Dually Efficacious Medicine Against Fibrosis and Cancer
Abstract
:1. Introduction
2. Kinase Inhibitors
2.1. Platelet-Derived Growth Factor Receptor
2.2. Platelet-Derived Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor
2.3. Janus Kinase-Signal Transducers and Activators of Transcription
2.4. Mammalian Target of Rapamycin
3. Cytokine Signaling Antagonists
3.1. Transforming Growth Factor-β
3.2. Tumor Necrosis Factor-α
3.3. C-C Cytokine Receptor Type 5
4. Proteostasis Modulators
4.1. Histone de-Acetylase Inhibitor
4.2. Proteasomal Inhibitor
5. Perspective
Funding
Acknowledgments
Conflicts of Interest
References
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis—A common pathway to organ injury and failure. N. Engl. J. Med. 2015, 372, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, L.; Wang, B.; Yuan, M.; Zhu, R. Drugs and targets in fibrosis. Front. Pharmacol. 2017, 8, 855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Usinger, W.; Nichols, B.; Gray, J.; Xu, L.; Seeley, T.W.; Brenner, M.; Guo, G.; Zhang, W.; Oliver, N.; et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 2011, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, R.; Strange, C. Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease. Eur. Respir. Rev. 2017, 26, 146. [Google Scholar] [CrossRef] [PubMed]
- Oldham, J.M.; Collard, H.R. Comorbid conditions in idiopathic pulmonary fibrosis: Recognition and management. Front. Med. 2017, 4, 123. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Gea, V.; Toffanin, S.; Friedman, S.L.; Llovet, J.M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013, 144, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Zeineddine, N.; Khoury, L.E.; Mosak, J. Systemic sclerosis and malignancy: A review of current data. J. Clin. Med. Res. 2016, 8, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.H.; Zhang, X.S. Tipping tumor microenvironment against drug resistance. Oncol. Trans. Res. 2015, 1, 106. [Google Scholar] [CrossRef]
- De Minicis, S.; Marzioni, M.; Saccomanno, S.; Rychlicki, C.; Agostinelli, L.; Trozzi, L.; Svgliati-Baroni, G. Cellular and molecular mechanisms of hepatic fibrogenesis leading to liver cancer. Transl. Gastrointest. Cancer 2012, 1, 88–94. [Google Scholar]
- Dolcino, M.; Pelosi, A.; Fiore, P.F.; Patuzzo, G.; Tinazzi, E.; Lunardi, C.; Puccetti, A. Gene profiling in patients with systemic sclerosis reveals the presence of oncogenic gene signatures. Front. Immunol. 2018, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Balyakina, E.V.; Chen, D.; Lawrence, M.L.; Manning, S.; Parker, R.E.; Shappell, S.B.; Meyrick, B. ET-1 receptor gene expression and distribution in L1 and L2 cells from hypertensive sheep pulmonary artery. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L42–L51. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.K.; Kam, K.K.; Yan, B.P.; Lam, Y.Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: Current status. Br. J. Pharmacol. 2010, 160, 1273–1292. [Google Scholar] [CrossRef] [PubMed]
- Beyer, C.; Distler, J.H. Tyrosine kinase signaling in fibrotic disorders: Translation of basic research to human disease. Biochim. Biophys. Acta 2013, 1832, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, S.; Bansal, R.; Prakash, J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv. Drug Deliv. Rev. 2017, 121, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Jilkova, Z.M.; Kuyucu, A.Z.; Kurma, K.; Ahmad Pour, S.T.; Roth, G.S.; Abbadessa, G.; Yu, Y.; Schwartz, B.; Stunm, N.; Marche, P.N.; et al. Combination of AKT inhibitor ARQ 092 and sorafenib potentiates inhibition of tumor progression in cirrhotic rat model of hepatocellular carcinoma. Oncotarget 2018, 9, 11145–11158. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.H.; Zhang, X.S. Targeted therapy: Resistance and re-sensitization. Chin. J. Cancer 2015, 34, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Druker, B.J. Perspectives on development of imatinib and the future of cancer. Nat. Med. 2009, 15, 1149–1152. [Google Scholar] [CrossRef] [PubMed]
