Beyond XX and XY, Understanding Sex Differences in Leukemia
Abstract
1. Introduction
2. Leukemia Epidemiology, Treatment Response, and Clinical Data
2.1. Sex Differences in Incidence and Mortality Rates
2.2. Sex Differences in Treatment Response and Overall Survival
2.3. Sex Differences in Hematological and Biochemical Parameters
3. Environmental, Lifestyle, and Parental Risk Factors
4. Genetic Risk Factors
5. Epigenetic Patterns in Males and Females
6. Sex-Specific Metabolites in Leukemia
7. Implementing Biological Insights in Clinical Settings as Personalized Medicine
| Mechanism | Female Characteristics | Male Characteristics |
|---|---|---|
| Genetic Factors Sex chromosomes (XX vs. XY) |
| |
| Epigenetic factors | ||
| Innate immunity |
|
|
| Adaptive immunity | ||
| Sex hormones |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Chen, H.; Man, J.; Zhang, T.; Yin, X.; He, Q.; Lu, M. Secular Trends in the Incidence and Survival of All Leukemia Types in the United States from 1975 to 2017. J. Cancer 2021, 12, 2326–2335. [Google Scholar] [CrossRef]
- Rifat, R.H.; Poran, M.S.; Islam, S.; Sumaya, A.T.; Alam, M.M.; Rahman, M.R. Incidence, Mortality, and Epidemiology of Leukemia in South Asia: An Ecological Study. Open J. Epidemiol. 2023, 13, 73–82. [Google Scholar] [CrossRef]
- Miranda-Filho, A.; Piñeros, M.; Ferlay, J.; Soerjomataram, I.; Monnereau, A.; Bray, F. Epidemiological Patterns of Leukaemia in 184 Countries: A Population-Based Study. Lancet Haematol. 2018, 5, e14–e24. [Google Scholar] [CrossRef] [PubMed]
- Bertuccio, P.; Bosetti, C.; Malvezzi, M.; Levi, F.; Chatenoud, L.; Negri, E.; Vecchia, C. La Trends in Mortality from Leukemia in Europe: An Update to 2009 and a Projection to 2012. Int. J. Cancer 2013, 132, 427–436. [Google Scholar] [CrossRef]
- Li, B.; Tang, H.; Cheng, Z.; Zhang, Y.; Xiang, H. The Current Situation and Future Trend of Leukemia Mortality by Sex and Area in China. Front. Public Health 2020, 8, 598215. [Google Scholar] [CrossRef]
- Sharma, R.; Jani, C. Mapping Incidence and Mortality of Leukemia and Its Subtypes in 21 World Regions in Last Three Decades and Projections to 2030. Ann. Hematol. 2022, 101, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Stabellini, N.; Tomlinson, B.; Cullen, J.; Shanahan, J.; Waite, K.; Montero, A.J.; Barnholtz-Sloan, J.S.; Hamerschlak, N. Sex Differences in Adults with Acute Myeloid Leukemia and the Impact of Sex on Overall Survival. Cancer Med. 2023, 12, 6711–6721. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.B. The Spectrum of Sex Differences in Cancer. Trends Cancer 2022, 8, 303–315. [Google Scholar] [CrossRef]
- Özdemir, B.C.; Richters, A.; Oertelt-Prigione, S.; Adjei, A.A.; Borchmann, S.; Haanen, J.; Letsch, A.; Quaas, A.; Verhoeven, R.H.A.; Wagner, A.D. 1592P Awareness and Interest of Oncology Professionals in Sex and Gender Differences in Cancer Risk and Outcome: Analysis of an ESMO Gender Medicine Task Force Survey. Ann. Oncol. 2024, 35, S959. [Google Scholar] [CrossRef]
- Kammula, A.V.; Schäffer, A.A.; Rajagopal, P.S.; Kurzrock, R.; Ruppin, E. Outcome Differences by Sex in Oncology Clinical Trials. Nat. Commun. 2024, 15, 2608. [Google Scholar] [CrossRef]
