Media Bias and Factors Affecting the Impartiality of News Agencies during COVID-19
Abstract
:1. Introduction
- Judging from the media’s news on the anti-epidemic performance of various countries, we found the sentiment of the media’s COVID-19-related news about certain countries did not always match their anti-epidemic performance;
- The impartiality of the media is weakly related to its reliability;
- The impartiality of the media is not related to its bias;
- There are obvious differences in the willingness and positiveness of international media to report on the domestic performance of different countries during the COVID-19 pandemic.
2. Materials and Methods
2.1. Materials
2.1.1. The COVID-19 Dataset
2.1.2. The COVID-19-Related News Dataset
2.2. Methods
2.2.1. Sentiment Analysis with SentiWordNet3.0
2.2.2. Sentiment Analysis with BERT
3. Results
3.1. The Relationship between Sentiment of the COVID-19-Related News and the Data
3.2. The Factors Affecting the Impartiality of News Agencies
3.3. The Differences in the Willingness and Positiveness of International Media Coverage in Different Countries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef]
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Silver, R.C.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef]
- Dubey, S.; Biswas, P.; Ghosh, R.; Chatterjee, S.; Dubey, M.J.; Chatterjee, S.; Lahiri, D.; Lavie, C.J. Psychosocial impact of COVID-19. Diabetes Metab. Syndr. 2020, 14, 779–788. [Google Scholar] [CrossRef]
- Cinelli, M.; Quattrociocchi, W.; Galeazzi, A.; Valensise, C.M.; Brugnoli, E.; Schmidt, A.L.; Zola, P.; Zollo, F.; Scala, A. The COVID-19 social media infodemic. Sci. Rep. 2020, 10, 16598. [Google Scholar] [CrossRef]
- Kouzy, R.; Abi Jaoude, J.; Kraitem, A.; El Alam, M.B.; Karam, B.; Adib, E.; Zarka, J.; Traboulsi, C.; Akl, E.W.; Baddour, K. Coronavirus goes viral: Quantifying the COVID-19 misinformation epidemic on Twitter. Cureus 2020, 12, e7255. [Google Scholar] [CrossRef]
- WHO. Managing the COVID-19 Infodemic: Promoting Healthy Behaviours and Mitigating the Harm from Misinformation and Disinformatio. Available online: https://www.who.int/news/item/23-09-2020-managing-the-covid-19-infodemic-promoting-healthy-behaviours-and-mitigating-the-harm-from-misinformation-and-disinformation (accessed on 17 August 2020).
- North, C.S.; Surís, A.M.; Pollio, D.E. A nosological exploration of PTSD and trauma in disaster mental health and implications for the COVID-19 pandemic. Behav. Sci. 2021, 11, 7. [Google Scholar] [CrossRef]
- Alheneidi, H.; AlSumait, L.; AlSumait, D.; Smith, A.P. Loneliness and problematic internet use during COVID-19 lock-down. Behav. Sci. 2021, 11, 5. [Google Scholar] [CrossRef]
- Bruggeman, H.; Smith, P.; Berete, F.; Demarest, S.; Hermans, L.; Braekman, E.; Charafeddine, R.; Drieskens, S.; De Ridder, K.; Gisle, L. Anxiety and depression in belgium during the first 15 months of the COVID-19 pandemic: A longitudinal study. Behav. Sci. 2022, 12, 141. [Google Scholar] [CrossRef]
- Tannenbaum, P.H.; Greenberg, B.S. Mass communications. Annu. Rev. Psychol. 1968, 19, 351–386. [Google Scholar] [CrossRef]
- Donsbach, W.; Klett, B. Subjective objectivity. How journalists in four countries define a key term of their profession. Gazette 1993, 51, 53–83. [Google Scholar] [CrossRef]
- Tumber, H.; Prentoulis, M. Journalists under fire: Subcultures, objectivity and emotional literacy. In War and the Media: Reporting Conflict 24/7; SAGE Publications Ltd.: London, UK, 2003; pp. 215–230. [Google Scholar] [CrossRef]
- Ryan, M. Journalistic ethics, objectivity, existential journalism, standpoint epistemology, and public journalism. J. Mass Media Ethics 2001, 16, 3–22. [Google Scholar] [CrossRef]
- Chong, P. Valuing subjectivity in journalism: Bias, emotions, and self-interest as tools in arts reporting. Journalism 2019, 20, 427–443. [Google Scholar] [CrossRef]
- Carpentier, N.; Trioen, M. The particularity of objectivity: A post-structuralist and psychoanalytical reading of the gap between objectivity-as-a-value and objectivity-as-a-practice in the 2003 Iraqi war coverage. Journalism 2010, 11, 311–328. [Google Scholar] [CrossRef]
