Expert Group Recommendations on the Effective Use of Bolus Insulin in the Management of Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
The Grading System
3. Results
3.1. Optimum Control of Postprandial Hyperglycemia
3.1.1. Scientific Evidence: Clinical Implications of PPG
- Treatment similarity: About one-third of patients were treated with metformin + sulfonylurea and another one-third of patients were treated with metformin + acarbose. This treatment regimen is similar to the regimen taken by Indian patients.
- Body mass index (BMI) similarity: Majority of patients in this study had a BMI < 27 kg/m2. This picture is similar to what is seen among Indian patients and different from the Caucasian population, who have a relatively higher BMI.
- More accurate measurement of the contribution of PPG and FPG to HbA1c: This study used CGM, following a real-life meal as opposed to 2-h plasma glucose measurement after a standard meal or oral glucose load as used in other studies. It is also worthwhile to note that unlike CGM, 2-h PPG measurement might miss the peak glucose excursion, which might result in underestimation of PPG contribution to overall HbA1c. Hence, it is important to note that controlling PPG is as important as controlling FPG in Asian patients with a mean HbA1c of up to 12.7% [37].
3.1.2. Scientific Evidence: Importance of Controlling PPG in People with T2DM as Highlighted in Various Guidelines/Recommendations
3.1.3. Expert Group Recommendations 01
- ➲
- Postprandial hyperglycemia is a strong risk factor for increased risk of microvascular and macrovascular complications in individuals with T2DM. Grade A
- ➲
- Postprandial hyperglycemia is of greater concern in the majority of Indians with T2DM because of increased consumption of carbohydrate-rich food. Grade E
- ➲
- Treatment strategies for the management of T2DM should aim to effectively control not only fasting but also postprandial hyperglycemia. Grade A
3.2. Right Time to Control PPG
3.2.1. Scientific Evidence
3.2.2. Expert Group Recommendations 02
- ➲
- T2DM begins with postprandial hyperglycemia in many individuals and should be routinely monitored. Grade E
- ➲
- Unlike Caucasians, PPG contributes significantly to the HbA1c value throughout the HbA1c spectrum ranging from 5.7% to 12.7% in Asian patients with T2DM. Grade B
- ➲
- Early achievement of PPG targets is an important consideration for early attainment of HbA1c goals. Grade A
- ➲
- Early interventions to minimize PPG excursions might be beneficial in reducing the risk of cardiovascular complications. Grade A
3.3. Time to Check and Target for PPG
3.3.1. Scientific Evidence
3.3.2. Time to Check and Target PPG in Various Guidelines/Recommendations
3.3.3. Expert Group Recommendation 03
- ➲
- PPG targets should be individualized and based on the duration of diabetes, age, life expectancy, comorbid conditions, and risk of hypoglycemia (RSSDI ABCDEFGH approach). Grade A
- ➲
- Emerging evidence suggests that 1-h PPG can also be a target in the management of T2DM. Grade B
- ➲
- Monitoring of PPG at 1-h or 2-h can help optimize treatment options for PPG control. Grade C
- ➲
- In a non-pregnant adult individual, a 1-h or 2-h post-meal blood glucose value <160 mg/dL is recommended. Grade A
4. Choice of Bolus Insulin in Routine Clinical Practice
4.1. When to Choose Bolus Insulin?
4.1.1. Scientific Evidence
- (1)
- HbA1c is not at goal with 0.5 U/kg/day of basal insulin;
- (2)
- HbA1c is elevated despite normal FPG;
- (3)
- FPG is within target range, but PPG is beyond target;
- (4)
4.1.2. Choice of Insulin to Target PPG in Various Guidelines/Recommendations
4.1.3. Expert Group Recommendations 04
- ➲
- Well-motivated individuals with T2DM who are not at target PPG value on maximal oral hypoglycemic agents and basal insulin, who can self-monitor blood glucose and accordingly titrate the insulin dose. Grade A
- ➲
- Individuals with T2DM who require separate adjustments in basal and bolus insulin doses to achieve optimal glycemic control, which is not possible with fixed dose pre-mixed insulins. Grade E
- ➲
- Individuals with T2DM with considerable variations in day-to-day meal timings and composition. Grade E
4.2. Which Bolus Insulin to Consider?
4.2.1. Scientific Evidence
- 1-h and/or 2-h post-meal glucose excursions compared to RHI-based regimens in individuals with T1DM [84,85,86,87]. They have also been found to provide better HbA1c control and have relatively less risk of hypoglycemia compared to RHI-based regimens in patients with T1DM [84,88]. In a prospective randomized controlled trial, the percentage of patients with major hypoglycemia in the insulin aspart group reduced from 11% to 8% in the first and last 3 months of the treatment, while the proportion was unaffected (11%) in the human insulin group [82]. Comparison of basal-bolus regimens with bolus RAIAs versus regimens with bolus RHI in patients with T1DM has also revealed better post-meal glycemic control and HbA1c reduction [89], and fewer hypoglycemic episodes [90] with the RAIA-based BB regimens [89].
- Similar findings have been reported in patients with T2DM. Better post-meal glucose control [91,92], and reductions in HbA1c [92,93] have been noted with RAIA versus RHI-based bolus treatment in T2DM patients. Fewer nocturnal hypoglycemic episodes, and good patient satisfaction have also been reported in T2DM patients on bolus RAIAs [91,93].
- A double-blind, cross-over, euglycemic clamp study was conducted among 24 patients with T1DM to compare the PK-PD characteristics of insulin lispro with that of insulin aspart administered subcutaneously; both insulin lispro and insulin aspart were equivalent (80–125%) in terms of all the PK-PD parameters [94]. In the euglycemic clamp studies conducted to compare subcutaneous insulin lispro and insulin glulisine in T1DM patients, it was seen that both RAIAs showed similar PK-PD profiles; the action-time profiles of both RAIAs were superimposable [95,96].
- A meta-analysis by Heller et al. of randomized studies in patients with T1DM and T2DM compared the efficacy of a BB regimen with RHI versus insulin aspart as bolus insulins; neutral protamine Hagedorn (NPH) was the basal insulin. The BB regimen with aspart as the bolus insulin showed minimal, but statistically significant improvement in overall glycemic control compared to that seen in the regimen with RHI as the bolus insulin. Furthermore, the insulin aspart-based BB regimen led to a reduction in the risk of nocturnal hypoglycemic episodes by 25% compared to RHI-based BB regimen [86]. In addition to a good safety profile, long-term use of insulin aspart has been found to offer a significant reduction (43%) in the rate of cumulative cardiovascular events when compared to RHI (6.4% vs. 11.1%; p < 0.02) in patients with T2DM [97].
