Association between WeChat Use and Memory Performance among Older Adults in China: The Mediating Role of Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Research Sample
2.2. Variables and Measures
2.2.1. Demographic Variables
2.2.2. WeChat Use
2.2.3. Depression
2.2.4. Memory Performance
2.3. Statistical Strategies
3. Results
3.1. Description of the Sample
3.2. The Usage Rate of WeChat
3.3. Comparison between Users and Non-Users of WeChat
3.4. Correlations between the Variables of Interest
3.5. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minett, T.S.; Da Silva, R.V.; Ortiz, K.Z.; Bertolucci, P.H. Subjective memory complaints in an elderly sample: A cross-sectional study. Int. J. Geriatr. Psychiatry 2008, 23, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T.; Stephens, J.A.; Alam, M.; Bikson, M.; Berryhill, M.E. Longitudinal neurostimulation in older adults improves working memory. PLoS ONE 2015, 10, e0121904. [Google Scholar] [CrossRef] [PubMed]
- Kwapis, J.L.; Alaghband, Y.; López, A.J.; Long, J.M.; Li, X.; Shu, G.; Bodinayake, K.K.; Matheos, D.P.; Rapp, P.R.; Wood, M.A. HDAC3-mediated repression of the Nr4a family contributes to age-related impairments in long-term memory. J. Neurosci. 2019, 39, 4999–5009. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghen, P.; Marcoen, A.; Goossens, L. Improving memory performance in the aged through mnemonic training: A meta-analytic study. Psychol. Aging 1992, 7, 242–251. [Google Scholar] [CrossRef]
- Salthouse, T.A. Memory aging from 18 to 80. Alzheimer Dis. Assoc. Disord. 2003, 17, 162–167. [Google Scholar] [CrossRef]
- Deason, R.G. Music as a memory enhancer: Experimental evidence from healthy older adults and patients with Alzheimer’s disease. Innov. Aging 2018, 11, 849. [Google Scholar] [CrossRef]
- Grober, E.; Hall, C.B.; Hahn, S.R.; Lipton, R.B. Memory impairment and executive dysfunction are associated with inadequately controlled diabetes in older adults. J. Prim. Care Community Health 2011, 2, 229–233. [Google Scholar] [CrossRef]
- McDougall, G.J.; Mackert, M.; Becker, H. Memory performance, health literacy, and instrumental activities of daily living of community residing older adults. Nurs. Res. 2012, 61, 70–75. [Google Scholar] [CrossRef]
- Mol, M.; Carpay, M.; Ramakers, I.; Rozendaal, N.; Verhey, F.; Jolles, J. The effect of perceived forgetfulness on quality of life in older adults; a qualitative review. Int. J. Geriatr. Psychiatry 2007, 22, 393–400. [Google Scholar] [CrossRef]
- Crumley, J.J.; Stetler, C.A.; Horhota, M. Examining the relationship between subjective and objective memory performance in older adults: A meta-analysis. Psychol. Aging 2014, 29, 250–263. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Shafto, M.A.; Tyler, L.K.; Dixon, M.; Taylor, J.R.; Rowe, J.B.; Cusack, R.; Calder, A.J.; Marslen-Wilson, W.D.; Duncan, J.; Dalgleish, T.; et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014, 14, 204. [Google Scholar] [CrossRef]
- Schneider, F.; Horowitz, A.; Lesch, K.P.; Dandekar, T. Delaying memory decline: Different options and emerging solutions. Transl. Psychiatry 2020, 10, 13. [Google Scholar] [CrossRef]
- Carr, C.T.; Hayes, R.A. Social media: Defining, developing, and divining. Atl. J. Commun. 2015, 23, 46–65. [Google Scholar] [CrossRef]
- Statista. Number of Global Social Network Users 2018–2027. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (accessed on 24 July 2022).