- Figdor, C. Objectivity in the news: Finding a way forward. J. Mass Media Ethics 2010, 25, 19–33. [Google Scholar] [CrossRef]
- McQuail, D. Mass Communication Theory: An Introduction, 2nd ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1987; 352p. [Google Scholar]
- Jelodar, H.; Wang, Y.; Orji, R.; Huang, S. Deep sentiment classification and topic discovery on novel coronavirus or COVID-19 online discussions: NLP using LSTM recurrent neural network approach. IEEE J. Biomed. Health Inform. 2020, 24, 2733–2742. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Z.; Qi, F.; Ye, Y.; Liu, Z.; Sun, M.; Jin, J. Country image in COVID-19 pandemic: A case study of China. IEEE Transact. Big Data 2021, 7, 81–92. [Google Scholar] [CrossRef]
- Esuli, A.; Sebastiani, F. SENTIWORDNET: A publicly available lexical resource for opinion mining. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, 24–26 May 2006; European Language Resources Association (ELRA): Paris, France, 2006. [Google Scholar]
- Pak, A.; Paroubek, P. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of the International Conference on Language Resources and Evaluation, LREC, Valletta, Malta, 17–23 May 2010; Volume 10. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar]
- Groseclose, T.; Milyo, J. A measure of media bias. Q. J. Econ. 2005, 120, 1191–1237. [Google Scholar] [CrossRef]
- Zahid, A.; Nasir Khan, M.; Latif Khan, A.; Kamiran, F.; Nasir, B. Modeling, quantifying and visualizing media bias on Twitter. IEEE Access 2020, 8, 81812–81821. [Google Scholar] [CrossRef]
- Deaville, J.; Lemire, C. Latent cultural bias in soundtracks of western news coverage from early COVID-19 epicenters. Front. Psychol. 2021, 12, 686738. [Google Scholar] [CrossRef]
- Mellado, C.; Hallin, D.; Cárcamo, L.; Alfaro, R.; Jackson, D.; Humanes, M.L.; Márquez-Ramírez, M.; Mick, J.; Mothes, C.; I-Hsuan LIN, C.; et al. Sourcing pandemic news: A cross-national computational analysis of mainstream media coverage of COVID-19 on Facebook, Twitter, and Instagram. Digit. J. 2021, 9, 1261–1285. [Google Scholar] [CrossRef]
- Youngja, N.; SunGeu, C. Quantifying and Analyzing Vocal Emotion of COVID-19 News Speech Across Broadcasters in South Korea and the United States Based on CNN. J. Korea Inst. Inf. Commun. Eng. 2022, 26, 306–312. [Google Scholar] [CrossRef]
Model | Accuracy |
---|---|
LR | 0.654 |
SVM | 0.674 |
BERT | 0.710 |
The Number of Cases | The Number of Deaths | The Sentiment Values | |
---|---|---|---|
The Number of Cases | 1.00 | 0.76 | 0.02 |
The Number of Deaths | 0.76 | 1.00 | 0.19 |
The Sentiment Values | 0.02 | 0.19 | 1.00 |
News Agency | Reliability | Bias |
---|---|---|
ABC | 48.22 | −4.79 |
CD | 41.29 | −17.80 |
CNN | 44.20 | −10.13 |
Fair | 34.76 | 19.34 |
Fortune | 44.85 | 0.17 |
Fox | 31.62 | 17.78 |
OANN | 21.63 | 21.95 |
BBC | 46.18 | −2.72 |
NYT | 42.96 | −7.67 |
RT | 30.99 | 14.32 |
SN | 37.18 | 9.79 |
TMZ | 39.52 | −10.41 |
VOA | 47.43 | −5.44 |
WSTE | 25.20 | 17.83 |
Reliability | Bias | Impartiality Based on Cases | Impartiality Based on Deaths | |
---|---|---|---|---|
Reliability | 1.00 | −0.84 | 0.54 | 0.36 |
Bias | −0.84 | 1.00 | −0.21 | −0.01 |
Impartiality based on cases | 0.54 | −0.21 | 1.00 | 0.96 |
Impartiality based on deaths | 0.36 | −0.01 | 0.96 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Luo, Z.; Xu, H.; Wang, B. Media Bias and Factors Affecting the Impartiality of News Agencies during COVID-19. Behav. Sci. 2022, 12, 313. https://doi.org/10.3390/bs12090313
Xu M, Luo Z, Xu H, Wang B. Media Bias and Factors Affecting the Impartiality of News Agencies during COVID-19. Behavioral Sciences. 2022; 12(9):313. https://doi.org/10.3390/bs12090313
Chicago/Turabian StyleXu, Minghua, Ziling Luo, Han Xu, and Bang Wang. 2022. "Media Bias and Factors Affecting the Impartiality of News Agencies during COVID-19" Behavioral Sciences 12, no. 9: 313. https://doi.org/10.3390/bs12090313
APA StyleXu, M., Luo, Z., Xu, H., & Wang, B. (2022). Media Bias and Factors Affecting the Impartiality of News Agencies during COVID-19. Behavioral Sciences, 12(9), 313. https://doi.org/10.3390/bs12090313