- Bridge this physiological gap of RAIAs and mimic as closely as possible the action profile of endogenous insulin secretion
- Provide better mealtime and post-meal flexibility
- Provide a better pump profile [98].
4.2.2. Role of RAIAs in the Management of People with T2DM in Various Guidelines/Recommendations
4.2.3. Expert Group Recommendations 05
- ➲
- When the cost of therapy is not a consideration, RAIAs (aspart, lispro, and glulisine) are preferred over RHIs because of a lesser risk of hypoglycemia and greater mealtime flexibility. Grade A
- ➲
- Ultrafast-acting insulins more closely mimic physiological mealtime insulin secretion compared to RAIAs. Grade A
- ➲
- The ultrafast acting insulins might be better suited for the Indian scenario with high PPG excursions. Grade C
- ➲
- Fast-acting insulin aspart, an ultrafast-acting insulin, may be preferred over RAIAs in patients with T2DM for better control of 1-h postprandial hyperglycemia with similar control at 2–4 h. Grade A
4.3. Dosing and Titration: Single Dose, Subcutaneous Administration
4.3.1. Scientific Evidence
4.3.2. Starting Dose and Titration of Bolus Insulin in Various Guidelines/Recommendations
4.3.3. Expert Group Recommendations 06
- ➲
- Starting dose: 4 units before the largest meal of the day chosen by the patient. Grade A
- ➲
- Titration based on pre-meal blood glucose (BG) (Criteria A) of the next meal/bedtime or 1- and 2-h PPG (Criteria B)
- ➲
- Frequency of titration: Twice weekly or as deemed relevant by the physician. Grade E
Titration Algorithm | |
Criteria A: Pre-meal BG (mg/dL) | Titration |
<56 | −2 * |
56–84 | −1 * |
85–114 | No adjustment |
>114 | +1 |
Criteria B: 1- or 2-h PPG (mg/dL) | Titration |
<160 | 0 |
160–200 | +2 |
200–220 | +4 |
>220 | +6 |
* Dose reduction to be individualized. |
Transfer from Other Insulins | |
Transfer from Other Insulins | Dose |
RHI to rapid-acting insulin analogues | 1:1 |
RHI to fast-acting insulin aspart | 1:1 |
Rapid-acting insulin analogues to fast-acting insulin aspart | 1:1 |
Transferring from Premix insulin (30:70)/co-formulation OD to basal-plus regimen | 70% basal and 30% bolus |
Transferring from premix insulin/co-formulation BD to basal-bolus regimen | 40% basal and 20%–20%–20% bolus |
BD: twice daily; BG: blood glucose; OD: once daily; PPG: postprandial glucose; RHI: regular human insulin. |
5. Use of Bolus Insulin in Special Situations and Practical Considerations
5.1. Inpatient Hyperglycemia
5.1.1. Scientific Evidence
5.1.2. Recommendations for in-Hospital Glycemic Management in Various Guidelines/Recommendations
5.1.3. Expert Group Recommendations 07
- ➲
- Hyperglycemia in hospital setting is associated with significant increase in morbidity, length of hospital stays, and mortality. Grade A
- ➲
- Intravenous administration of RHI with frequent monitoring and titration of insulin dose is necessary to achieve good glycemic control in critically ill patients with hyperglycemia. Grade B
- ➲
- SC RAIAs maybe preferred over SC RHI for management of hyperglycemia in non-critical care hospital setting. Grade A
- ➲
- Subcutaneous fast-acting insulin aspart may be preferred over SC RAIAs for the management of hyperglycemia in hospital setting. Grade E
5.2. Hyperglycemia in Pregnancy
5.2.1. Scientific Evidence
5.2.2. Role of Bolus Insulin in the Management of Hyperglycemia in Pregnancy in Various Guidelines/Recommendations
5.2.3. Expert Group Recommendation 08
- ➲
- Insulin aspart/insulin lispro is preferred over RHI for better PPG control and lower risk of hypoglycemia when managing hyperglycemia in pregnancy with insulin. Grade A
- ➲
- Controlling 1-h postprandial hyperglycemia is especially important in individuals with hyperglycemia in pregnancy to reduce the risk of maternal and fetal complications. Grade A
- ➲
- Fast-acting insulin aspart may be preferred over RAIAs for better control of 1-h and 2-h PPG in hyperglycemia in pregnancy. Grade C
5.3. Successful Treatment with Bolus Insulin—Sequential Addition vs. Full-Scale Basal-Bolus Therapy
5.3.1. Scientific Evidence
5.3.2. Full-Step vs. Stepwise Basal-Bolus Regimen in Various Guidelines/Recommendations
5.3.3. Expert Group Recommendations 09
- ➲
- Whenever possible, stepwise addition of bolus insulin is preferred over full basal-bolus therapy in people with T2DM to reduce the risk of hypoglycemia, patient dropouts, and improved patient satisfaction. Grade A
- ➲
- It is recommended to start with administering bolus insulin before the largest perceived meal of the day. Grade A
- ➲
- Post-meal dosing of insulin (up to 20 min), if needed, is an option in individuals: Grade A
- ➢
- Who are unable to predict the exact timing or carbohydrate content of a meal in advance (e.g., on social occasions);
- ➢
- Experiencing loss of appetite or nausea;
- ➢
- Having unpredictable appetite;
- ➢
- Who have forgotten to administer an injection pre-meal.
- ➲
- Fast-acting insulin aspart is preferred over RAIAs in individuals who need post-meal insulin dosing. Grade A
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017. [Google Scholar]
- American Diabetes Association. Standards of medical care in diabetes-2021. Diabetes Care 2021, 44, S1–S232. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.N.; Mohan, V. Diabetes in India: What is different? Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilja, M.; Rolandsson, O.; Shaw, J.E.; Alberti, K.G.M.M.; Zimmet, P.Z.; Söderberg, S. Higher leptin levels in Asian Indians than creoles and europids: A potential explanation for increased metabolic risk. Int. J. Obes. 2010, 34, 878–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Aravind, S.; Mahalingam, B.; Shanthirani, C.S.; Gastebois, C.; Villard, A.; Mohan, V.; Balasubramanyam, M. Circulating miRNAs of “Asian Indian phenotype” identified in subjects with impaired glucose tolerance and patients with type 2 diabetes. PLoS ONE 2015, 10, e0128372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.C.W.; Chan, J.C.N. Type 2 diabetes in east Asians: Similarities and differences with populations in Europe and the United States. Ann. N. Y. Acad. Sci. 2013, 1281, 64–91. [Google Scholar] [PubMed] [Green Version]
- Mohan, V. Why are Indians more prone to diabetes? J. Assoc. Physicians India 2004, 52, 468–474. [Google Scholar] [PubMed]
- Mohan, V.; Radhika, G.; Sathya, R.M.; Tamil, S.R.; Ganesan, A.; Sudha, V. Dietary carbohydrates, glycaemic load, food groups and newly detected type 2 diabetes among urban Asian Indian population in Chennai, India (Chennai Urban Rural Epidemiology Study 59). Br. J. Nutr. 2009, 102, 1498–1506. [Google Scholar] [CrossRef] [Green Version]
- ICMR—INdiaDIABetes [INDIAB]. Study Phase I Final Report. Available online: https://main.icmr.nic.in/sites/default/files/reports/ICMR_INDIAB_PHASE_I_FINAL_REPORT.pdf (accessed on 26 December 2020).
