The Effect of Combined General Anesthesia and Epidural Analgesia on Postoperative Pulmonary Complications in Thoracoscopic Esophagectomy
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marubashi, S.; Takahashi, A.; Kakeji, Y.; Hasegawa, H.; Ueno, H.; Eguchi, S.; Endo, I.; Goi, T.; Saiura, A.; Sasaki, A.; et al. Surgical outcomes in gastroenterological surgery in Japan: Report of the National Clinical Database 2011–2019. Ann. Gastroenterol. Surg 2021, 5, 639–658. [Google Scholar] [CrossRef] [PubMed]
- Tamagawa, A.; Aoyama, T.; Tamagawa, H.; Ju, M.; Komori, K.; Maezawa, Y.; Kano, K.; Kazama, K.; Murakawa, M.; Atsumi, Y.; et al. Influence of postoperative pneumonia on esophageal cancer survival and recurrence. Anticancer Res. 2019, 39, 2671–2678. [Google Scholar] [CrossRef]
- Kataoka, K.; Takeuchi, H.; Mizusawa, J.; Igaki, H.; Ozawa, S.; Abe, T.; Nakamura, K.; Kato, K.; Ando, N.; Kitagawa, Y. Prognostic impact of postoperative morbidity after esophagectomy for esophageal cancer: Exploratory analysis of JCOG9907. Ann. Surg. 2017, 265, 1152–1157. [Google Scholar] [CrossRef]
- Low, D.E.; Allum, W.; De Manzoni, G.; Ferri, L.; Immanuel, A.; Kuppusamy, M.; Law, S.; Lindblad, M.; Maynard, N.; Neal, J.; et al. Guidelines for perioperative care in esophagectomy: Enhanced recovery after surgery (ERAS®) society recommendations. World J. Surg. 2019, 43, 299–330. [Google Scholar] [CrossRef]
- Sentürk, M.; Ozcan, P.E.; Talu, G.K.; Kiyan, E.; Camci, E.; Ozyalçin, S.; Dilege, S.; Pembeci, K. The effects of three different analgesia techniques on long-term postthoracotomy pain. Anesth. Analg. 2002, 94, 11–15. [Google Scholar]
- Kimura, Y.; Okamura, A.; Takeuchi, M.; Yamamoto, H.; Saeki, H.; Watanabe, M.; Ishihara, R.; Ueno, M.; Uno, T.; Oyama, T.; et al. Comprehensive registry of esophageal cancer in Japan, 2016. Esophagus 2025, 22, 475–505. [Google Scholar] [CrossRef]
- Kitagawa, H.; Namikawa, T.; Iwabu, J.; Uemura, S.; Munekage, M.; Tsuda, S.; Yokota, K.; Kobayashi, M.; Hanazaki, K. Scheduled intravenous acetaminophen for postoperative management of patients who had thoracoscopic esophagectomy for esophageal cancer. Anticancer Res. 2019, 39, 467–470. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: New York, NY, USA, 2017. [Google Scholar]
- Kitagawa, H.; Yokota, K.; Utsunomiya, M.; Namikawa, T.; Kobayashi, M.; Hanazaki, K. A descriptive comparison of postoperative outcomes between hybrid mediastino-thoracoscopic approach and conventional thoracoscopic esophagectomy for esophageal cancer. Surg. Endosc. 2023, 37, 2949–2957. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Kehlet, H.; Wilmore, D.W. Evidence-based surgical care and the evolution of fast-track surgery. Ann. Surg. 2008, 248, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, Y.; Zhu, Y.; Xu, P.; Sun, Z.; Miao, C.; Zhong, J. Thoracic epidural anaesthesia and analgesia ameliorates surgery-induced stress response and postoperative pain in patients undergoing radical oesophagectomy. J. Int. Med. Res. 2019, 47, 6160–6170. [Google Scholar] [CrossRef]