- Hajek, A.; König, H.H. The association between use of online social networks sites and perceived social isolation among individuals in the second half of life: Results based on a nationally representative sample in Germany. BMC Public Health 2019, 19, 40. [Google Scholar] [CrossRef]
- Pew Research Center. Social Media Use in 2021; Pew Research Center: Washington, DC, USA, 2021. [Google Scholar]
- China’s Internet Information Center. The 49th Statistical Report on China’s Internet Development; China’s Internet Information Center: Beijing, China, 2022. [Google Scholar]
- Sharifian, N.; Zahodne, L. Social media bytes: Daily associations between social media use and everyday memory failures across the adult life span. J. Gerontol. B Psychol. Sci. Soc. Sci. 2020, 75, 540–548. [Google Scholar] [CrossRef]
- Frein, S.T.; Jones, S.L.; Gerow, J.E. When it comes to Facebook there may be more to bad memory than just multitasking. Comput. Hum. Behav. 2013, 29, 2179–2182. [Google Scholar] [CrossRef]
- Tamir, D.I.; Templeton, E.M.; Ward, A.F.; Zaki, J. Media usage diminishes memory for experiences. J. Exp. Soc. Psychol. 2018, 76, 161–168. [Google Scholar] [CrossRef]
- Hand, L.C.; Ching, B.D. An exploration of power and citizen engagement in local governments’ use of social media. Adm. Theory Prax. 2011, 33, 362–382. [Google Scholar] [CrossRef]
- Yu, R.P.; Mccammon, R.J.; Ellison, N.B.; Langa, K.M. The relationships that matter: Social network site use and social well-being among older adults in the United States of America. Ageing Soc. 2016, 36, 1826–1852. [Google Scholar] [CrossRef]
- Steinfield, C.; Ellison, N.B.; Lampe, C. Social capital, self-esteem, and use of online social network sites: A longitudinal analysis. J. Appl. Dev. Psychol. 2008, 29, 434–445. [Google Scholar] [CrossRef]
- Chopik, W.J. The benefits of social technology use among older adults are mediated by reduced loneliness. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Slegers, K.; van Boxtel, M.; Jolles, J. Computer use in older adults: Determinants and the relationship with cognitive change over a 6 year episode. Comput. Hum. Behav. 2012, 28, 1–10. [Google Scholar] [CrossRef]
- Barnes, L.L.; Mendes de Leon, C.F.; Wilson, R.S.; Bienias, J.L.; Evans, D.A. Social resources and cognitive decline in a population of older African Americans and whites. Neurology 2004, 63, 2322–2326. [Google Scholar] [CrossRef] [PubMed]
- Sharp, E.S.; Reynolds, C.A.; Pedersen, N.L.; Gatz, M. Cognitive engagement and cognitive aging: Is openness protective? Psychol. Aging 2010, 25, 60–73. [Google Scholar] [CrossRef]
- Kanai, R.; Bahrami, B.; Roylance, R.; Rees, G. Online social network size is reflected in human brain structure. Proc. R. Soc. B 2012, 279, 1327–1334. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J. The impact of senior citizens’ use of online social networks on their cognitive function. Int. J. Res. Stud. Educ. Technol. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Myhre, J.W.; Mehl, M.R.; Glisky, E.L. Cognitive benefits of online social networking for healthy older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2017, 72, 752–760. [Google Scholar] [CrossRef]
- Mickes, L.; Darby, R.S.; Hwe, V.; Bajic, D.; Warker, J.A.; Harris, C.R.; Christenfeld, N.J.S. Major memory for microblogs. Mem. Cogn. 2013, 41, 481–489. [Google Scholar] [CrossRef]
- Bourne, K.A.; Boland, S.C.; Arnold, G.C.; Coane, J.H. Reading the news on Twitter: Source and item memory for social media in younger and older adults. Cogn. Res. Princ. Implic. 2020, 5, 11. [Google Scholar] [CrossRef]
- Wang, Q.; Lee, D.; Hou, Y. Externalising the autobiographical self: Sharing personal memories online facilitated memory retention. Memory 2017, 25, 772–776. [Google Scholar] [CrossRef]
- Zimmerman, J.; Brown-Schmidt, S. Foodie: Implications of interacting with social media for memory. Cogn. Res. Princ. Implic. 2020, 5, 16. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Burt, D.B.; Zembar, M.J.; Niederehe, G. Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychol. Bull. 1995, 117, 285–305. [Google Scholar] [CrossRef]
- Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2014, 44, 2029–2040. [Google Scholar] [CrossRef]
- Dillon, D.G.; Pizzagalli, D.A. Mechanisms of memory disruption in depression. Trends Neurosci. 2018, 41, 137–149. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Liu, X.; Zhang, M.; Fu, B.; Wang, G.; Lu, S.; Zhong, N.; Hu, B. Emotional working memory in patients with major depressive disorder. J. Int. Med. Res. 2018, 46, 1734–1746. [Google Scholar] [CrossRef]