- Lydon, N. Attacking cancer at its foundation. Nat. Med. 2009, 15, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Elmholdt, T.R.; Pedersen, M.; Jørgensen, B.; Ramsing, M.; Olesen, A.B. Positive effect of low-dose imatinib mesylate in a patient with nephrogenic systemic fibrosis. Acta Derm. Venereol. 2011, 91, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.K.; Martyanov, V.; Magro, C.; Wildman, H.F.; Wood, T.A.; Huang, W.T.; Crow, M.K.; Whitefield, M.L.; Spiera, R.F. Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: An open-label, pilot clinical trial. Arthritis Res. Ther. 2015, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- Dadrich, M.; Nicolay, N.H.; Flechsig, P.; Bickelhaupt, S.; Hoeltgen, L.; Roeder, F.; Hauser, K.; Tietz, A.; Jenne, J.; Lopez, R.; et al. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis. Oncoimmunology 2015, 5, e1123366. [Google Scholar] [CrossRef] [PubMed]
- Myllärniemi, M.; Kaarteenaho, R. Pharmacological treatment of idiopathic pulmonary fibrosis—Preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur. Clin. Respir. J. 2015, 2, 26385. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, G.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Coriat, R.; Gouya, H.; Mir, O.; Ropert, S.; Vignaux, O.; Chaussade, S.; Sogni, P.; Pol, S.; Blanchet, B.; Legmann, P.; et al. Reversible decrease of portal venous flow in cirrhotic patients: A positive side effect of sorafenib. PLoS ONE 2011, 6, e16978. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Chen, J.; Liang, Y.; Lin, S.; Zhu, L.; Liang, X.; Cai, X. Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes. Biomed. Pharmacother. 2017, 88, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Quintás-Cardama, A.; Verstovsek, S. Molecular pathways: Jak/STAT pathway: Mutations, inhibitors, and resistance. Clin. Cancer Res. 2013, 19, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Mughal, T.I.; Verstovsek, S. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Curr. Med. Chem. 2012, 19, 4399–4413. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, X. Tackling cancer stem cell: From science to medicine. J. Transl. Clin. Exp. Oncol. 2016, 1, 6–11. [Google Scholar]
- Hurwitz, H.I.; Uppal, N.; Wagner, S.A.; Bendelll, J.C.; Beck, J.T.; Wade, S.M., 3rd; Nemunaitis, J.J.; Stella, P.J.; Pipas, J.M.; Wainberg, Z.A.; et al. Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J. Clin. Oncol. 2015, 33, 4039–4047. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, B.H.; Özdemir, A.A.; Erdal, R.; Özdemir, F.N.; Haberal, M. Rapamycin prevents interstitial fibrosis in renal allografts through decreasing angiogenesis and inflammation. Transpl. Proc. 2011, 43, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Kasner, M.T.; Mick, R.; Jeschke, G.R.; Carabasi, M.; Filicko-O’Hara, J.; Flomenberg, N.; Freg, N.V.; Hexner, E.O.; Luger, S.M.; Loren, A.W.; et al. Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Investig. New Drugs 2018, 36, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Niu, W.; Desai, A. The effect of conversion from a calcineurin inhibitor to sirolimus on skin cancer reduction in post-renal transplantation patients. Cureus 2017, 9, e1564. [Google Scholar] [PubMed]
- Janku, F.; Yap, T.A.; Meric-Bernstam, F. Targeting the PI3K pathway in cancer: Are we making headway? Nat. Rev. Clin. Oncol. 2018, 15, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Reinders, M.E.; Bank, J.R.; Dreyer, G.J.; Roelofs, H.; Heidt, S.; Roelen, D.L.; AI Huurman, V.; Lindeman, J.; van Kooten, C.; Claas, F.M.; et al. Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. J. Transl. Med. 2014, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Saito, T.; Tanaka, T.; Takoi, H.; Yatagai, M.; Nei, T.; Saito, Y.; Gemma, A.; Azuma, A. Reduced incidence of lung cancer in patients with idiopathic pulmonary fibrosis treated with pirfenidone. Respir. Investig. 