- Ramjit, S.; Davey, M.G.; Loo, C.; Moran, B.; Ryan, E.J.; Arumugasamy, M.; Robb, W.B.; Donlon, N.E. Evaluating analgesia strategies in patients who have undergone oesophagectomy—A systematic review and network meta-analysis of randomised clinical trials. Dis. Esophagus 2024, 37, doad074. [Google Scholar] [CrossRef]
- Oliveira, T.; Nakamura, E.T.; Harada, F.H.B.; Olivé, M.L.V.; Martinez, I.; Oliveira, A.; Maegawa, F.A.B.; Shimanoe, V.H.; Tustumi, F. Epidural anesthesia in esophagectomy: A systematic review and meta-analysis. J. Gastrointest. Surg. 2025, 29, 102093. [Google Scholar] [CrossRef]
- Booka, E.; Takeuchi, H.; Kikuchi, H.; Hiramatsu, Y.; Kamiya, K.; Kawakubo, H.; Kitagawa, Y. Recent advances in thoracoscopic esophagectomy for esophageal cancer. Asian J. Endosc. Surg. 2019, 12, 19–29. [Google Scholar]
- Booka, E.; Nakano, Y.; Mihara, K.; Nishiya, S.; Nishiyama, R.; Shibutani, S.; Sato, T.; Egawa, T. The impact of epidural catheter insertion level on pain control after esophagectomy for esophageal cancer. Esophagus 2020, 17, 175–182. [Google Scholar] [PubMed]
- Wei, K.; Min, S.; Hao, Y.; Ran, W.; Lv, F. Postoperative analgesia after combined thoracoscopic-laparoscopic esophagectomy: A randomized comparison of continuous infusion and intermittent bolus thoracic epidural regimens. J. Pain Res. 2019, 12, 29–37. [Google Scholar] [PubMed]
- She, H.; Wu, B.; Mao, S.; Gao, T. Effects of different anesthesia methods on perioperative immune function and long-term regression of patients undergoing thoracoscopic radical esophagectomy for esophageal cancer. Heliyon 2023, 9, e22822. [Google Scholar] [CrossRef]
- Xu, M.; Feng, Y.; Song, X.; Fu, S.; Lu, X.; Lai, J.; Lu, Y.; Wang, X.; Lai, R. Combined ultrasound-guided thoracic paravertebral nerve block with subcostal transversus abdominis plane block for analgesia after total minimally invasive Mckeown esophagectomy: A randomized, controlled, and prospective study. Pain Ther. 2023, 12, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lu, Y.; Fang, Q.; Fang, P.; Wong, G.T.C.; Liu, X. Effects of epidural anesthesia on quality of life in elderly patients undergoing esophagectomy. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 276–285. [Google Scholar] [CrossRef]
- Biere, S.S.A.Y.; van Berge Henegouwen, M.I.; Maas, K.W.; Bonavina, L.; Rosman, C.; Garcia, J.R.; Gisbertz, S.S.; Klinkenbijl, J.H.G.; Hollmann, M.W.; de Lange, E.S.M.; et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: A multicentre, open-label, randomised controlled trial. Lancet 2012, 379, 1887–1892. [Google Scholar] [CrossRef]
- ROMIO Study Group. Laparoscopic or open abdominal surgery with thoracotomy for patients with oesophageal cancer: ROMIO randomized clinical trial. Br. J. Surg. 2024, 111, znae023. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Endo, H.; Kawakubo, H.; Matsuda, S.; Kikuchi, H.; Kanaji, S.; Kumamaru, H.; Miyata, H.; Ueno, H.; Seto, Y.; et al. No difference in the incidence of postoperative pulmonary complications between abdominal laparoscopy and laparotomy for minimally invasive thoracoscopic esophagectomy: A retrospective cohort study using a nationwide Japanese database. Esophagus 2024, 21, 11–21. [Google Scholar] [CrossRef]