- Paltiel, O.; Ratnasingam, S.; Lee, H. Are We Ignoring Sex Differences in Haematological Malignancies? A Call for Improved Reporting. Br. J. Haematol. 2025, 206, 1315–1329. [Google Scholar] [CrossRef]
- Amini, M.; Sharma, R.; Jani, C. Gender Differences in Leukemia Outcomes Based on Health Care Expenditures Using Estimates from the GLOBOCAN 2020. Arch. Public Health 2023, 81, 151. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wu, H.; Zhu, Q.; Gu, K.; Wei, H.; Wang, S.; Li, L.; Wu, C.; Chen, R.; Pang, Y. Global Landscape and Trends in Lifetime Risks of Haematologic Malignancies in 185 Countries: Population-Based Estimates fr7om GLOBOCAN 2022. eClinicalMedicine 2025, 83, 103193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Y.; Ma, S. Racial Differences in Four Leukemia Subtypes: Comprehensive Descriptive Epidemiology. Sci. Rep. 2018, 8, 548. [Google Scholar] [CrossRef] [PubMed]
- Ansarian, M.A.; Fatahichegeni, M.; Ren, J.; Wang, X. Sex and Gender in Myeloid and Lymphoblastic Leukemias and Multiple Myeloma: From Molecular Mechanisms to Clinical Outcomes. Curr. Oncol. 2025, 32, 204. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Daltveit, D.S.; Morgan, E.; Colombet, M.; Steliarova-Foucher, E.; Bendahhou, K.; Marcos-Gragera, R.; Rongshou, Z.; Smith, A.; Wei, H.; Soerjomataram, I. Global Patterns of Leukemia by Subtype, Age, and Sex in 185 Countries in 2022. Leukemia 2025, 39, 412–419. [Google Scholar] [CrossRef]
- Liu, W.; Fang, J.; Zhu, M.; Zhou, J.; Yuan, C. Global, Regional, and National Burden of Childhood Leukemia from 1990 to 2021. BMC Pediatr. 2025, 25, 571. [Google Scholar] [CrossRef]
- Wang, M.; Bi, Y.; Fan, Y.; Fu, X.; Jin, Y. Global Incidence of Childhood Cancer by Subtype in 2022: A Population-Based Registry Study. eClinicalMedicine 2025, 89, 103571. [Google Scholar] [CrossRef]
- Dorak, M.T.; Karpuzoglu, E. Gender Differences in Cancer Susceptibility: An Inadequately Addressed Issue. Front. Genet. 2012, 3, 268. [Google Scholar] [CrossRef]
- Ober, C.; Loisel, D.A.; Gilad, Y. Sex-Specific Genetic Architecture of Human Disease. Nat. Rev. Genet. 2008, 9, 911–922. [Google Scholar] [CrossRef]
- Beaudet, M.-E.; Szuber, N.; Moussa, H.; Harnois, M.; Assouline, S.E.; Busque, L. Sex-Related Differences in CML Outcomes in a Real-World Prospective Registry (GQR LMC-NMP). Blood 2024, 144, 533. [Google Scholar] [CrossRef]
- Catovsky, D.; Wade, R.; Else, M. The Clinical Significance of Patients’ Sex in Chronic Lymphocytic Leukemia. Haematologica 2014, 99, 1088–1094. [Google Scholar] [CrossRef]
- Meeske, K.A.; Ji, L.; Freyer, D.R.; Gaynon, P.; Ruccione, K.; Butturini, A.; Avramis, V.I.; Siegel, S.; Matloub, Y.; Seibel, N.L.; et al. Comparative Toxicity by Sex Among Children Treated for Acute Lymphoblastic Leukemia: A Report From the Children’s Oncology Group. Pediatr. Blood Cancer 2015, 62, 2140–2149. [Google Scholar] [CrossRef] [PubMed]
- Jastaniah, W.; Elimam, N.; Abdalla, K.; AlAzmi, A.A.; Aseeri, M.; Felimban, S. High-Dose Methotrexate vs. Capizzi Methotrexate for the Treatment of Childhood T-Cell Acute Lymphoblastic Leukemia. Leuk. Res. Rep. 2018, 10, 44–51. [Google Scholar] [CrossRef]