2018, 56, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.; Yoshino, I.; Yoshida, S.; Ikeda, N.; Tsuboi, M.; Asato, Y.; Katakami, N.; Sakamoto, K.; Yamashita, Y.; Okami, J.; et al. A phase II trial evaluating the efficacy and safety of perioperative pirfenidone for prevention of acute exacerbation of idiopathic pulmonary fibrosis in lung cancer patients undergoing pulmonary resection. Respir. Res. 2016, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Brown, K.K.; Costabel, U.; Cottin, V.; Gibson, K.F.; Kaner, R.J.; Lederer, D.J.; Martinez, F.J.; Noble, P.W.; Song, J.W.; et al. Treatment of idiopathic pulmonary fibrosis with etanercept: An exploratory, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2008, 178, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, S.L.; Owen, R.G.; McGonagle, D.G. Prolonged remission of marginal zone lymphoma in a patient with rheumatoid arthritis treated with anti-tumor necrosis factor agents. J. Rheumatol. 2014, 41, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, F.; Zhu, X.; He, X.; Xie, L. Thalidomide and its analogues: A review of the potential for immunomodulation of fibrosis diseases and opthalmopathy. Exp. Ther. Med. 2017, 14, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Holstein, S.A.; McCarthy, P.L. Immunomodulatory drugs in multiple myeloma: Mechanisms of action and clinical experience. Drugs 2017, 77, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Iurlo, A.; Cattaneo, D. Treatment of myelofibrosis: Old and new strategies. Clin. Med. Insights Blood Disord. 2017, 10, 1179545X17695233. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.O.; Boix, V.; Deltoro, M.G.; Aldeguer, J.L.; Portilla, J.; Montero, M.; Belda, E.B.; Abril, V.; Gutierrez, F.; Minguez, C.; et al. The effects of Maraviroc on liver fibrosis in HIV/HCV co-infected patients. J. Int. AIDS Soc. 2014, 17, 19643. [Google Scholar] [CrossRef] [PubMed]
- Halama, N.; Zoernig, I.; Berthel, A.; Kahlert, C.; Klupp, F.; Suarez-Carmona, M.; Suetterlin, T.; Brand, K.; Krauss, J.; Lasitschka, F.; et al. Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients. Cancer Cell 2016, 29, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabtea, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Davies, E.R.; Calderwood, C.J.; Thatcher, T.H.; Jones, M.G.; Smart, D.E.; Mahajan, S.; Alzetani, A.; Havelock, T.; Maher, T.M.; et al. The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis. Oncotarget 2017, 8, 48737–48754. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Lu, M.; Li, T.; Hochman, T.; Najfeld, V.; Goldberg, J.D.; Hoffman, R. A phase I study of panobinostat (LBH589) in patients with primary myelofibros is (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). Br. J. Haematol. 2013, 161, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Weiss, C.H.; Budinger, G.R.; Mutlu, G.M.; Jain, M. Proteasomal regulation of pulmonary fibrosis. Proc. Am. Thorac. Soc. 2010, 7, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Zeniya, M.; Mori, T.; Yui, N.; Yui, N.; Nomura, N.; Mandai, S.; Isobe, K.; Chiga, M.; Sohara, E.; Rai, T.; et al. The proteasome inhibitor bortezomib attenuates renal fibrosis in mice via the suppression of TGF-β1. Sci. Rep. 2017, 7, 13086. [Google Scholar] [CrossRef] [PubMed]
- Gentilini, F.; Levi, A.; Federico, V.; Russo, E.; Foa, R.; Petrucci, M.T. Bortezomib a safe treatment for patients with multiple myeloma and cystic fibrosis. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012035. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.; Nho, R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Int. J. Mol. Sci. 2018, 19, 778. [Google Scholar] [CrossRef] [PubMed]
- Chen, D. Dual targeting autoimmunity and cancer: From biology to medicine. J. Clin. Pharmacol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kolahian, S.; Fernandez, I.E.; Eickelberg, O.; Hartl, D. Immune mechanisms in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2016, 55, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kleber, S.; Röhrich, M.; Timke, C.; Han, N.; Tuettenberg, J.; Martin-Villalba, A.; Debus, J.; Peschke, P.; Wirkner, U.; et al. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 2011, 71, 7155–7167. [Google Scholar] [CrossRef] [PubMed]