- Kitagawa, H.; Akimori, T.; Okabayashi, T.; Namikawa, T.; Sugimoto, T.; Kobayashi, M.; Hanazaki, K. Total laparoscopic gastric mobilization for esophagectomy. Langenbecks Arch. Surg. 2009, 394, 617–621. [Google Scholar] [CrossRef]
- Kitagawa, H.; Namikawa, T.; Iwabu, J.; Fujisawa, K.; Uemura, S.; Tsuda, S.; Hanazaki, K. Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg. Endosc. 2018, 32, 1749–1754. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, W.M.; Blackshear, J.L.; Laupacis, A.; Kronmal, R.; Hart, R.G. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch. Intern. Med. 1995, 155, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Sandini, M.; Romagnoli, S.; Carli, F.; Ljungqvist, O. Enhanced recovery programs in gastrointestinal surgery: Actions to promote optimal perioperative nutritional and metabolic care. Clin. Nutr. 2020, 39, 2014–2024. [Google Scholar] [CrossRef]
| n = 150 | |
|---|---|
| Surgery year periods | |
| Early (2017–2021) (%) | 70 (46.7) |
| Late (2022–2025) (%) | 80 (53.3) |
| Age, years | 71 (36–91) |
| Sex, male (%) | 125 (83.3) |
| Histological type | |
| Squamous cell carcinoma (%) | 127 (84.7) |
| Adenocarcinoma (%) | 15 (10.0) |
| Other type (%) | 8 (5.3) |
| Tumor location | |
| Ce/Ut (%) | 38 (25.3) |
| Mt/Lt/Jz (%) | 112 (74.7) |
| Clinical stage | |
| Ⅰ (%) | 58 (38.7) |
| Ⅱ (%) | 20 (13.3) |
| Ⅲ (%) | 35 (23.3) |
| ⅣA (%) | 13 (8.7) |
| ⅣB (%) | 24 (16.0) |
| Body mass index (kg/m2) | 22.2 (14.0–40.2) |
| Albumin (g/dL) | 4.0 (1.5–5.1) |
| Lymphocyte (/μL) | 1760 (320–9560) |
| C-reactive protein (g/dL) | 0.1 (0.0–4.1) |
| Comorbidities | |
| Diabetes (%) | 33 (22.0) |
| Cardiovascular disease (%) | 42 (28.0) |
| Hypertension (%) | 92 (61.3) |
| COPD (%) | 49 (32.7) |
| Antithrombotic or anticoagulant drugs (%) | 23 (15.3) |
| Steroid use (%) | 9 (6.0) |
| Previous radiation therapy (%) | 20 (13.3) |
| Neoadjuvant chemotherapy (%) | 69 (46.0) |
| Salvage surgery (%) | 11 (7.3) |
| Surgical procedure | |
| Robot-assisted (%) | 66 (44.0) |
| Hybrid with mediastinoscopy (%) | 53 (35.3) |
| Laparoscopic (%) | 129 (86.0) |
| Supraclavicular dissection (%) | 65 (43.3) |
| Reconstruction route | |
| Post-mediastinal (%) | 90 (60.0) |
| Retrosternal (%) | 59 (39.3) |
| Ante-sternal (%) | 1 (0.7) |
| Reconstructive substitute | |
| Stomach (%) | 145 (96.7) |
| Colon (%) | 5 (3.3) |
| Anastomosis method | |
| Circular stapler (%) | 117 (78.0) |
| Modified-Collard (%) | 15 (10.0) |
| Triangle (%) | 8 (5.3) |
| Handsewn (%) | 10 (6.7) |
| Feeding catheter | |
| Gastro-duodenum (%) | 108 (72.0) |
| Jejunum (%) | 42 (28.0) |
| Surgical Outcomes | n = 150 |
|---|---|
| Time to start surgery (min) | 89 (13–167) |
| Operative time, min | 575 (379–748) |
| Thoracoscopic time, min | 214 (78–385) |
| Fluid infusion, mL | 3750 (2190–6300) |
| Blood loss, mL | 125 (0–950) |
| After-hours surgery (min) | 146 (−58–397) |
| Maximum numerical rating scale | 5 (0–10) |
| Postoperative complications | |
| Recurrent laryngeal nerve palsy (%) | 45 (30.0) |
| Pneumonia (%) | 16 (10.7) |