- Delahousse, J.; Wagner, A.D.; Borchmann, S.; Adjei, A.A.; Haanen, J.; Burgers, F.; Letsch, A.; Quaas, A.; Oertelt-Prigione, S.; Oezdemir, B.C. Sex Differences in the Pharmacokinetics of Anticancer Drugs: A Systematic Review. ESMO Open 2024, 9, 104002. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmed, M.; Hasnain, S. Biochemical and Hematologic Profiles in B-Cell Acute Lymphoblastic Leukemia Children. J. Pediatr. Hematol. Oncol. 2023, 45, E867–E872. [Google Scholar] [CrossRef] [PubMed]
- Izu, A.; Yanagida, H.; Sugimoto, K.; Fujita, S.; Okada, M.; Takemura, T. Focal Segmental Glomerulosclerosis and Partial Deletion of Chromosome 6p: A Case Report. Clin. Nephrol. 2011, 76, 64–67. [Google Scholar] [CrossRef]
- Sá, A.C.M.G.N.D.; Bacal, N.S.; Gomes, C.S.; Silva, T.M.R.D.; Gonçalves, R.P.F.; Malta, D.C. Blood Count Reference Intervals for the Brazilian Adult Population: National Health Survey. Rev. Bras. Epidemiol. 2023, 26, e230004. [Google Scholar] [CrossRef]
- Tefferi, A.; Hanson, C.A.; Inwards, D.J. How to Interpret and Pursue an Abnormal Complete Blood Cell Count in Adults. Mayo Clin. Proc. 2005, 80, 923–936. [Google Scholar] [CrossRef]
- Munker, R.; Hill, U.; Jehn, U.; Kolb, H.J.; Schalhorn, A. Renal Complications in Acute Leukemias. Haematologica 1998, 83, 416–421. [Google Scholar]
- Zhou, Y.; Tang, Z.; Liu, Z.H.; Li, L.S. Acute Lymphoblastic Leukemia Complicated by Acute Renal Failure: A Case Report and Review of the Literature. Clin. Nephrol. 2010, 73, 321–325. [Google Scholar] [CrossRef]
- Berger, U.; Maywald, O.; Pfirmann, M.; Lahaye, T.; Hochhaus, A.; Reiter, A.; Hasford, J.; Heimpel, H.; Hossfeld, D.K.; Kolb, H.-J.; et al. Gender Aspects in Chronic Myeloid Leukemia: Long-Term Results from Randomized Studies. Leukemia 2005, 19, 984–989. [Google Scholar] [CrossRef]
- Pujari, K.N.; Jadkar, S.P.; Belwalkar, G.J. Lactate Dehydrogenase Levels in Leukemias. Int. J. Pharma. Bio Sci. 2012, 3, B454–B459. [Google Scholar]
- Addisia, G.D.; Tegegne, A.S.; Belay, D.B.; Muluneh, M.W.; Kassaw, M.A. Risk Factors of White Blood Cell Progression Among Patients With Chronic Lymphocytic Leukemia at Felege Hiwot Referral Hospital, Bahir Dar, Ethiopia. Cancer Inf. 2022, 21, 11769351211069902. [Google Scholar] [CrossRef] [PubMed]
- Advani, A. Acute Lymphoblastic Leukemia (ALL). Best. Pr. Res. Clin. Haematol. 2017, 30, 173–174. [Google Scholar] [CrossRef]
- Niaz, H.; Malik, H.S.; Mahmood, R.; Mehmood, A.; Zaidi, S.A.; Nisar, U. Clinico-Haematologic Parameters and Assessment of Post-Induction Status in Acute Lymphoblastic Leukaemia. J. Ayub Med. Coll. 2022, 34, 458–462. [Google Scholar] [CrossRef]
- Duarte, D.d.S.; Teixeira, E.B.; de Oliveira, M.B.; Carneiro, T.X.; Leão, L.B.C.; Júnior, F.A.R.M.; Carneiro, D.M.; Nunes, P.F.; Cohen-Paes, A.; Alcantara, D.D.F.Á.; et al. Hematological and Biochemical Characteristics Associated with Cytogenetic Findern Alterations in Adult Patients with Acute Lymphoblastic Leukemia (ALL) from the Northern Region of Brazil. Biomedicines 2024, 12, 2739. [Google Scholar] [CrossRef]