- McDermott, L.M.; Ebmeier, K.P. A meta-analysis of depression severity and cognitive function. J. Affect. Disord. 2009, 119, 1–8. [Google Scholar] [CrossRef]
- Dalgleish, T.; Werner-Seidler, A. Disruptions in autobiographical memory processing in depression and the emergence of memory therapeutics. Trends Cogn. Sci. 2014, 18, 596–604. [Google Scholar] [CrossRef]
- Douglas, K.M.; Porter, R.J. Longitudinal assessment of neuropsychological function in major depression. Aust. N. Z. J. Psychiatry 2009, 43, 1105–1117. [Google Scholar] [CrossRef]
- Liu, Y.L.; Sidani, J.E.; Shensa, A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.L.; Giles, L.M.; Primack, B.A. Association between social media use and depression among U.S. young adults. Depress. Anxiety 2016, 33, 323–331. [Google Scholar]
- Woods, H.C.; Scott, H. #Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem. J. Adolesc. 2016, 51, 41–49. [Google Scholar]
- Seabrook, E.M.; Kern, M.L.; Rickard, N.S. Social networking sites, depression, and anxiety: A systematic review. JMIR Ment. Health 2016, 3, e50. [Google Scholar] [CrossRef]
- Wright, K.B.; Rosenberg, J.; Egbert, N.; Ploeger, N.A.; Bernard, D.R.; King, S. Communication competence, social support, and depression among college students: A model of facebook and face-to-face support network influence. J. Health Commun. 2013, 18, 41–57. [Google Scholar] [CrossRef]
- O’Keeffe, G.; Clarke-Pearson, K. Council on Communications and Media. The impact of social media on children, adolescents and families. Pediatrics 2011, 124, 800–804. [Google Scholar] [CrossRef]
- Grieve, R.; Indian, M.; Witteveen, K.; Tolan, G.A.; Marrington, J. Face-to-face or Facebook: Can social connectedness be derived online? Comput. Hum. Behav. 2013, 29, 604–609. [Google Scholar] [CrossRef]
- Sha, P.; Dong, X. Research on Adolescents Regarding the Indirect Effect of Depression, Anxiety, and Stress between TikTok Use Disorder and Memory Loss. Int. J. Environ. Res. Public Health 2021, 18, 8820. [Google Scholar] [CrossRef]
- Sharifian, N.; Zahodne, L.B. Daily associations between social media use and memory failures: The mediating role of negative affect. J. Gen. Psychol. 2021, 148, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, Y.; Li, T.; Xi, S.; Xiao, X.; Xiao, S.; Tebes, J.K. New path to recovery and well-being: Cross-sectional study on WeChat use and endorsement of WeChat-based mHealth among people living with schizophrenia in China. J. Med. Internet Res. 2020, 22, e18663. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, W.; Zeng, R. WeChat use intensity and social support: The moderating effect of motivators for WeChat use. Comput. Hum. Behav. 2019, 91, 244–251. [Google Scholar] [CrossRef]
- The Most Commonly Used Social Tool for the Elderly is WeChat, and More Than 90% of the Respondents Watch Videos Online. 2021. Available online: http://news.sohu.com/a/511371639_120099889 (accessed on 24 August 2022).
- Introduction to the China Family Panel Study. Available online: http://www.isss.pku.edu.cn/cfps/ (accessed on 22 June 2022).
- Xie, Y.; Hu, J. An Introduction to the China Family Panel Studies. Chin. Sociol. Rev. 2014, 47, 3–29. [Google Scholar]
- Xie, Y.; Li, P. The sampling design of the China family panel studies (CFPS). Chin. J. Sociol. 2015, 1, 471–484. [Google Scholar] [CrossRef]
- Information Concerning Ethics Review. Available online: http://www.isss.pku.edu.cn/cfps/cjwt/zcjxz/1356882.htm (accessed on 22 June 2022).
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Ting, R.Z.; Lam, M.H.; Lam, S.P.; Yeung, R.O.; Nan, H.; Ozaki, R.; Luk, A.O.; Kong, A.P.; Wing, Y.K.; et al. Measuring depression with CES-D in Chinese patients with type 2 diabetes: The validity and its comparison to PHQ-9. BMC Psychiatry 2015, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, Y.; Zhang, Y.; Li, R.; Wu, H.; Li, C.; Wu, Y.; Tao, Q. The reliability and validity of the Center for Epidemiologic Studies Depression Scale (CES-D) for Chinese university students. Front. Psychiatry 2019, 10, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhemtulla, M.; Brosseau-Liard, P.É; Savalei, V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol. Methods 2012, 17, 354–373. [Google Scholar] [CrossRef]
- Liu, H.; Luo, F.; Zhang, Y.; Zhang, D. Mediation analysis for ordinal outcome variables. Acta Psychol. Sin. 2013, 45, 1431–1442. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Hayes, A.F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis; Guilford Press: New York, NY, USA, 2018. [Google Scholar]
- Digital Around the World. 2022. Available online: https://datareportal.com/global-digital-overview (accessed on 29 July 2022).