| Anastomotic leakage (%) | 26 (17.3) |
| Wound infection (%) | 48 (32.0) |
| Distant infections (%) | 15 (10.0) |
| Hospital stays (days) | 26 (10–164) |
| Epidural Analgesia | p-Value | ||
|---|---|---|---|
| Yes (n = 113) | No (n = 37) | ||
| Surgery year period | 0.046 | ||
| Early (2017–2021) (%) | 58 (51.3) | 25 (67.6) | |
| Late (2022–2025) (%) | 55 (48.7) | 12 (32.4) | |
| Age, years | 71 (36–91) | 70 (49–84) | 0.333 |
| Sex, male (%) | 92 (81.4) | 33 (89.2) | 0.271 |
| Histological type | 0.024 | ||
| Squamous cell carcinoma (%) | 100 (88.5) | 27 (73.0) | |
| Adenocarcinoma (%) | 7 (6.2) | 8 (21.6) | |
| Other type (%) | 6 (5.3) | 2 (5.4) | |
| Tumor location | 0.785 | ||
| Ce/Ut (%) | 28 (24.8) | 10 (27.0) | |
| Mt/Lt/Jz (%) | 85 (75.2) | 27 (73.0) | |
| Clinical stage | 0.080 | ||
| Ⅰ (%) | 43 (38.1) | 15 (40.5) | |
| Ⅱ (%) | 16 (14.2) | 4 (10.8) | |
| Ⅲ (%) | 27 (23.9) | 8 (21.6) | |
| ⅣA (%) | 13 (11.5) | 0 (0.0) | |
| ⅣB (%) | 14 (12.4) | 10 (27.0) | |
| Body mass index (kg/m2) | 22.0 (14.0–33.1) | 22.5 (18.1–40.2) | 0.097 |
| Albumin (g/dL) | 4.0 (1.5–4.6) | 4.0 (2.8–5.1) | 0.768 |
| Lymphocyte (/μL) | 1680 (320–9560) | 2065 (560–5690) | 0.020 |
| C-reactive protein (g/dL) | 0.2 (0.0–2.7) | 0.1 (0.0–4.1) | 0.747 |
| Comorbidities | |||
| Diabetes (%) | 19 (16.8) | 14 (37.8) | 0.007 |
| Cardiovascular disease (%) | 28 (24.8) | 14 (37.8) | 0.125 |
| Hypertension (%) | 62 (54.9) | 30 (81.1) | 0.006 |
| COPD (%) | 33 (29.2) | 16 (43.2) | 0.114 |
| Antithrombotic or anticoagulant drugs (%) | 3 (2.7) | 20 (54.1) | <0.001 |
| Steroid use (%) | 5 (4.4) | 4 (10.8) | 0.156 |
| Previous radiation therapy (%) | 16 (14.2) | 4 (10.8) | 0.603 |
| Neoadjuvant chemotherapy (%) | 55 (48.7) | 14 (37.8) | 0.251 |
| Salvage surgery (%) | 8 (7.1) | 3 (8.1) | 0.835 |
| Surgical procedure | |||
| Robot-assisted (%) | 45 (39.8) | 21 (56.8) | 0.072 |
| Hybrid with mediastinoscopy (%) | 44 (38.9) | 9 (24.3) | 0.107 |
| Laparoscopic (%) | 95 (84.1) | 34 (92.0) | 0.234 |
| Supraclavicular dissection (%) | 50 (44.3) | 15 (40.5) | 0.207 |
| Reconstruction route | 0.098 | ||
| Post-mediastinal (%) | 73 (64.6) | 17 (46.0) | |
| Retrosternal (%) | 39 (34.5) | 20 (54.1) | |
| Ante-sternal (%) | 1 (0.9) | 0 (0.0) | |
| Reconstructive substitute | 0.806 | ||
| Stomach (%) | 109 (96.5) | 36 (97.3) | |
| Colon (%) | 4 (3.5) | 1 (2.7) | |
| Anastomosis method | <0.001 | ||
| Circular stapler (%) | 94 (83.2) | 23 (62.2) | |
| Modified-Collard (%) | 12 (10.6) | 3 (8.1) | |
| Triangle (%) | 1 (0.9) | 7 (18.9) | |
| Handsewn (%) | 6 (5.3) | 4 (10.8) | |
| Feeding catheter | 0.879 | ||
| Gastro-duodenum (%) | 81 (71.7) | 27 (73.0) | |
| Jejunum (%) | 32 (28.3) | 10 (27.0) | |
| Surgical outcomes | |||
| Time to start surgery (min) | 92 (13–167) | 84 (53–133) | 0.111 |
| Operative time, min | 582 (379–748) | 568 (461–735) | 0.467 |
| Thoracoscopic time, min | 211 (78–363) | 224 (99–385) | 0.529 |
| Fluid infusion, mL | 3770 (2190–6250) | 3750 (2320–6300) | 0.603 |
| Blood loss, mL | 125 (0–670) | 140 (30–950) | 0.560 |
| After-hours surgery (min) | 155 (−58–397) | 111 (16–336) | 0.095 |