- Monnier, L.; Colette, C.; Dunseath, G.J.; Owens, D.R. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 2007, 30, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A. The glucose triad and its role in comprehensive glycaemic control: Current status, future management. Int. J. Clin. Pract. 2010, 64, 1705–1711. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L.; Colette, C. Postprandial and basal hyperglycaemia in type 2 diabetes: Contributions to overall glucose exposure and diabetic complications. Diabetes Metab. 2015, 41, 6S9–6S15. [Google Scholar] [CrossRef]
- Monnier, L.; Lapinski, H.; Colette, C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients variations with increasing levels of HbA1c. Diabetes Care 2003, 26, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Alsahli, M. Normal glucose physiology. Encycl. Endocr. Dis. 2014, 2, 72–86. [Google Scholar]
- Woerle, H.J.; Szoke, E.; Meyer, C.; Dostou, J.M.; Wittlin, S.D.; Gosmanov, N.R.; Welle, S.L.; Gerich, J.E. Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E67–E77. [Google Scholar] [CrossRef] [Green Version]
- IDF. Guideline for management of post meal glucose. Diabetes Res. Clin. Pract. 2014, 3, 256–268. [Google Scholar]
- Decode Study Group. Glucose tolerance and cardiovascular mortality. Arch. Intern. Med. 2001, 161, 397. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Vijayaprabha, R.; Rema, M. Vascular complications in long-term South Indian NIDDM of over 25 years’ duration. Diabetes Res. Clin. Pract. 1996, 31, 133–140. [Google Scholar] [CrossRef]
- Brunner, E.J.; Shipley, M.J.; Witte, D.R.; Fuller, J.H.; Marmot, M.G. Relation between blood glucose and coronary mortality over 33 years in the Whitehall study. Diabetes Care 2006, 29, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Cavalot, F.; Petrelli, A.; Traversa, M.; Bonomo, K.; Fiora, E.; Conti, M.; Anfossi, G.; Costa, G.; Trovati, M. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: Lessons from the San Luigi Gonzaga diabetes study. J. Clin. Endocrinol. Metab. 2006, 91, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Standl, E.; Schnell, O.; Ceriello, A. Postprandial hyperglycemia and glycemic variability: Should we care? Diabetes Care 2011, 34, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, M.; Chetrit, A.; Roth, J.; Dankner, R. One-hour post-load plasma glucose level during the OGTT predicts mortality: Observations from the Israel Study of glucose intolerance, obesity and hypertension. Diabetes Med. 2016, 33, 1060–1066. [Google Scholar] [CrossRef]
- Pattanaik, S.R.; Shah, P.; Baker, A.; Sinha, N.; Kumar, N.; Swami, O.C. Implications of postprandial hyperglycaemia and role of voglibose in type 2 diabetes mellitus. J. Clin. Diagn. Res. 2018, 12, OE08–OE12. [Google Scholar] [CrossRef]
- Imran, S.A.; Agarwal, G.; Bajaj, H.S.; Ross, S. 2018 Clinical practice guidelines. Targets for glycemic control. Can. J. Diabetes 2018, 42, S42–S46. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, S. RSSDI clinical practice recommendations for the management of type 2 diabetes mellitus 2017. Int. J. Diabetes Dev. Ctries. 2018, 38, S1–S115. [Google Scholar] [CrossRef] [Green Version]
- Cahn, A.; Miccoli, R.; Dardano, A.; Del Prato, S. New forms of insulin and insulin therapies for the treatment of type 2 diabetes. Lancet Diabetes Endocrinol. 2015, 3, 638–652. [Google Scholar] [CrossRef]
- Jacob, S.; Aly Morsy, M.; Nair, A. An overview on the insulin preparations and devices. Indian J. Pharm. Educ. Res. 2018, 52, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Donner, T.; Sarkar, S. Insulin—Pharmacology, Therapeutic Regimens and Principles of Intensive Insulin Therapy. Available online: https://europepmc.org/article/nbk/nbk278938#free-full-text (accessed on 26 May 2021).
- Das, A.K.; Sahay, B.K.; Seshiah, V.; Mohan, V.; Muruganathan, A.; Kumar, A.; Viswanathan, V.; Moses, C.R.A.; Saboo, B.; Bajaj, B.; et al. Indian national consensus group: National guidelines on initiation and intensification of insulin therapy with premixed insulin analogs. API India Med. Update 2013, 51, 227–236. Available online: http://apiindia.org/wp-content/uploads/medicine_update_2013/chap51.pdf (accessed on 26 December 2020).