- Tsitsika, A.K.; Tzavela, E.C.; Janikian, M. Online social networking in adolescence: Patterns of use in six European countries and links with psychosocial functioning. J. Adolesc. Health 2014, 55, 141–147. [Google Scholar] [CrossRef]
- Sparrow, B.; Liu, J.; Wegner, D.M. Google effects on memory: Cognitive consequences of having information at our fingertips. Science 2011, 333, 776–778. [Google Scholar] [CrossRef]
- Qu, X.; Houser, S.H.; Zhang, J.; Wen, J.; Zhang, W. Association between using social media WeChat and depressive symptoms among middle-aged and older people: Findings from a national survey. BMC Geriatr. 2022, 22, 351. [Google Scholar] [CrossRef]
- Wen, Z.; Geng, X.; Ye, Y. Does the use of WeChat lead to subjective well-being? The effect of use intensity and motivations. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 587–592. [Google Scholar] [CrossRef]
- Richards, D.; Caldwell, P.H.Y.; Go, H. Impact of social media on the health of children and young people. J. Paediatr. Child Health 2015, 51, 1151–1157. [Google Scholar] [CrossRef]
- Kizilbash, A.H.; Vanderploeg, R.D.; Curtiss, G. The effects of depression and anxiety on memory performance. Arch. Clin. Neuropsychol. 2002, 17, 57–67. [Google Scholar] [CrossRef]
- Zahodne, L.B.; Stern, Y.; Manly, J.J. Depressive symptoms precede memory decline, but not vice versa, in non-demented older adults. J. Am. Geriatr. Soc. 2014, 62, 130–134. [Google Scholar] [CrossRef]
- Wisniewski, K.; Choi, E.Y.; Beam, C.; Zelinski, E. Depression complicates the relationship between subjective memory complaints and memory in older adults. Innov. Aging 2020, 4, 892. [Google Scholar] [CrossRef]
- Kim, J.J.; Diamond, D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 2002, 3, 453–462. [Google Scholar] [CrossRef]
- Fried, E.I.; Kievit, R.A. The volumes of subcortical regions in depressed and healthy individuals are strikingly similar: A reinterpretation of the results by Schmaal et al. Mol. Psychiatr. 2015, 21, 724–725. [Google Scholar] [CrossRef]
- Kim, M.J.; Seo, S.W.; Kim, G.H.; Kim, S.T.; Lee, J.M.; Qiu, A.; Na, D.L. Less depressive symptoms are associated with smaller hippocampus in subjective memory impairment. Arch. Gerontol. Geriat. 2013, 57, 110–115. [Google Scholar] [CrossRef]
- Alsunni, A.A.; Latif, R. Higher emotional investment in social media is related to anxiety and depression in university students. J. Taibah Univ. Med. Sci. 2021, 16, 247–252. [Google Scholar] [CrossRef]
- Dagher, M.; Farchakh, Y.; Barbar, S.; Haddad, C.; Akel, M.; Hallit, S.; Obeid, S. Association between problematic social media use and memory performance in a sample of Lebanese adults: The mediating effect of anxiety, depression, stress and insomnia. Head Face Med. 2021, 17, 6. [Google Scholar] [CrossRef]
- Hamilton, J.L.; Chand, S.; Reinhardt, L.; Ladouceur, C.D.; Bylsma, L.M. Social media use predicts later sleep timing and greater sleep variability: An ecological momentary assessment study of youth at high and low familial risk for depression. J. Adolesc. 2020, 83, 122–130. [Google Scholar] [CrossRef]
- Turgut, K.; Ramazan, Y.; Stamatis, P. Examining the associations between COVID-19-related psychological distress, social media addiction, COVID-19-related burnout, and depression among school principals and teachers through structural equation modeling. Int. J. Environ. Res. Public Health 2022, 19, 1951. [Google Scholar]
