Reduced Serum Circulation of Cell-Free DNA Following Chemotherapy in Breast Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Site, Participants and Participant Recruitment
2.3. Demographic and Clinocopathological Parameters
2.4. Anthropometric Parameters
2.4.1. Waist to Hip Ratio (WHR)
2.4.2. Body Mass Index (BMI)
2.5. Blood Samples Collection and Serum Preparation
2.6. Sample Preparation for Quantitative PCR (qPCR)
2.7. qPCR Conditions and Quantification of ALU Fragments
2.8. DNA Integrity Determination
2.9. Data Analysis
3. Results
3.1. Demographic Characteristics of Study Participants
3.2. BMI and WHR among Groups
3.3. Clinicopathological Characteristics of Breast Cancer Cases
3.4. Serum cfDNA Concentrations and cfDNA Integrity among the Breast Cancer Patients and Apparently Healthy Controls
3.5. Serum cfDNA Concentrations among Tumour Parameters in the Breast Cancer Patients at Timepoint 1 and Timepoint 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.N.; Schwab, R.B.; Martinez, M.E. Reproductive risk factors and breast cancer subtypes: A review of the literature. Breast Cancer Res. Treat. 2014, 144, 1–10. [Google Scholar] [CrossRef]
- WHO. Breast Cancer: Prevention and Control. 2016. Available online: http://www.who.int/cancer/detection/breastcancer/en/ (accessed on 21 December 2020).
- WHO. Age Standardized (World) Incidence Rates, Breast, All Ages. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf (accessed on 20 May 2021).
- Laryea, D.O.; Awuah, B.; Amoako, Y.A.; Osei-Bonsu, E.; Dogbe, J.; Larsen-Reindorf, R.; Ansong, D.; Yeboah-Awudzi, K.; Oppong, J.K.; Konney, T.O.; et al. Cancer incidence in Ghana, 2012: Evidence from a population-based cancer registry. BMC Cancer 2014, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Naku-Ghartey Jnr, F.; Anyanful, A.; Eliason, S.; Mohammed, A.S.; Debrah, S. Pattern of Breast Cancer Distribution in Ghana: A Survey to Enhance Early Detection, Diagnosis, and Treatment. Int. J. Breast Cancer 2016, 2016, 3645308. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; Koranteng, F. Availability, accessibility, and impact of social support on breast cancer treatment among breast cancer patients in Kumasi, Ghana: A qualitative study. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoako, Y.A.; Awuah, B.; Larsen-Reindorf, R.; Awittor, F.K.; Kyem, G.; Ofori-Boadu, K.; Osei-Bonsu, E.; Laryea, D.O. Malignant tumours in urban Ghana: Evidence from the city of Kumasi. BMC Cancer 2019, 19. [Google Scholar] [CrossRef] [PubMed]
- Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of Breast Cancer Therapy. PET Clin. 2018, 13, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Scherber, S.; Soliman, A.S.; Awuah, B.; Osei-Bonsu, E.; Adjei, E.; Abantanga, F.; Merajver, S.D. Characterizing breast cancer treatment pathways in Kumasi, Ghana from onset of symptoms to final outcome: Outlook towards cancer control. Breast Dis. 2014, 34, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xie, J.; Arai, S.; Wang, L.; Shi, X.; Shi, N.; Ma, F.; Chen, S.; Huang, L.; Yang, L.; et al. The efficacy and safety of anti-PD-1/PD-L1 antibodies for treatment of advanced or refractory cancers: A meta-analysis. Oncotarget 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Y.; Yang, X.; Fan, L.; Qi, X.; Chen, Q.; Jiang, J. Shrink pattern of breast cancer after neoadjuvant chemotherapy and its correlation with clinical pathological factors. World J. Surg. Oncol. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar, R.P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomed 2017, 7, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Research UK. Your Chemotherapy Plan|Cancer in General|Cancer Research UK. 2020. In Your Chemother. Plan. Available online: https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/chemotherapy/planning/your-chemotherapy-plan (accessed on 23 January 2021).
- Chemocare. How Long Is Chemotherapy Given?—What Is Chemotherapy?—Chemocare. 2020. Available online: http://chemocare.com/chemotherapy/what-is-chemotherapy/how-long-is-chemotherapy-given.aspx (accessed on 23 January 2021).