- Shah, S.; Sharma, S.K.; Singh, P. Diabetes Consensus Group. Consensus evidence-based guidelines for insulin initiation, optimization and continuation in type 2 diabetes mellitus. J. Assoc. Physicians India 2014, 62, 49–54. [Google Scholar]
- Mohan, V.; Kalra, S.; Kesavadev, J.; Awadhesh Kumar Singh, A.K.; Kumar, A.; Unnikrishnan, A.G.; Chawla, R.; Mukherjee, J.J.; Sahay, R.K.; Kumar, J.S.; et al. Consensus on initiation and intensification of premix insulin in type 2 diabetes management. J. Assoc. Physicians India 2017, 65, 59–73. [Google Scholar] [PubMed]
- Ghosal, S.; Sinha, B.; Majumder, A.; Ashok Kumar Das, A.K.; Singh, A.K.; Ghoshdastidar, B.; Maji, D.; Goyal, G.; Mukherjee, J.J.; Gangopadhyay, K.K.; et al. Consensus on “basal insulin in the management of type 2 diabetes: Which, when and how?”. J. Assoc. Physicians India 2017, 65, 51–62. [Google Scholar] [PubMed]
- Kovil, R.; Chawla, M.; Rajput, R.; Singh, A.K.; Sinha, B.; Ghosal, S.; Ballani, P.; Gupta, S.; Tanna, S.; Bandukwala, S.M.; et al. Consensus on insulin dose and titration algorithms in ambulatory care of type 2 diabetes in India. J. Assoc. Physicians India 2017, 65, 17–30. [Google Scholar]
- American Diabetes Association. Standards of medical care in diabetes-2002. Diabetes Care 2002, 25, S1–S2. [Google Scholar]
- Dicenso, A.; Bayley, L.; Haynes, R.B. Accessing pre-appraised evidence: Fine-tuning the 5S model into a 6S model. Evid. Based Nurs. 2009, 12, 99–101. [Google Scholar] [CrossRef]
- Windish, D. Searching for the right evidence: How to answer your clinical questions using the 6S hierarchy. Evid. Based Med. 2013, 18, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Tu, S.T.; Lee, I.T.; Lin, S.-D.; Lin, S.-Y.; Su, S.-L.; Lee, W.-J.; Sheu, W.H.-H. Contribution of postprandial glucose to excess hyperglycaemia in Asian type 2 diabetic patients using continuous glucose monitoring. Diabetes Metab. Res. Rev. 2011, 27, 79–84. [Google Scholar] [CrossRef]
- Ketema, E.B.; Kibret, K.T. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis. Arch. Public Health 2015, 73, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woerle, H.J.; Neumann, C.; Zschau, S.; Tenner, S.; Irsigler, A.; Schirra, J.; Gerich, J.E.; Göke, B. Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes. Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Res. Clin. Pract. 2007, 77, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes: A patient-centered approach. Diabetes Care 2012, 35, 1364–1379. [Google Scholar] [CrossRef] [Green Version]
- Cavalot, F.; Pagliarino, A.; Valle, M.; Di Martino, L.; Bonomo, K.; Massucco, P.; Anfossi, G.; Trovati, M. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: Lessons from the San Luigi Gonzaga diabetes study. Diabetes Care 2011, 34, 2237–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, W.J.; Balfe, D.L.; Küstner, H.G. Decline in the ischaemic heart disease mortality rates of South Africans, 1968–1985. S. Afr. Med. J. 1988, 74, 547–550. [Google Scholar]
- McKeigue, P.M.; Marmot, M.G. Diet and risk factors for coronary heart disease in Asians in northwest London. Lancet 1985, 2, 1086–1090. [Google Scholar] [CrossRef]
- Enas, E.; Garg, A.; Davidson, M.A.; Nair, V.M.; Huet, B.A.; Yusuf, S. Coronary heart disease and its risk factors in first-generation immigrant Asian Indians to the United States of America. Indian Heart J. 1996, 48, 343–353. [Google Scholar]
- Ardeshna, D.R.; Bob-manuel, T.; Nanda, A.; Sharma, A.; Skelton, W.P.; Skelton, M.; Khouzam, R.N. Asian-Indians: A review of coronary artery disease in this understudied cohort in the United States. Ann. Transl. Med. 2018, 6, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valensi, P.; Benroubi, M.; Gumprecht, J.; Kawamori, R.; Shaban, J.; Shah, S.; Shestakova, M.; Wenying, Y. IMPROVE Study Group Expert Panel. Initiating insulin therapy with, or switching existing insulin therapy to, biphasic insulin aspart 30/70 (NovoMix®30) in routine care: Safety and effectiveness in patients with type 2 diabetes in the IMPROVE™ observational study. Int. J. Clin. Pract. 2009, 63, 522–531. [Google Scholar] [PubMed]
- Popkin, B.M.; Horton, S.; Kim, S. Trends in diet, nutritional status, and diet-related noncommunicable diseases in China and India: The economic costs of the nutrition transition. Nutr. Rev. 2001, 59, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Mehling, C. Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am. J. Clin. Nutr. 2003, 77, 612–621. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation Guideline Development Group. 2011 Guideline for Management of PostMeal Glucose in Diabetes; International Diabetes Federation: Brussels, Belgium, 2011; Available online: https://www.idf.org/component/attachments/attachments.html?id=728&task=download (accessed on 26 December 2020).
- Bruce, D.G.; Storlien, L.H.; Furler, S.M.; Chisholm, D.J. Cephalic phase metabolic responses in normal weight adults. Metabolism 1987, 36, 721–725. [Google Scholar] [CrossRef]
- Cheng, K.; Andrikopoulos, S.E.; Gunton, J. First phase insulin secretion and type 2 diabetes. Curr. Mol. Med. 2012, 13, 126–139. [Google Scholar] [CrossRef]
- Caumo, A.; Luzi, L. First-phase insulin secretion: Does it exist in real life? Considerations on shape and function. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E371–E385. [Google Scholar] [CrossRef]
- Del Prato, S.; Tiengo, A. The importance of first phase-secretion: Implications for the therapy of type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 2001, 17, 164–174. [Google Scholar] [CrossRef]
- Fonseca, V. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr. Med. Res. Opin. 2003, 19, 635–641. [Google Scholar] [CrossRef]
