Hussain, N.; Yu, P. Evaluating the psychometric properties and factor structure of the general self-efficacy scale in China. Curr. Psychol. 2020, 41, 3970–3980. [Google Scholar]
- Edelen, M.O.; Reeve, B.B. Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Qual. Life Res. 2007, 16, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Hambleton, R.K.; Swaminathan, H. Item Response Theory: Principles and Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Brennan, R.L. Generalizability Theory and Classical Test Theory. Appl. Meas. Educ. 2011, 24, 1–21. [Google Scholar] [CrossRef]
- Embretson, S.E. The new rules of measurement. Psychol. Assess. 1996, 8, 341. [Google Scholar] [CrossRef]
- Lord, F.M. Applications of Item Response Theory to Practical Testing Problems; Routledge: Abignon, UK, 2012. [Google Scholar]
- Hambleton, R.K.; Swaminathan, H.; Rogers, H.J. Fundamentals of Item Response Theory; Sage: Thousand Oaks, CA, USA, 1991; Volume 2. [Google Scholar]
- Ansley, T.N.; Forsyth, R.A. An examination of the characteristics of unidimensional IRT parameter estimates derived from two-dimensional data. Appl. Psychol. Meas. 1985, 9, 37–48. [Google Scholar] [CrossRef]
- Fletcher, R.B.; Crocker, P. A polytomous item response theory analysis of social physique anxiety scale. Meas. Phys. Educ. Exerc. Sci. 2014, 18, 153–167. [Google Scholar] [CrossRef]
- Huang, F.; Ye Han, X.; Chen, S.-L.; Guo, Y.F.; Wang, A.; Zhang, Q. Psychometric testing of the Chinese simple version of the Simulation Learning Effectiveness Inventory: Classical theory test and item response theory. Front. Psychol. 2020, 11, 32. [Google Scholar] [CrossRef]
- Pasca, L.; Aragonés, J.I.; Coello, M.T. An analysis of the connectedness to nature scale based on item response theory. Front. Psychol. 2017, 8, 1330. [Google Scholar] [CrossRef]
- Baker, F.B. The Basics of Item Response Theory; ERIC: Washington, DC, USA, 2001.
- Wang, W.-C.; Shih, C.-L.; Yang, C.-C. The MIMIC Method With Scale Purification for Detecting Differential Item Functioning. Educ. Psychol. Meas. 2009, 69, 713–731. [Google Scholar] [CrossRef]
- Khalid, M.N.; Glas, C.A.W. A scale purification procedure for evaluation of differential item functioning. Measurement 2014, 50, 186–197. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with LISREL, PRELIS, and SIMPLIS: Basic Concepts, Applications, and Programming; Psychology Press: Abignon, UK, 2013. [Google Scholar]
- Lai, J.-S.; Teresi, J.; Gershon, R. Procedures for the Analysis of Differential Item Functioning (DIF) for Small Sample Sizes. Eval. Health Prof. 2005, 28, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.T.; McCarthy, D.M.; Anderson, K.G. On the sins of short-form development. Psychol. Assess. 2000, 12, 102–111. [Google Scholar] [CrossRef]
- Li, C.H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Bradley, J.M.; Hojjat, M. A model of resilience and marital satisfaction. J. Soc. Psychol. 2017, 157, 588–601. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Baumeister, R.F.; Leary, M.R. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 1995, 117, 497. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Z.; Li, J. How does social presence influence SNS addiction? A belongingness theory perspective. Comput. Hum. Behav. 2017, 77, 347–355. [Google Scholar] [CrossRef]
- Marsh, H.W.; Hocevar, D. Application of confirmatory factor analysis to the study of self-concept: First-and higher order factor models and their invariance across groups. Psychol. Bull. 1985, 97, 562. [Google Scholar] [CrossRef]