- Zhang, Y.; Li, R.; Sun, X.; Peng, M.; Li, X. Social media exposure, psychological distress, emotion regulation, and depression during the COVID-19 outbreak in community samples in China. Front. Psychiatry 2021, 12, 644899. [Google Scholar] [CrossRef]
Variables | N | Percentage (%) | WeChat Users (n = 993) | WeChat Usage Rate (%) | p (Chi-Squared Test) |
---|---|---|---|---|---|
Gender | |||||
Male | 2551 | 51.8 | 559 | 21.9 | 0.001 |
Female | 2378 | 48.2 | 434 | 18.3 | |
Age group | |||||
60–79 | 4694 | 95.2 | 974 | 20.7 | <0.001 |
80+ | 235 | 4.8 | 19 | 8.1 | |
Marital status | |||||
Never married | 38 | 0.8 | 6 | 15.8 | <0.001 |
Married (having a spouse) | 4083 | 82.8 | 857 | 21.0 | |
Cohabitation | 21 | 0.4 | 6 | 28.6 | |
Divorced | 70 | 1.4 | 25 | 35.7 | |
Widowed | 717 | 14.5 | 99 | 13.8 | |
Educational attainment | |||||
Illiterate or semi-illiterate | 1985 | 40.3 | 100 | 5.0 | <0.001 |
Primary school | 1110 | 22.5 | 136 | 12.3 | |
Junior high school | 1056 | 21.4 | 340 | 32.2 | |
Senior high school (including vocational senior school) | 638 | 12.9 | 322 | 50.5 | |
College or above | 140 | 2.8 | 95 | 67.9 | |
Household registration type | |||||
Agricultural | 3342 | 67.8 | 358 | 10.7 | <0.001 |
Non-agricultural | 766 | 15.5 | 297 | 38.8 | |
Resident | 810 | 16.4 | 336 | 41.5 | |
Others | 11 | 0.2 | 2 | 18.2 |
Variables | Use of WeChat | N | Min | Max | Mean | SD | t | p |
---|---|---|---|---|---|---|---|---|
Depression | Users | 993 | 8 | 32 | 12.44 | 3.96 | −9.138 | <0.001 |
Non-users | 3936 | 8 | 32 | 13.89 | 4.61 | |||
Memory performance | Users | 993 | 1 | 5 | 3.10 | 1.27 | 14.075 | <0.001 |
Non-users | 3936 | 1 | 5 | 2.45 | 1.32 |
WeChat Use | Depression | Memory Performance | Range | Mean | SD | |
---|---|---|---|---|---|---|
WeChat use | 1 | −0.129 ** | 0.197 ** | 0, 1 | 0.20 | 0.40 |
Depression | 1 | −0.238 ** | 8–32 | 13.60 | 4.52 | |
Memory performance | 1 | 1–5 | 2.58 | 1.33 |
Regression | Path | Coefficient | Standardized Coefficient | SE | p | Constant | t |
---|---|---|---|---|---|---|---|
X–Y | c | 0.373 | 0.279 | 0.052 | <0.001 | 1.785 | 7.229 |
X–M | a | −0.833 | −0.184 | 0.177 | <0.001 | 16.560 | −4.715 |
X–M–Y | b | −0.056 | −0.190 | 0.004 | <0.001 | 2.711 | −13.708 |
c′ | 0.326 | 0.244 | 0.051 | <0.001 | 2.711 | 6.429 |
No. | Effect | Value | 95% CI | |
---|---|---|---|---|
Lower | Upper | |||
1 | Indirect effect (WeChat use–depression–memory performance) | 0.047 | 0.027 | 0.067 |
2 | Direct effect (WeChat use–memory performance) | 0.326 | 0.227 | 0.425 |
3 | Total effect | 0.373 | 0.272 | 0.474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Z.; Wang, F. Association between WeChat Use and Memory Performance among Older Adults in China: The Mediating Role of Depression. Behav. Sci. 2022, 12, 323. https://doi.org/10.3390/bs12090323
Hua Z, Wang F. Association between WeChat Use and Memory Performance among Older Adults in China: The Mediating Role of Depression. Behavioral Sciences. 2022; 12(9):323. https://doi.org/10.3390/bs12090323
Chicago/Turabian StyleHua, Zhiya, and Fangling Wang. 2022. "Association between WeChat Use and Memory Performance among Older Adults in China: The Mediating Role of Depression" Behavioral Sciences 12, no. 9: 323. https://doi.org/10.3390/bs12090323
APA StyleHua, Z., & Wang, F. (2022). Association between WeChat Use and Memory Performance among Older Adults in China: The Mediating Role of Depression. Behavioral Sciences, 12(9), 323. https://doi.org/10.3390/bs12090323