- Onishi, Y.; Ono, Y.; Rabøl, R.; Endahl, L.; Nakamura, S. Superior glycaemic control with once-daily insulin degludec/insulin aspart versus insulin glargine in Japanese adults with type 2 diabetes inadequately controlled with oral drugs: A randomized, controlled phase 3 trial. Diabetes Obes. Metab. 2013, 15, 826–832. [Google Scholar] [CrossRef]
- Garber, A.J. Insulin intensification strategies in type 2 diabetes: When one injection is no longer sufficient. Diabetes Obes. Metab. 2009, 11 (Suppl. 5), 14–18. [Google Scholar] [CrossRef]
- Bowering, K.; Case, C.; Harvey, J.; Reeves, M.; Sampson, M.; Strzinek, R.; Bretler, D.-M.; Bang, R.B.; Bode, B.W. Faster aspart versus insulin aspart as part of a basal-bolus regimen in inadequately controlled type 2 diabetes: The onset 2 trial. Diabetes Care 2017, 40, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Rodbard, H.W.; Tripathy, D.; Vidrio Velázquez, M.; Demissie, M.; Tamer, S.C.; Piletič, M. Adding fast-acting insulin aspart to basal insulin significantly improved glycaemic control in patients with type 2 diabetes: A randomized, 18-week, open-label, phase 3 trial (onset 3). Diabetes Obes. Metab. 2017, 19, 1389–1396. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117. [Google Scholar] [CrossRef]
- The DECODE-Study Group. Is fasting glucose sufficient to define diabetes? Epidemiological data from 20 European studies. European diabetes epidemiology group. Diabetes epidemiology: Collaborative analysis of diagnostic criteria in Europe. Diabetologia 1999, 42, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A. Targeting one-hour postmeal glucose: Is it time for a paradigm switch in diabetes management? Diabetes Technol. Ther. 2017, 19, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.A.; Williams, K.; DeFronzo, R.A.; Stern, M. What is the best predictor of future type 2 diabetes? Diabetes Care 2007, 30, 1544–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priya, M.; Anjana, R.M.; Chiwanga, F.S.; Gokulkrishnan, K.; Deepa, M.; Mohan, V. 1-Hour venous plasma glucose and incident prediabetes and diabetes in Asian Indians. Diabetes Technol. Ther. 2013, 15, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.M.; Amutha, A.; Pramodkumar, T.A.; Ranjani, H.; Jebarani, S.; Gokulkrishnan, K.; Pradeepa, R.; Unnikrishnan, R.; Anjana, R.M.; Mohan, V. β-Cell function and insulin sensitivity in normal glucose-tolerant subjects stratified by 1-hour plasma glucose values. Diabetes Technol. Ther. 2016, 18, 29–33. [Google Scholar] [CrossRef]
- Sai Prasanna, N.; Amutha, A.; Pramodkumar, T.A.; Anjana, R.M.; Ulagamathesan, V.; Priya, M.; Pradeepa, R.; Mohan, V. The 1 h post glucose value best predicts future dysglycemia among normal glucose tolerance subjects. J. Diabetes Complicat. 2017, 31, 1592–1596. [Google Scholar] [CrossRef]
- Pramodkumar, T.A.; Priya, M.; Jebarani, S.; Anjana, R.M.; Mohan, V.; Pradeepa, R. Metabolic profile of normal glucose—Tolerant subjects with elevated 1-h plasma glucose values. Indian J. Endocrinol. Metab. 2016, 20, 612–618. [Google Scholar]
- Andreozzi, F.; Mannino, G.C.; Perticone, M.; Perticone, F.; Sesti, G. Elevated 1-h post-load plasma glucose levels in subjects with normal glucose tolerance are associated with a pro-atherogenic lipid profile. Atherosclerosis 2017, 256, 15–20. [Google Scholar] [CrossRef]
- Garber, A.J.; Handelsman, Y.; Grunberger, G.; Einhorn, D.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bush, M.A.; DeFronzo, R.A.; Garber, J.R.; et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2020 executive summary. Endocr. Pract. 2020, 26, 107–139. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial Research Group; Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- Wei, N.; Zheng, H.; Nathan, D.M. Empirically establishing blood glucose targets to achieve HbA1c goals. Diabetes Care 2014, 37, 1048–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnier, L.; Colette, C.; Owens, D.R. Integrating glycaemic variability in the glycaemic disorders of type 2 diabetes: A move towards a unified glucose tetrad concept. Diabetes Metab. Res. Rev. 2009, 25, 393–402. [Google Scholar] [CrossRef]
- Levitan, E.B.; Song, Y.; Ford, E.S.; Liu, S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 2004, 164, 2147–2155. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.L.; Barzilay, J.I.; Shaffer, D.; Savage, P.J.; Heckbert, S.R.; Kuller, L.H.; Kronmal, R.A.; Resnick, H.E.; Psaty, B.M. Fasting and 2-hour post challenge serum glucose measures and risk of incident cardiovascular events in the elderly. Arch. Intern. Med. 2002, 162, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, D.R.; Meigs, J.B.; Muller, D.C.; Najjar, S.S.; Andres, R.; Nathan, D.M. Impaired glucose tolerance, but not impaired fasting glucose, is associated with increased levels of coronory heart disease risk factors. Diabetes 2004, 53, 2095–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICMR Guidelines for Management of Type 2 Diabetes 2018. Available online: https://main.icmr.nic.in/sites/default/files/guidelines/ICMR_GuidelinesType2diabetes2018_0.pdf (accessed on 26 December 2020).
- National Evidence Based Guideline for Blood Glucose Control in Type 2 Diabetes. Australia 2009. Available online: static.diabetesaustralia.com.au/s/fileassets/diabetes-australia/659c89a3-dcc2-4a2e-86e5-cc1d09956c60.pdf (accessed on 26 December 2020).
- Management of Diabetes Mellitus—SLCOG. Available online: https://sljog.sljol.info/article/10.4038/sljog.v36i1.6975/galley/5387/download/ (accessed on 26 December 2020).
- Clinical Practice Guideline. Management of Type 2 Diabetes Mellitus. 5 Edition 2015. Available online: www.moh.gov.my/moh/resources/Penerbitan/CPG/Endocrine/3a.pdf (accessed on 26 December 2020).