- Colleoni, M.; Rocca, A.; Sandri, M.T.; Zorzino, L.; Masci, G.; Nolè, F.; Peruzzotti, G.; Robertson, C.; Orlando, L.; Cinieri, S.; et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: Antitumor activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 2002, 13, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, E.; Al Jabri, A.; Gadelkarim, G.; Dasaq, A.; Nazim, F.; Al Pakrah, M. Tumor histopathological response to neoadjuvant chemotherapy in childhood solid malignancies: Is it still impressive? J. Investig. Med. 2018, 66, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Meitinger, M.; Rauh, C.; Adamietz, B.; Fasching, P.A.; Schwab, S.A.; Haeberle, L.; Hein, A.; Bayer, C.M.; Bani, M.R.; Lux, M.P.; et al. Accuracy of radiological tumour size assessment and the risk for re-excision in a cohort of primary breast cancer patients. Eur. J. Surg. Oncol. 2012, 38, 44–51. [Google Scholar] [CrossRef]
- Kinga, B.B.; Brigitta, N.Z.; Sándor, S.; Zsolt, T.; Magdolna, D.; Péter, I.; Béla, M. In vivo analysis of circulating cell-free DNA release and degradation. Orv. Hetil. 2018. [Google Scholar] [CrossRef] [Green Version]
- Mandel, P.; Metais, P. Les acides nucléiques du plasma sanguin chez l’homme. CR Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Tan, E.M.; Schur, P.H.; Carr, R.I.; Kunkel, H.G. Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J. Clin. Investig. 1966, 45, 1732–1740. [Google Scholar] [CrossRef]
- Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the Serum of Cancer Patients and the Effect of Therapy. Cancer Res. 1977, 37, 646–650. [Google Scholar]
- Fawzy, A.; Sweify, K.M.; El-Fayoumy, H.M.; Nofal, N. Quantitative analysis of plasma cell-free DNA and its DNA integrity in patients with metastatic prostate cancer using ALU sequence. J. Egypt. Natl. Cancer Inst. 2016, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Wang, H.; Nekrutenko, A.; Li, W.H. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. Gene 2000, 259, 81–88. [Google Scholar] [CrossRef]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 2019, 20, 1057–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronkhorst, A.J.; Ungerer, V.; Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol. Detect. Quantif. 2019, 17, 100087. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.; Gurioli, G.; De Giorgi, U.; Conteduca, V.; Tedaldi, G.; Calistri, D.; Casadio, V. Cell-free DNA as a diagnostic marker for cancer: Current insights. Oncotargets Ther. 2016, 9, 6549–6559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arko-Boham, B.; Aryee, N.A.; Blay, R.M.; Owusu, E.D.A.; Tagoe, E.A.; Doris Shackie, E.S.; Debrah, A.B.; Adu-Aryee, N.A. Circulating cell-free DNA integrity as a diagnostic and prognostic marker for breast and prostate cancers. Cancer Genet. 2019, 235–236, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashad, D.; Sorour, A.; Ghazal, A.; Talaat, I. Free Circulating Tumor DNA as a Diagnostic Marker for Breast Cancer. J. Clin. Lab. Anal. 2012, 26, 467–472. [Google Scholar] [CrossRef]