- Flechsig, P.; Dadrich, M.; Bickelhaupt, S.; Jenne, J.; Hauser, K.; Timke, C.; Peschke, P.; Hahn, E.W.; Gröne, H.J.; Yingling, J.; et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin. Cancer Res 2012, 18, 3616–3627. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.H.; Goswami, C.P.; Burnett, R.M.; Anjanappa, M.; Bhat-Nakshatri, P.; Muller, W.; Nakshatri, H. Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res. 2014, 74, 4270–4281. [Google Scholar] [CrossRef] [PubMed]
- Pilling, D.; Vakil, V.; Cox, N.; Gomer, R.H. TNF-α-stimulated fibroblasts secrete lumican to promote fibrocyte differentiation. Proc. Natl. Acad. Sci. USA 2015, 112, 11929–11934. [Google Scholar] [CrossRef] [PubMed]
- Bauditz, J.; Wedel, S.; Lochs, H. Thalidomide reduces tumour necrosis factor α and interleukin 12 production in patients with chronic active Crohn’s disease. Gut 2002, 50, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Woollard, S.M.; Kanmogne, G.D. Maraviroc: A review of its use in HIV infection and beyond. Drug Des. Dev. Ther. 2015, 9, 5447–5468. [Google Scholar]
- Meiners, S.; Ballweg, K. Proteostasis in pediatric pulmonary pathology. Mol. Cell. Pediatr. 2014, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Egiziano, G.; Bernatsky, S.; Shah, A.A. Cancer and autoimmunity: Harnessing longitudinal cohorts to probe the link. Best Pract. Res. Clin. Rheumatol. 2016, 30, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Bhat-Nakshatri, P.; Goswami, C.; Badve, S.; Nakshatri, H. ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res. 2013, 73, 5821–5833. [Google Scholar] [CrossRef] [PubMed]
- An, S.M.; Ding, Q.P.; Li, L.S. Stem cell signaling as a target for novel drug discovery: Recent progress in the WNT and Hedgehog pathways. Acta Pharmacol. Sin. 2013, 34, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Habiel, D.M.; Moreira, A.P.; Ismailoglu, U.B.; Dunleavy, M.P.; Cavassani, K.A.; van Rooijen, N.; Coelho, A.L.; Hogaboam, C.M. TRAIL-Dependent Resolution of Pulmonary Fibrosis. Med. Inflamm. 2018, 2018, 7934362. [Google Scholar] [CrossRef] [PubMed]
- Maher, T.M.; van der Aar, E.M.; Van de Steen, O. Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): A phase 2a randomised placebo-controlled trial. Lancet Respir. Med. 2018, 6, 627–635. [Google Scholar] [CrossRef]
- Kihara, Y.; Mizuno, H.; Chun, J. Lysophospholipid receptors in drug discovery. Exp. Cell Res. 2015, 333, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Samadi, A.K.; Bilsland, A.; Georgakilas, A.G.; Amedei, A.; Amin, A.; Bishayee, A.; Azmi, A.S.; Lokeshwar, B.L.; Grue, B.; Panis, C.; et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin. Cancer Biol. 2015, 35, S151–S184. [Google Scholar] [CrossRef] [PubMed]
Group | Target | Drug Name | Fibrotic Indication | Neoplastic Indication | References |
---|---|---|---|---|---|
Kinase inhibitor | PDGFR | Imatinib | Nephrogenic systemic fibrosis | CML, gastrointestinal | |
Nilotinib | SSc | Stromal tumor | [2,16,17,18,19,20] | ||
Dasatinib | Sclerodoma | ||||
PDGFR & VEGFR | Nintedanib | IPF | NSCLC | [4,22] | |
Sorafenib | Liver cirhosis | HCC | [23,24,25] | ||
JAK-STAT | Ruxolitinib | Myelofibrosis | Polycythemia vera, pancreatic cancer | [26,27,28,29] | |
mTOR | Sirolimus | Renal fibrosis | renal cancer | [30,31,32,33,34] | |
Everolimus | |||||
Cytokine signaling antagonists | TGF-β | Pirfenidone | IPF | Lung cancer | [22,35,36] |
TNF-α | Etanercept | IPF | Lymphoma | [37,38] | |
Thalidomide | IPF | Multiple myeloma | [39,40,41] | ||
Pomalidomide | Myelofibrosis | Multiple myeloma | |||
CCR5 | Maraviroc | Hepatic fibrosis | Colorectal cancer | [42,43] | |
Proteostasis modulator | HDAC | Romidepsin | Pulmonary fibrosis | T-cell lymphoma | [44,45,46] |
Panobinostat | Myelofibrosis | Multiple myeloma | |||
Proteasome | Bortezomib | Cystofibrosis | Multiple myeloma | [47,48,49] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D. Dually Efficacious Medicine Against Fibrosis and Cancer. Med. Sci. 2019, 7, 41. https://doi.org/10.3390/medsci7030041
Chen D. Dually Efficacious Medicine Against Fibrosis and Cancer. Medical Sciences. 2019; 7(3):41. https://doi.org/10.3390/medsci7030041
Chicago/Turabian StyleChen, Daohong. 2019. "Dually Efficacious Medicine Against Fibrosis and Cancer" Medical Sciences 7, no. 3: 41. https://doi.org/10.3390/medsci7030041