- Davidson, M.; Raskin, P.; Tanenberg, R.; Vlajnic, A.; Hollander, P. A stepwise approach to insulin therapy in patients with type 2 diabetes mellitus and basal insulin treatment failure. Endocr. Pract. 2011, 17, 395–403. [Google Scholar] [CrossRef]
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Lipscombe, L.; Booth, G.; Butalia, S.; Dasgupta, K.; Eurich, D.T.; Goldenberg, R.; Khan, N.; MacCallum, L.; Shah, B.R.; et al. 2018 Pharmacologic glycemic management of type 2 diabetes in adults. Can. J. Diabetes 2018, 42, S88–S103. [Google Scholar]
- Lindholm, A.; McEwen, J.; Riis, A.P. Improved postprandial glycemic control with insulin aspart. A randomized double-blind cross-over trial in type 1 diabetes. Diabetes Care 1999, 22, 801–805. [Google Scholar] [CrossRef]
- Heinemann, L.; Heise, T.; Wahl, L.C.; Trautmann, M.E.; Ampudia, J.; Starke, A.A.; Berger, M. Prandial glycaemia after a carbohydrate-rich meal in type i diabetic patients: Using the rapid acting insulin analogue [Lys(B28), Pro(B29)] human insulin. Diabetes Med. 1996, 13, 625–629. [Google Scholar] [CrossRef]
- Rave, K.; Klein, O.; Frick, A.D.; Becker, R.H.A. Advantage of premeal-injected insulin glulisine compared with regular human insulin in subjects with type 1 diabetes. Diabetes Care 2006, 29, 1812–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Home, P.D.; Lindholm, A.; Riis, A.; European Insulin Aspart Study Group. Insulin aspart vs. human insulin in the management of long-term blood glucose control in Type 1 diabetes mellitus: A randomized controlled trial. Diabet. Med. 2000, 17, 762–770. [Google Scholar] [CrossRef]
- Tamás, G.; Marre, M.; Astorga, R.; Dedov, I.; Jacobsen, J.; Lindholm, A. Glycaemic control in type 1 diabetic patients using optimised insulin aspart or human insulin in a randomised multinational study. Diabetes Res. Clin. Pract. 2001, 54, 105–114. [Google Scholar] [CrossRef]
- Raskin, P.; Guthrie, R.A.; Leiter, L.; Riis, A.; Jovanovic, L. Use of insulin aspart, a fast-acting insulin analogue, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care 2000, 23, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.H.; Brunelle, R.L.; Koivisto, V.A.; Pfützner, A.; Trautmann, M.E.; Vignati, L.; DiMarchi, R. Reduction of postprandial hyperglycemia and frequency of hypoglycemia in IDDM patients on insulin-analogue treatment. Diabetes 1997, 46, 265–270. [Google Scholar] [CrossRef]
- Heller, S.; Bode, B.; Kozlovski, P.; Svendsen, A.L. Meta-analysis of insulin aspart versus regular human insulin used in a basal-bolus regimen for the treatment of diabetes mellitus. J. Diabetes 2013, 5, 482–491. [Google Scholar] [CrossRef]
- Garg, S.K.; Rosenstock, J.; Ways, K. Optimized basal-bolus insulin regimens in type 1 diabetes: Insulin glulisine versus regular human insulin in combination with basal insulin glargine. Endocr. Pract. 2005, 11, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Holcombe, J.H.; Zalani, S.; Arora, V.K.; Mast, C.J.; Lispro in Adolescents Study Group. Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents. Clin. Ther. 2002, 24, 629–638. [Google Scholar] [CrossRef]
- Rayman, G.; Profozic, V.; Middle, M. Insulin glulisine imparts effective glycaemic control in patients with Type 2 diabetes. Diabetes Res. Clin. Pract. 2007, 76, 304–312. [Google Scholar] [CrossRef]
- Dailey, G.; Rosenstock, J.; Moses, R.G.; Ways, K. Insulin glulisine provides improved glycemic control in patients with type 2 diabetes. Diabetes Care 2004, 27, 2363–2368. [Google Scholar] [CrossRef] [Green Version]
- Chlup, R.; Zapletalová, J.; Sečkař, P.; Malá, E.; Doubravová, B.; Táncosová, S.; Chlupová, L.; Pukowietz, L.; Zatloukal, P. Benefits of complementary therapy with insulin aspart versus human regular insulin in persons with type 2 diabetes mellitus. Diabetes Technol. Ther. 2007, 9, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Plank, J.; Bodenlenz, M.; Sinner, F.; Magnes, C.; Görzer, E.; Regittnig, W.; Endahl, L.A.; Draeger, E.; Zdravkovic, M.; Pieber, T.R. A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care 2005, 28, 1107–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, R.H.; Frick, A.D.; Burger, F.; Potgieter, J.H.; Scholtz, H. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp. Clin. Endocrinol. Diabetes 2005, 113, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.H.; Frick, A.D. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin. Pharm. 2008, 47, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Shintani, M.; Maeda, K.; Hanaoka, I.; Kuzuya, H. Does multiple injection therapy (MIT) with ultrarapid-acting insulin analogue prevent cardiovascular disease in type 2 diabetes? The NICE-study: A prospective, randomised, open-label, blinded endpoint study. Diabetologia 2008, 51, S543. [Google Scholar]
- Home, P.D. Plasma insulin profiles after subcutaneous injection: How close can we get to physiology in people with diabetes? Diabetes Obes. Metab. 2015, 17, 1011–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kildegaard, J.; Buckley, S.T.; Nielsen, R.H.; Povlsen, G.K.; Seested, T.; Ribel, U.; Olsen, H.B.; Ludvigsen, S.; Jeppesen, C.B.; Refsgaard, H.H.F.; et al. Elucidating the mechanism of absorption of fast-acting insulin aspart: The role of niacinamide. Pharm. Res. 2019, 36, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heise, T.; Pieber, T.R.; Danne, T.; Erichsen, L.; Haahr, H. A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clin. Pharm. 2017, 56, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Russell-Jones, D.; Bode, B.W.; Block, C.D.; Franek, E.; Heller, S.R.; Mathieu, C.; Philis-Tsimikas, A.; Rose, L.; Woo, V.C.; Østerskov, A.B.; et al. Fast-acting insulin aspart improves glycemic control in basal-bolus treatment for type 1 diabetes: Results of a 26-week multicenter, active-controlled, treat-to-target, randomized, parallel-group trial (onset 1). Diabetes Care 2017, 40, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathieu, C.; Bode, B.W.; Franek, E.; Philis-Tsimikas, A.; Rose, L.; Graungaard, T.; Østerskov, A.B.; Russell-Jones, D. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes (onset 1): A 52-week, randomized, treat-to-target, phase III trial. Diabetes Obes. Metab. 2018, 20, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Block, C.; De Carlson, A.; Rose, L.; Gondolf, T.; Gorst-Rasmussen, A.; Lane, W. Hypoglycemia with mealtime fast-acting insulin aspart versus insulin aspart across two large type 1 diabetes trials. Diabetes 2018, 67 (Suppl. 1). [Google Scholar] [CrossRef]
- Bruce, W.; Iotova, B.V.; Kovarenko, M.; Laffel, L.M.; Rao, P.V.; Deenadayalan, S.; Ekelund, M.; Larsen, S.F.; Danne, T. Efficacy and safety of fast-acting insulin aspart compared with insulin aspart, both in combination with insulin degludec, in children and adolescents with type 1 diabetes: The onset 7 Trial. Diabetes Care 2019, 42, 1255–1262. [Google Scholar]
- FIasp. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208751s000lbl.pdf (accessed on 26 December 2020).
- Urooj, A.; Puttaraj, S. Glycaemic responses to cereal-based Indian food preparations in patients with non-insulin-dependent diabetes mellitus and normal subjects. Br. J. Nutr. 2000, 83, 483–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novolog® 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020986s090s091lbl.pdf (accessed on 26 December 2020).
- Apidra. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021629s015lbl.pdf (accessed on 26 December 2020).