- Darphin, X.; Blattner, J.; Hoffmann, M.; Gobat, K.; Kronig, M.-N.; Pabst, T.; Özdemir, B.C. Sex-Associated Differences in Outcomes in Acute Myeloid Leukemia Patients Following Intense Induction Treatment: A Real-World Single Center Analysis. J. Clin. Med. 2025, 14, 6457. [Google Scholar] [CrossRef]
- Rafiq, N.; Iqbal, T.; Shahid, M.; Muhammad, F. Hematological and Biochemical Parameters in Pakistani Chronic Lymphoblastic Leukemia Patients. Leukemia 2014, 12, 16–19. [Google Scholar]
- Ahmadi, Z.; Shariati, A.; Fayazi, S.; Latifi, M. The Association between Lifestyle and Incidence of Leukemia in Adults in Ahvaz, Iran. Off. J. Ahvaz Jundishapur Univ. Med. Sci. 2016, 5, 59492. [Google Scholar]
- Strom, S.S.; Oum, R.; Elhor Gbito, K.Y.; Garcia-Manero, G.; Yamamura, Y. De Novo Acute Myeloid Leukemia Risk Factors: A Texas Case-control Study. Cancer 2012, 118, 4589–4596. [Google Scholar] [CrossRef]
- Miligi, L.; Costantini, A.S.; Crosignani, P.; Fontana, A.; Masala, G.; Nanni, O.; Ramazzotti, V.; Rodella, S.; Stagnaro, E.; Tumino, R.; et al. Occupational, Environmental, and Life-Style Factors Associated with the Risk of Hematolymphopoietic Malignancies in Women. Am. J. Ind. Med. 1999, 36, 60–69. [Google Scholar] [CrossRef]
- Du, M.; Chen, W.; Liu, K.; Wang, L.; Hu, Y.; Mao, Y.; Sun, X.; Luo, Y.; Shi, J.; Shao, K.; et al. The Global Burden of Leukemia and Its Attributable Factors in 204 Countries and Territories: Findings from the Global Burden of Disease 2019 Study and Projections to 2030. J. Oncol. 2022, 2022, 1612702. [Google Scholar] [CrossRef]
- Liu, J.; Kharazmi, E.; Liang, Q.; Chen, Y.; Sundquist, J.; Sundquist, K.; Fallah, M. Maternal Weight during Pregnancy and Risk of Childhood Acute Lymphoblastic Leukemia in Offspring: Acute Lymphoblastic Leukemia. Leukemia 2025, 39, 590–598. [Google Scholar] [CrossRef]
- Pearce, M.S.; Hammal, D.M.; Dorak, M.T.; McNally, R.J.Q.; Parker, L. Paternal Occupational Exposure to Electro-Magnetic Fields as a Risk Factor for Cancer in Children and Young Adults: A Case-Control Study from the North of England. Pediatr. Blood Cancer 2007, 49, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Morales, A.L.; Zonana-Nacach, A.; Zaragoza-Sandoval, V.M. Associated Risk Factors in Acute Leukemia in Children. A Cases and Controls Study; [Factores Asociados a Leucemia Aguda En Niños. Estudio de Casos y Controles.]. Rev. Med. Inst. Mex. Seguro Soc. 2009, 47, 497–503. [Google Scholar]
- Radivoyevitch, T.; Jankovic, G.M.; Tiu, R.V.; Saunthararajah, Y.; Jackson, R.C.; Hlatky, L.R.; Gale, R.P.; Sachs, R.K. Sex Differences in the Incidence of Chronic Myeloid Leukemia. Radiat. Environ. Biophys. 2014, 53, 55–63. [Google Scholar] [CrossRef]
- Singh, S.K.; Lupo, P.J.; Scheurer, M.E.; Saxena, A.; Kennedy, A.E.; Ibrahimou, B.; Barbieri, M.A.; Mills, K.I.; McCauley, J.L.; Okcu, M.F.; et al. A Childhood Acute Lymphoblastic Leukemia Genome-Wide Association Study Identifies Novel Sex-Specific Risk Variants. Medicine 2016, 95, e5300. [Google Scholar] [CrossRef]
- Al-absi, B.; Noor, S.M.; Saif-Ali, R.; Salem, S.D.; Ahmed, R.H.; Razif, M.F.M.; Muniandy, S. Association of ARID5B Gene Variants with Acute Lymphoblastic Leukemia in Yemeni Children. Tumor Biol. 2017, 39, 1010428317697573. [Google Scholar] [CrossRef]