- Lameijer, C.; Van Bruggen, S.; Haan, E.; Van Deurzen, D.; Van der Elst, K.; Stouten, V.; Kaat, A.; Roorda, L.; Terwee, C. Graded response model fit, measurement invariance and (comparative) precision of the Dutch-Flemish PROMIS® Upper Extremity V2. 0 item bank in patients with upper extremity disorders. BMC Musculoskelet. Disord. 2020, 21, 170. [Google Scholar] [CrossRef]
- Van Dam, N.T.; Earleywine, M.; Borders, A. Measuring mindfulness? An item response theory analysis of the Mindful Attention Awareness Scale. Personal. Individ. Differ. 2010, 49, 805–810. [Google Scholar] [CrossRef]
- Holland, P.; Wainer, H. Differential item functioning. Psicothema 1995, 7, 237–242. [Google Scholar]
- Zieky, M. Developing Fair Tests. In Handbook of Test Development; Downing, S., Haladyna, T., Eds.; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Teresi, J.A.; Fleishman, J.A. Differential item functioning and health assessment. Qual. Life Res. 2007, 16, 33–42. [Google Scholar] [CrossRef]
- Lane, R.D.; Sechrest, L.; Riedel, R. Sociodemographic correlates of alexithymia. Compr. Psychiatry 1998, 39, 377–385. [Google Scholar] [CrossRef]
- Barrett, L.F.; Lane, R.D.; Sechrest, L.; Schwartz, G.E. Sex differences in emotional awareness. Personal. Soc. Psychol. Bull. 2000, 26, 1027–1035. [Google Scholar] [CrossRef]
- Bell, R.R. Worlds of Friendship; Sage Publications: Thousand Oaks, CA, USA, 1981. [Google Scholar]
- Eder, D.; Hallinan, M.T. Sex differences in children’s friendships. Am. Sociol. Rev. 1978, 43, 237–250. [Google Scholar] [CrossRef]
- Stokes, J.P.; Levin, I. Gender differences in predicting loneliness from social network characteristics. J. Personal. Soc. Psychol. 1986, 51, 1069. [Google Scholar] [CrossRef]
- Borys, S.; Perlman, D. Gender differences in loneliness. Personal. Soc. Psychol. Bull. 1985, 11, 63–74. [Google Scholar] [CrossRef]
- Teresi, J.A.; Ramirez, M.; Jones, R.N.; Choi, S.; Crane, P.K. Modifying measures based on differential item functioning (DIF) impact analyses. J. Aging Health 2012, 24, 1044–1076. [Google Scholar] [CrossRef]
- Yasemin, K.; Leite, W.L.; Miller, M.D. A comparison of logistic regression models for DIF detection in polytomous items: The effect of small sample sizes and non-normality of ability distributions. Int. J. Assess. Tools Educ. 2015, 2, 22–39. [Google Scholar]
- Walker, C.M.; Gocer Sahin, S. Using a multidimensional IRT framework to better understand differential item functioning (DIF): A tale of three DIF detection procedures. Educ. Psychol. Meas. 2017, 77, 945–970. [Google Scholar] [CrossRef]
- Swaminathan, H.; Rogers, H.J. Detecting differential item functioning using logistic regression procedures. J. Educ. Meas. 1990, 27, 361–370. [Google Scholar] [CrossRef]
- Bulut, O.; Suh, Y. Detecting multidimensional differential item functioning with the multiple indicators multiple causes model, the item response theory likelihood ratio test, and logistic regression. Front. Educ. 2017, 2, 51. [Google Scholar] [CrossRef]
- Robitzsch, A. Linking Error in the 2PL Model. J 2023, 6, 58–84. [Google Scholar] [CrossRef]
- Robitzsch, A. Robust and Nonrobust Linking of Two Groups for the Rasch Model with Balanced and Unbalanced Random DIF: A Comparative Simulation Study and the Simultaneous Assessment of Standard Errors and Linking Errors with Resampling Techniques. Symmetry 2021, 13, 2198. [Google Scholar] [CrossRef]
- Hambleton, R.K. Good practices for identifying differential item functioning. Med. Care 2006, 44, S182–S188. [Google Scholar] [CrossRef] [PubMed]
- Napierala, M.A. What is the Bonferroni correction. AAOS Now 2012, 6, 40. [Google Scholar]
- French, B.F.; Finch, W.H. Transforming SIBTEST to Account for Multilevel Data Structures. J. Educ. Meas. 2015, 52, 159–180. [Google Scholar] [CrossRef]
- Shealy, R.; Stout, W. A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika 1993, 58, 159–194. [Google Scholar] [CrossRef]