- Humalog. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/20563slr036_humalog_lbl.pdf (accessed on 26 December 2020).
- Evans, N.R.; Dhatariya, K.K. Assessing the relationship between admission glucose levels, subsequent length of hospital stay, readmission and mortality. Clin. Med. 2012, 12, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Deane, A.M.; Horowitz, M. Dysglycaemia in the critically ill—Significance and management. Diabetes Obes. Metab. 2013, 15, 792–801. [Google Scholar] [CrossRef] [PubMed]
- NICE-SUGAR Study investigators. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [CrossRef] [Green Version]
- Umpierrez, G.E.; Isaacs, S.D.; Bazargan, N.; You, X.; Thaler, L.M.; Kitabchi, A.E. Hyperglycemia: An independent marker of in-hospital mortality in patients with undiagnosed diabetes. J. Clin. Endocrinol. Metab. 2002, 87, 978–982. [Google Scholar] [CrossRef]
- Falciglia, M.; Freyberg, R.W.; Almenoff, P.L.; D’Alessio, D.A.; Render, M.L. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit. Care Med. 2009, 37, 3001–3009. [Google Scholar] [CrossRef]
- Mukherjee, J.J.; Chatterjee, P.S.; Saikia, M.; Murugunathan, A.; Das, A.K.; Diabetes Consensus Group. Consensus recommendations for the management of hyperglycaemia in critically ill patients in the Indian Setting. J. Assoc. Physicians India 2014, 62, 16–25. [Google Scholar]
- McAlister, F.A.; Majumdar, S.R.; Blitz, S.; Rowe, B.H.; Romney, J.; Marrie, T.J. The relation between hyperglycemia and outcomes in 2471 patients admitted to the hospital with community-acquired pneumonia. Diabetes Care 2005, 28, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyay, K.K.; Bantwal, G.; Talwalkar, P.G.; Murugunathan, A.; Das, A.K.; Diabetes Consensus Group. Consensus evidence-based guidelines for in-patient management of hyperglycaemia in non-critical care setting as per indian clinical practice. J. Assoc. Physicians India. 2014, 62, 6–15. [Google Scholar]
- Jiang, H.J.; Stryer, D.; Friedman, B.; Andrews, R. Multiple hospatilisation for patients with diabetes. Diabetes Care 2003, 26, 1421–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udwadia, F.; Bhattacharyya, A.; Seshiah, V.; Sethi, B.P.; Kumar, S.; Subbanna, P.K.; Shetty, R.; Moses, A. Intravenous insulin aspart in a hospital setting: Results from an observational study examining patient outcomes and physician preferences. Diabetes Manag. 2012, 2, 103–110. [Google Scholar] [CrossRef]
- Panikar, V.; Sosale, A.; Agarwal, S.; Unnikrishnan, A.; Kalra, S.; Bhattacharya, A.; Chawla, M.; Anjana, R.M.; Bhatt, A.; Jaggi, S.; et al. RSSDI clinical practice recommendations for management of In-hospital hyperglycaemia—2016. Int. J. Diabetes Dev. Ctries. 2016, 36, 1–21. [Google Scholar] [CrossRef]
- Chawla, M.; Malve, H.; Shah, H.; Shinde, S.; Bhoraskar, A. Safety of intravenous insulin aspart compared to regular human insulin in patients undergoing ICU monitoring post cardiac surgery: An Indian experience. J. Diabetes Metab. Disord. 2015, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, J.B.; Munoz, C.; Harper, J.; Muriello, M.; Rico, E.; Baldwin, D. Treatment of inpatient hyperglycemia beginning in the emergency department: A randomized trial using insulins aspart and detemir compared with usual care. J. Hosp. Med. 2011, 6, 279–284. [Google Scholar] [CrossRef]
- Kelly, K.K.J.; Tomor, V.; Nathanson, B.H.; Bouchard, J.R.; Aagren, M.; Dubois, R.W. Does type of bolus insulin matter in the hospital? Retrospective cohort analysis of outcomes between patients receiving analogueue versus human insulin. Clin. Ther. 2010, 32, 1954–1966. [Google Scholar]
- Actrapid, INN-Insulin Human (rDNA). Available online: https://www.ema.europa.eu/en/documents/product-information/actrapid-epar-product-information_en.pdf (accessed on 26 December 2020).
- Matheisen, E.; Kinsley, B.; Amiel, S.A.; Heller, S.; McCance, D.; Duran, S.; Bellaire, S.; Raben, A.; Insulin Aspart Pregnancy Study Group. Maternal glycemic control and hypoglycemia in type 1 diabetic pregnancy: A randomized trial of insulin aspart versus human insulin in 322 pregnant women. Diabetes Care 2007, 30, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, S.; Damm, P.; Mersebach, H.; Skjøth, T.V.; Kaaja, R.; Hod, M.; Durán-García, S.; McCance, D.; Mathiesen, E.R. Hypoglycemia in type 1 diabetic pregnancy. Diabetes Care 2010, 33, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hod, M.; Damm, P.; Kaaja, R.; Visser, G.H.A.; Dunne, F.; Demidova, I.; Pade Hansen, A.-S.; Mersebach, H.; Insulin Aspart Pregnancy Study Group. Fetal and perinatal outcomes in type 1 diabetes pregnancy: A randomized study comparing insulin aspart with human insulin in 322 subjects. Am. J. Obstet. Gynecol. 2008, 198, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Mccance, D.R.; Damm, P.; Mathiesen, E.R.; Hod, M.; Kaaja, R.; Dunne, F.; Jensen, L.E.; Mersebach, H. Evaluation of insulin antibodies and placental transfer of insulin aspart in pregnant women with type 1 diabetes mellitus. Diabetologia 2008, 51, 2141–2143. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Wang, J.; Xu, Y. Safety of insulin analogues during pregnancy: A meta-analysis. Arch. Gynecol. Obstet. 2015, 292, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic-Peterson, L.; Peterson, C.M.; Reed, G.F.; Metzger, B.E.; Mills, J.L.; Knopp, R.H.; Aarons, J.H. Maternal postprandial glucose levels and infant birth weight: The diabetes in early pregnancy study. The National Institute of Child Health and Human Development—Diabetes in Early Pregnancy Study. Am. J. Obstet. Gynecol 1991, 164 Pt 1, 103–111. [Google Scholar] [CrossRef]