| Maximum numerical rating scale | 4 (0–10) | 5 (1–8) | 0.365 |
| Postoperative complications | |||
| Recurrent laryngeal nerve palsy (%) | 31 (27.4) | 14 (37.8) | 0.231 |
| Pneumonia (%) | 12 (10.6) | 4 (10.8) | 0.974 |
| Anastomotic leakage (%) | 21 (18.6) | 5 (13.5) | 0.479 |
| Wound infection (%) | 35 (31.0) | 13 (35.1) | 0.638 |
| Distant infections (%) | 13 (11.5) | 2 (5.4) | 0.283 |
| Hospital stays (days) | 26 (10–164) | 28 (13–97) | 0.574 |
| Epidural Catheter Level | n (%) | Maximum NRS | p-Value | Pneumonia (%) | p-Value |
|---|---|---|---|---|---|
| Th6/Th7 | 5 (4.4) | 4 (2–7) | 0.604 | 0 (0.0) | 0.744 |
| Th7/Th8 | 41 (36.3) | 5 (0–8) | 6 (14.6) | ||
| Th8/Th9 | 55 (48.7) | 4 (0–10) | 6 (10.9) | ||
| Th9/Th10 | 11 (9.7) | 5 (3–9) | 0 (0.0) | ||
| Th10/Th11 | 1 (0.9) | 5 (3–9) | 0 (0.0) |
| Author, Year | Number of Patients | Abdominal Procedure | Level of Epidural Catheter | Control Group | Outcomes |
|---|---|---|---|---|---|
| Wei K, 2018 [17] | 28 with continuous injection | Laparoscopic | Th7/Th8 | 27 with intermittent injection | Postoperative complications were not different between the two groups. |
| Han X, 2000 [20] | 38 with epidural anesthesia | Laparoscopic | Th7/Th8 or Th8/Th9 | 38 without epidural anesthesia | Better QOL score in the epidural anesthesia group. |
| She H, 2023 [18] | 64 with TPVB | Not described | Th4 and Th7 | 83 with epidural block | TPVB was better for maintaining intraoperative blood pressure, heart rate stability, and postoperative survival. |
| Xu M, 2023 [19] | 56 with TPVB and subcostal TAP | Not described | Th6 and Th9 | 56 with PCEA and 56 with PCIA | VAS in the TPVB with PVB group was higher than that in the PCEA group. The pulmonary complication rate in the PCIA group was significantly higher than that in the PCEA group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kitagawa, H.; Yokota, K.; Shinnou, K.; Araki, K.; Nishiyama, N.; Maeda, H.; Namikawa, T.; Seo, S. The Effect of Combined General Anesthesia and Epidural Analgesia on Postoperative Pulmonary Complications in Thoracoscopic Esophagectomy. Med. Sci. 2026, 14, 7. https://doi.org/10.3390/medsci14010007
Kitagawa H, Yokota K, Shinnou K, Araki K, Nishiyama N, Maeda H, Namikawa T, Seo S. The Effect of Combined General Anesthesia and Epidural Analgesia on Postoperative Pulmonary Complications in Thoracoscopic Esophagectomy. Medical Sciences. 2026; 14(1):7. https://doi.org/10.3390/medsci14010007
Chicago/Turabian StyleKitagawa, Hiroyuki, Keiichiro Yokota, Kento Shinnou, Kohei Araki, Norihiro Nishiyama, Hiromichi Maeda, Tsutomu Namikawa, and Satoru Seo. 2026. "The Effect of Combined General Anesthesia and Epidural Analgesia on Postoperative Pulmonary Complications in Thoracoscopic Esophagectomy" Medical Sciences 14, no. 1: 7. https://doi.org/10.3390/medsci14010007
APA StyleKitagawa, H., Yokota, K., Shinnou, K., Araki, K., Nishiyama, N., Maeda, H., Namikawa, T., & Seo, S. (2026). The Effect of Combined General Anesthesia and Epidural Analgesia on Postoperative Pulmonary Complications in Thoracoscopic Esophagectomy. Medical Sciences, 14(1), 7. https://doi.org/10.3390/medsci14010007