- Fernandez-Garcia, D.; Hills, A.; Page, K.; Hastings, R.K.; Toghill, B.; Goddard, K.S.; Ion, C.; Ogle, O.; Boydell, A.R.; Gleason, K.; et al. Plasma cell-free DNA (cfDNA) as a predictive and prognostic marker in patients with metastatic breast cancer. Breast Cancer Res. 2019, 21. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, H.; Wang, K.; He, J. Cell-free circulating tumor DNA analysis for breast cancer and its clinical utilization as a biomarker. Oncotarget 2017, 8, 75742–75755. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, H.; Choi, J.W.; Oh, H.E.; Kim, Y.S. Liquid biopsy prediction of axillary lymph node metastasis, cancer recurrence, and patient survival in breast cancer A meta-analysis. Medicine 2018, 97, e12862. [Google Scholar] [CrossRef]
- Agostini, M.; Pucciarelli, S.; Enzo, M.V.; Del Bianco, P.; Briarava, M.; Bedin, C.; Maretto, I.; Friso, M.L.; Lonardi, S.; Mescoli, C.; et al. Circulating cell-free DNA: A promising marker of pathologic tumor response in rectal cancer patients receiving preoperative chemoradiotherapy. Ann. Surg. Oncol. 2011, 18, 2461–2468. [Google Scholar] [CrossRef]
- Iqbal, S.; Vishnubhatla, S.; Raina, V.; Sharma, S.; Gogia, A.; Deo, S.S.V.; Mathur, S.; Shukla, N.K. Circulating cell-free DNA and its integrity as a prognostic marker for breast cancer. Springerplus 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Teo, Y.V.; Capri, M.; Morsiani, C.; Pizza, G.; Faria, A.M.C.; Franceschi, C.; Neretti, N. Cell-free DNA as a biomarker of aging. Aging Cell 2019, 18, e12890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jylhävä, J.; Nevalainen, T.; Marttila, S.; Jylhä, M.; Hervonen, A.; Hurme, M. Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 2013, 12, 388–397. [Google Scholar] [CrossRef]
- Jylhävä, J.; Kotipelto, T.; Raitala, A.; Jylhä, M.; Hervonen, A.; Hurme, M. Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: The Vitality 90+ study. Mech. Ageing Dev. 2011, 132, 20–26. [Google Scholar] [CrossRef]
- Duarte, E.; de Sousa, B.; Cadarso-Suárez, C.; Klein, N.; Kneib, T.; Rodrigues, V. Studying the relationship between a woman’s reproductive lifespan and age at menarche using a Bayesian multivariate structured additive distributional regression model. Biom. J. 2017, 59, 1232–1246. [Google Scholar] [CrossRef] [PubMed]
- Dall, G.V.; Britt, K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol. 2017, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Travis, R.C.; Key, T.J. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003, 5, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Yager, J.D.; Davidson, N.E. Estrogen Carcinogenesis in Breast Cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, A.; Abraham, K. Understanding the role of estrogen in the development of benign prostatic hyperplasia. Afr. J. Urol. 2018, 24, 93–97. [Google Scholar] [CrossRef]
- Vainio, H.; Kaaks, R.; Bianchini, F. Weight control and physical activity in cancer prevention: International evaluation of the evidence. Eur. J. Cancer Prev. 2002, S2, 94–100. [Google Scholar]
- International Agency for Research on Cancer. Weight Control and Physical Activity. Available online: https://publications.iarc.fr/_publications/media/download/3897/6f8693340ca344362a9e2506bdda016616e7f40c.pdf (accessed on 25 May 2021).