Variable | Respondents (n = 511) |
---|---|
Age mean (SD) | 20.41 (2.49) |
Gender n (%) | |
Male | 74 (14.5%) |
Female | 437 (85.5%) |
Item | ||||||||
---|---|---|---|---|---|---|---|---|
PN-SMD 1 | 2.442 | – | 5.586 | 3.575 | 2.703 | 0.076 | −1.635 | −4.794 |
PN-SMD 2 | 2.386 | – | 5.620 | 3.422 | 1.873 | −0.360 | −2.020 | −4.803 |
PN-SMD 3 | 2.268 | – | 5.953 | 3.549 | 2.178 | 0.255 | −1.608 | −4.355 |
PN-SMD 4 | 2.893 | – | 7.610 | 5.520 | 3.638 | 0.916 | −1.239 | −4.900 |
PN-SMD 5 | 2.679 | – | 6.996 | 4.676 | 2.962 | 0.141 | −1.833 | −5.148 |
PN-SMD 6 | 2.290 | – | 6.736 | 4.765 | 3.285 | 1.278 | −0.337 | −3.583 |
PN-SMD 7 | 2.590 | – | 6.679 | 4.876 | 3.315 | 0.827 | −1.018 | −4.165 |
PN-SMD 8 | – | 1.969 | 2.490 | 0.105 | −1.474 | −2.963 | −4.551 | −6.364 |
PN-SMD 9 | – | 2.491 | 3.419 | 0.813 | −0.746 | −2.288 | −3.797 | −5.626 |
PN-SMD 10 | – | 3.900 | 3.979 | −0.147 | −2.129 | −4.541 | −6.351 | −8.718 |
PN-SMD 11 | – | 3.350 | 3.864 | 0.052 | −1.774 | −3.594 | −5.787 | −8.458 |
PN-SMD 12 | – | 3.590 | 3.844 | −0.246 | −2.150 | −4.300 | −6.198 | −8.425 |
PN-SMD 13 | – | 2.677 | 3.058 | 0.244 | −1.232 | −2.789 | −4.562 | −7.846 |
PN-SMD 14 | – | 3.433 | 3.260 | −0.926 | −2.553 | −4.598 | −6.432 | −7.999 |
DIF Item | β | σ (β) | z | p |
---|---|---|---|---|
PN-SMD 1 (interesting) | −0.122 | 0.033 | −3.644 | 0.000 |
PN-SMD 2 (full) | −0.080 | 0.032 | −2.476 | 0.013 |
PN-SMD 5 (good) | −0.074 | 0.037 | −1.973 | 0.048 |
PN-SMD 9 (lonely) | 0.069 | 0.029 | 2.347 | 0.019 |
PN-SMD 10 (discouraging) | −0.050 | 0.024 | −2.100 | 0.036 |
Model | χ2 | df | χ2/df | RMSEA [90% CI] | CFI | TLI | SRMR |
---|---|---|---|---|---|---|---|
14-item model | 463.414 | 76 | 6.10 | 0.100 [0.091~0.109] | 0.918 | 0.902 | 0.044 |
9-item model | 126.580 | 26 | 4.87 | 0.087 [0.072~0.102] | 0.960 | 0.945 | 0.031 |
9-item model * | 85.733 | 25 | 3.43 | 0.069 [0.053~0.085] | 0.976 | 0.966 | 0.024 |
Scale | P-SMD (4 Item) | N-SMD (5 Items) | P-SMD (7 Items) | N-SMD (7 Items) |
---|---|---|---|---|
α = 0.857 | α = 0.889 | α = 0.904 | α = 0.921 | |
P-SMD (4 item) | – | |||
N-SMD (5 item) | −0.457 ** | – | ||
P-SMD (7 item) | 0.951 ** | −0.486 ** | – | |
N-SMD (7 item) | −0.464 ** | 0.981 ** | −0.502 ** | – |
Positive Affect | 0.307 ** | −0.125 ** | 0.377 ** | −0.131 ** |
Negative Affect | −0.238 ** | 0.447 ** | −0.241 ** | 0.451 ** |
Resilience | 0.389 ** | −0.392 ** | 0.393 ** | −0.388 ** |
SWLS | 0.390 ** | −0.263 ** | 0.438 ** | −0.276 ** |
RSE | 0.376 ** | −0.427 ** | 0.420 ** | −0.443 ** |
GSE | 0.237 ** | −0.184 ** | 0.280 ** | −0.172 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fung, S.-f.; Jin, J. Gender-Based Differential Item Function for the Positive and Negative Semantic Dimensions of the Relationship Satisfaction Scale with Item Response Theory. Behav. Sci. 2023, 13, 825. https://doi.org/10.3390/bs13100825
Fung S-f, Jin J. Gender-Based Differential Item Function for the Positive and Negative Semantic Dimensions of the Relationship Satisfaction Scale with Item Response Theory. Behavioral Sciences. 2023; 13(10):825. https://doi.org/10.3390/bs13100825
Chicago/Turabian StyleFung, Sai-fu, and Jiahui Jin. 2023. "Gender-Based Differential Item Function for the Positive and Negative Semantic Dimensions of the Relationship Satisfaction Scale with Item Response Theory" Behavioral Sciences 13, no. 10: 825. https://doi.org/10.3390/bs13100825
APA StyleFung, S. -f., & Jin, J. (2023). Gender-Based Differential Item Function for the Positive and Negative Semantic Dimensions of the Relationship Satisfaction Scale with Item Response Theory. Behavioral Sciences, 13(10), 825. https://doi.org/10.3390/bs13100825