- Combs, C.A.; Gunderson, E.; Kitzmiller, J.L.; Gavin, L.A.; Main, E.K. Relationship of fetal macrosomia to maternal postprandial glucose control during pregnancy. Diabetes Care 1992, 15, 1251–1257. [Google Scholar] [CrossRef]
- De Veciana, M.; Major, C.A.; Morgan, M.A. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N. Engl. J. Med. 1995, 333, 1237–1241. [Google Scholar] [CrossRef]
- Weisz, B.; Shrim, A.; Homko, C.J. One hour versus two hours postprandial glucose measurement in gestational diabetes: A prospective study. J. Perinatol. 2005, 25, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190, Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef]
- Blum, A.K. Insulin use in pregnancy: An update. Diabetes Spectr. 2016, 29, 92–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Feig, D.S.; Berger, H.; Donovan, L.; Godbout, A.; Kader, T.; Keely, E.; Sanghera, R. Diabetes and pregnancy. Can. J. Diabetes 2018, 42, S255–S282. [Google Scholar]
- Seshiah, V.; Banerjee, S.; Balaji, V.; Muruganathan, A.; Das, A.K.; Diabetes Consensus Group. Consensus evidence-based guidelines for management of gestational diabetes mellitus in India. J. Assoc. Physicians India 2014, 62, 55–62. [Google Scholar] [PubMed]
- Rodbard, H.W.; Visco, V.E.; Andersen, H.; Hiort, L.C.; Shu, D.H.W. Treatment intensification with stepwise addition of prandial insulin aspart boluses compared with full basal-bolus therapy (Full STEP Study): A randomised, treat-to-target clinical trial. Lancet Diabetes Endocrinol. 2014, 2, 30–37. [Google Scholar] [CrossRef]
- Ampudia-Blasco, F.J.; Rossetti, P.; Ascaso, J.F. Basal plus basal-bolus approach in type 2 diabetes. Diabetes Technol. Ther. 2011, 13 (Suppl. 1), S75–S83. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.; Kuriakose, J.; Clements, J.N. Faster insulin aspart: A new bolus option for diabetes mellitus. Clin. Pharm. 2019, 58, 421–430. [Google Scholar] [CrossRef]
- Meneghini, L.; Mersebach, H.; Kumar, S.; Svendsen, A.L.; Hermansen, K. Comparison of 2 intensification regimens with rapid-acting insulin aspart in type 2 diabetes mellitus inadequately controlled by once-daily insulin detemir and oral antidiabetes drugs: The stepwise randomized study. Endocr. Pract. 2011, 17, 727–736. [Google Scholar] [CrossRef]
- Brunner, G.A.; Hirschberger, S.; Sendlhofer, G.; Wutte, A.; Ellmerer, M.; Balent, B.; Schaupp, L.; Krejs, G.J.; Pieber, T.R. Post prandial administration of the insulin analogue insulin aspart in patients with type 1 diabetes mellitus. Diabet. Med. 2000, 17, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Madhu, S.V.; Makkar, B.M.; Ghosh, S.; Saboo, B.; Kalra, S.; RSSDI-ESI Consensus Group. RSSDI-ESI clinical practice recommendations for the management of type 2 diabetes mellitus 2020. Indian J. Diabetes Dev. Ctries. 2020, 40, 1–122. [Google Scholar] [CrossRef]
Insulin Preparations | Onset of Action (min) | Peak Action (h) | Duration of Action (h) |
---|---|---|---|
Short-acting | |||
Regular insulin | 30–60 | 1–3 | 6–10 |
Rapid-acting | |||
Insulin lispro | 15–30 | 0.5–1 | 3–5 |
Insulin aspart | 10–20 | 0.5–1 | 4–5.3 |
Insulin glulisine | 15–14 | 0.5–1 | 4–6.3 |
Ultrafast-acting | |||
Fast-acting insulin aspart | 4.9 min earlier * | 10.5 min earlier * | 14.3 min shorter * |
Level of Evidence | Description |
---|---|
A |
|
B |
|
C |
|
E |
|
Guidelines | Recommendations (Time after Meal) | Recommendations (PPG Target) |
---|---|---|
ADA 2021 | 1–2 h | <180 mg/dL |
IDF 2014 | 1–2 h | <160 mg/dL |
CDA 2018 | 2 h | 90–180 mg/dL; If HbA1c target is not achieved, target may be reduced to 90–144 mg/dL—Balanced against risk of hypoglycemia |
RSSDI 2017 | 1–2 h | <160 mg/dL |
AACE 2020 | 2 h | <140 mg/dL |
ICMR 2018 | 2 h | 120–140 mg/dL |
Australia 2009 | 2 h | 106–180 mg/dL |
Sri Lanka | 2 h | 80–145 mg/dL |
Malaysia | 2 h | <140 mg/dL |
Options | Efficacy | Hypos | Weight Change | Cost |
---|---|---|---|---|
Basal plus insulin regimen | Highest—with greater flexibility but increased complexity | +++ | ++ | Depends on the insulin used |
Premixed insulin regimen | Highest—low complexity but lesser flexibility | ++ | + | Depends on the insulin used |
Adding GLP-1RA | High—with highest flexibility and least complexity | + | Reduction | High compared to other two regimens |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chawla, R.; Mukherjee, J.J.; Chawla, M.; Kanungo, A.; Shunmugavelu, M.S.; Das, A.K. Expert Group Recommendations on the Effective Use of Bolus Insulin in the Management of Type 2 Diabetes Mellitus. Med. Sci. 2021, 9, 38. https://doi.org/10.3390/medsci9020038
Chawla R, Mukherjee JJ, Chawla M, Kanungo A, Shunmugavelu MS, Das AK. Expert Group Recommendations on the Effective Use of Bolus Insulin in the Management of Type 2 Diabetes Mellitus. Medical Sciences. 2021; 9(2):38. https://doi.org/10.3390/medsci9020038
Chicago/Turabian StyleChawla, Rajeev, Jagat Jyoti Mukherjee, Manoj Chawla, Alok Kanungo, Meenakshi Sundaram Shunmugavelu, and Ashok Kumar Das. 2021. "Expert Group Recommendations on the Effective Use of Bolus Insulin in the Management of Type 2 Diabetes Mellitus" Medical Sciences 9, no. 2: 38. https://doi.org/10.3390/medsci9020038
APA StyleChawla, R., Mukherjee, J. J., Chawla, M., Kanungo, A., Shunmugavelu, M. S., & Das, A. K. (2021). Expert Group Recommendations on the Effective Use of Bolus Insulin in the Management of Type 2 Diabetes Mellitus. Medical Sciences, 9(2), 38. https://doi.org/10.3390/medsci9020038