- Han, H.; Guo, W.; Shi, W.; Yu, Y.; Zhang, Y.; Ye, X.; He, J. Hypertension and breast cancer risk: A systematic review and meta-analysis. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Silvestris, F. Obesity as a major risk factor for cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eketunde, A.O. Diabetes as a Risk Factor for Breast Cancer. Cureus 2020, 12, e8010. [Google Scholar] [CrossRef] [PubMed]
- Morabito, R.; Remigante, A.; Spinelli, S.; Vitale, G.; Trichilo, V.; Loddo, S.; Marino, A. High glucose concentrations affect band 3 protein in human erythrocytes. Antioxidants 2020, 9, 365. [Google Scholar] [CrossRef]
- Swystun, L.L.; Mukherjee, S.; Liaw, P.C. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J. Thromb. Haemost. 2011, 9, 2313–2321. [Google Scholar] [CrossRef]
- Peled, M.; Agassi, R.; Czeiger, D.; Ariad, S.; Riff, R.; Rosenthal, M.; Lazarev, I.; Novack, V.; Yarza, S.; Mizrakli, Y.; et al. Cell-free DNA concentration in patients with clinical or mammographic suspicion of breast cancer. Sci. Rep. 2020, 10, 1460. [Google Scholar] [CrossRef]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.S.; Pretorius, P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. 2018, 93, 1649–1683. [Google Scholar] [CrossRef]
- Song, Y.; Hu, C.; Xie, Z.; Wu, L.; Zhu, Z.; Rao, C.; Liu, L.; Chen, Y.; Liang, N.; Chen, J.; et al. Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort. Transl. Lung Cancer Res. 2020, 9, 269–279. [Google Scholar] [CrossRef]
Variable | Breast Cancer Patients (n = 32) | Controls (n = 32) | 95% CI of Difference | p-Value |
Age (yrs) | 50.84 ± 12.41 | 61.69 ± 14.74 | −17.66–(−4.04) | 0.0023 * |
Menarche (yrs) | 12.63 ± 2.20 | 16.38 ± 1.31 | −4.65–(−2.85) | <0.0001 * |
Menopause (yrs) | 47.45 ± 4.27 | 47.33 ± 4.55 | −2.01–2.33 | 0.4172 |
Variable | Breast Cancer Patients (n = 32) | Controls (n = 32) | Chi-Square (χ2) | p-Value |
Alcohol intake | ||||
Yes | 5 (15.6%) | 3 (9.4%) | 0.5714 | 0.4497 |
No | 27 (84.4%) | 29 (90.6%) | ||
Smoking | ||||
Yes | 0 (0.0%) | 0(0.0) | - | |
No | 32 (100%) | 32 (100.0%) | ||
Hypertensive | ||||
Yes | 21 (65.6%) | 9 (28.1%) | 7.592 | 0.005 * |
No | 11 (34.4%) | 23 (71.9%) | ||
T2DM | ||||
Yes | 20 (62.5%) | 5 (15.6%) | 12.866 | 0.0003 * |
No | 12 (37.5%) | 27 (84.4%) | ||
Family History BC | ||||
Yes | 18 (56.3%) | 1 (3.1%) | 19.163 | <0.00001 * |
No | 14 (43.7%) | 31 (96.9%) |
Variable | Breast Cancer Patients (n = 32) | Controls (n = 32) | 95% CI of Difference | p-Value |
---|---|---|---|---|
BMI (kg/m2) | 31.03 ± 7.52 | 24.35 ± 5.19 | 3.45–9.90 | 0.0001 * |
WHR | 0.86 ± 0.06 | 0.85 ± 0.02 | −0.01–0.03 | 0.3746 |
Parameters | Frequency (%) n = 32 |
---|---|
Tumour stages | |
II | 4 (12.5) |
III | 25 (78.1) |
IV | 3 (9.4) |
Tumour grades | |
G1 | 1 (3.1) |
G2 | 12 (37.5) |
G3 | 18 (56.3) |
G4 | 1 (3.1) |
Molecular subtype | |
Luminal A | 6 (18.8) |
Luminal B | 10 (31.3) |
HER-2-enriched | 7 (21.8) |
Triple negative | 9 (28.1) |
Histopathological classification | |
Invasive carcinoma | 29 (90.6) |
Unknown | 3 (9.4) |
Location of cancer | |
Left breast | 18 (56.2) |
Right breast | 14 (43.8) |
Parameter | Breast Cancer (n = 32) | Controls (n = 32) | 95% CI of Mean | p-Value |
---|---|---|---|---|
ALU 115 (ng/mL) | 2.24 ± 0.80 | 1.83 ± 0.65 | −0.77–(−0.05) | 0.028 * |
ALU 247 (ng/mL) | 2.73 ± 0.11 | 1.96 ± 0.85 | −1.07–(−0.47) | <0.0001 * |
cfDNA integrity | 1.22 ± 0.14 | 1.07 ± 1.31 | −0.62–0.31 | 0.522 |
Parameter (ng/mL) | Breast Cancer Patients | 95% CI of Mean | p-Value | |
---|---|---|---|---|
TI | T2 | |||
ALU 115 | 2.24 ± 0.80 | 1.67 ± 0.66 | −0.94–(−0.21) | 0.003 * |
ALU 247 | 2.73 ± 0.11 | 2.12 ± 0.69 | −086–(−0.36) | <0.0001 * |
cfDNA integrity | 1.22 ± 0.14 | 1.27 ± 1.04 | −0.32–0.42 | 0.788 |
Parameter | n | ALU 115 (ng/mL) | p-Value | ALU 247 (ng/mL) | p-Value | ||
---|---|---|---|---|---|---|---|
T1 | T2 | T1 | T2 | ||||
Molecular Subtype | |||||||
Luminal A | 6 | 2.16 ± 0.53 | 1.70 ± 0.15 | 0.068 | 2.26 ± 0.78 | 2.19 ± 0.37 | 0.846 |
Luminal B | 10 | 1.64 ± 0.61 | 1.61 ± 0.52 | 0.907 | 2.00 ± 0.79 | 1.94 ± 1.08 | 0.888 |
HER2-enriched | 7 | 1.80 ± 0.88 | 1.60 ± 1.12 | 0.717 | 2.21 ± 0.27 | 1.62 ± 1.20 | 0.228 |
Triple negative | 9 | 1.84 ±0.28 | 1.77 ± 0.49 | 0.715 | 2.19 ± 0.55 | 1.96 ± 0.66 | 0.433 |
Histological Subtype | |||||||
Invasive ductal carcinoma | 29 | 1.84 ± 0.58 | 1.69 ± 0.66 | 0.331 | 2.13 ± 0.71 | 2.01 ± 0.72 | 0.525 |
Unknown | 3 | 1.77 ± 0.34 | 1.38 ± 1.84 | 0.736 | 2.01 ± 0.47 | 1.52 ± 0.79 | 0.408 |
Tumour Stage | |||||||
Stage II | 4 | 1.69 ± 0.82 | 1.64 ± 0.69 | 0.929 | 2.22 ± 0.53 | 1.81 ± 0.69 | 0.361 |
Stage III | 25 | 2.05 ± 0.37 | 1.67 ± 0.46 | 0.002 * | 2.23 ± 0.88 | 2.03 ± 0.70 | 0.378 |
Stage IV | 3 | 1.77 ± 0.34 | 1.52 ± 0.79 | 0.641 | 2.01 ± 0.47 | 1.34 ± 1.85 | 0.576 |
Tumour Grade | |||||||
Grade 1 | 1 | 1.88 | 1.80 | - | 2.05 | 1.93 | - |
Grade 2 | 12 | 1.74 ± 0.68 | 1.56 ± 0.88 | 0.581 | 2.24 ± 0.29 | 1.86 ± 0.94 | 0.195 |
Grade 3 | 18 | 2.41 ± 0.48 | 1.83 ± 0.43 | 0.005 * | 2.97 ± 0.87 | 2.48 ± 0.81 | 0.089 |
Grade 4 | 1 | 1.39 | 0.60 | - | 2.48 | 1.50 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adusei, E.; Ahenkorah, J.; Adu-Aryee, N.A.; Adutwum-Ofosu, K.K.; Tagoe, E.A.; Koney, N.K.-K.; Nkansah, E.; Aryee, N.A.; Blay, R.M.; Hottor, B.A.; et al. Reduced Serum Circulation of Cell-Free DNA Following Chemotherapy in Breast Cancer Patients. Med. Sci. 2021, 9, 37. https://doi.org/10.3390/medsci9020037
Adusei E, Ahenkorah J, Adu-Aryee NA, Adutwum-Ofosu KK, Tagoe EA, Koney NK-K, Nkansah E, Aryee NA, Blay RM, Hottor BA, et al. Reduced Serum Circulation of Cell-Free DNA Following Chemotherapy in Breast Cancer Patients. Medical Sciences. 2021; 9(2):37. https://doi.org/10.3390/medsci9020037
Chicago/Turabian StyleAdusei, Evelyn, John Ahenkorah, Nii Armah Adu-Aryee, Kevin Kofi Adutwum-Ofosu, Emmanuel Ayitey Tagoe, Nii Koney-Kwaku Koney, Emmanuel Nkansah, Nii Ayite Aryee, Richard Michael Blay, Bismarck Afedo Hottor, and et al. 2021. "Reduced Serum Circulation of Cell-Free DNA Following Chemotherapy in Breast Cancer Patients" Medical Sciences 9, no. 2: 37. https://doi.org/10.3390/medsci9020037
APA StyleAdusei, E., Ahenkorah, J., Adu-Aryee, N. A., Adutwum-Ofosu, K. K., Tagoe, E. A., Koney, N. K.-K., Nkansah, E., Aryee, N. A., Blay, R. M., Hottor, B. A., Clegg-Lamptey, J.-N., & Arko-Boham, B. (2021). Reduced Serum Circulation of Cell-Free DNA Following Chemotherapy in Breast Cancer Patients. Medical Sciences, 9(2), 37. https://doi.org/10.3390/medsci9020037