- Bolufer, P.; Collado, M.; Barragán, E.; Cervera, J.; Calasanz, M.-J.; Colomer, D.; Roman-Gómez, J.; Sanz, M.A. The Potential Effect of Gender in Combination with Common Genetic Polymorphisms of Drug-Metabolizing Enzymes on the Risk of Developing Acute Leukemia. Haematologica 2007, 92, 308–314. [Google Scholar] [CrossRef]
- Meissner, B.; Bartram, T.; Eckert, C.; Trka, J.; Panzer-Grümayer, R.; Hermanova, I.; Ellinghaus, E.; Franke, A.; Möricke, A.; Schrauder, A.; et al. Frequent and Sex-Biased Deletion of SLX4IP by Illegitimate V(D)J-Mediated Recombination in Childhood Acute Lymphoblastic Leukemia. Hum. Mol. Genet. 2014, 23, 590–601. [Google Scholar] [CrossRef]
- Van Vlierberghe, P.; Patel, J.; Abdel-Wahab, O.; Lobry, C.; Hedvat, C.V.; Balbin, M.; Nicolas, C.; Payer, A.R.; Fernandez, H.F.; Tallman, M.S.; et al. PHF6 Mutations in Adult Acute Myeloid Leukemia. Leukemia 2011, 25, 130–134. [Google Scholar] [CrossRef]
- Van Der Meulen, J.; Sanghvi, V.; Mavrakis, K.; Durinck, K.; Fang, F.; Matthijssens, F.; Rondou, P.; Rosen, M.; Pieters, T.; Vandenberghe, P.; et al. The H3K27me3 Demethylase UTX Is a Gender-Specific Tumor Suppressor in T-Cell Acute Lymphoblastic Leukemia. Blood 2015, 125, 13–21. [Google Scholar] [CrossRef]
- Lafta, S.A.; Abdulhassan, I.A. Prevalence of Classification of Nucleophosmin 1 Gene Mutations in Iraqi Cohort of Acute Myeloid Leukemia. J. Appl. Hematol. 2025, 16, 74–80. [Google Scholar] [CrossRef]
- Ozga, M.; Nicolet, D.; Mrózek, K.; Yilmaz, A.S.; Kohlschmidt, J.; Larkin, K.T.; Blachly, J.S.; Oakes, C.C.; Buss, J.; Walker, C.J.; et al. Sex-Associated Differences in Frequencies and Prognostic Impact of Recurrent Genetic Alterations in Adult Acute Myeloid Leukemia (Alliance, AMLCG). Leukemia 2024, 38, 45–57. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Radkiewicz, C.; Bruchfeld, J.B.; Weibull, C.E.; Jeppesen, M.L.; Frederiksen, H.; Lambe, M.; Jakobsen, L.; El-Galaly, T.C.; Smedby, K.E.; Wästerlid, T. Sex Differences in Lymphoma Incidence and Mortality by Subtype: A Population-Based Study. Am. J. Hematol. 2023, 98, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Molica, S. Sex Differences in Incidence and Outcome of Chronic Lymphocytic Leukemia Patients. Leuk. Lymphoma 2006, 47, 1477–1480. [Google Scholar] [CrossRef] [PubMed]
- Tettero, J.M.; Cloos, J.; Bullinger, L. Acute Myeloid Leukemia: Does Sex Matter? Leukemia 2024, 38, 2329–2331. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, T.; Bortoluzzi, A.; Chen, M.H.; Wu, X.; Wang, J.; Ermel, R.; Kim, Y.; Chen, S.; Chen, W.Y. Sex-Dependent Differences in Hematopoietic Stem Cell Aging and Leukemogenic Potential. Oncogene 2025, 44, 64–78. [Google Scholar] [CrossRef]
- Hu, D.; Shilatifard, A. Epigenetics of Hematopoiesis and Hematological Malignancies. Genes Dev. 2016, 30, 2021–2041. [Google Scholar] [CrossRef]
- Cullen, S.M.; Mayle, A.; Rossi, L.; Goodell, M.A. Hematopoietic Stem Cell Development: An Epigenetic Journey. Curr. Top. Dev. Biol. 2014, 107, 39–75. [Google Scholar]
- Rubin, J.B.; Abou-Antoun, T.; Ippolito, J.E.; Llaci, L.; Marquez, C.T.; Wong, J.P.; Yang, L. Epigenetic Developmental Mechanisms Underlying Sex Differences in Cancer. J. Clin. Investig. 2024, 134, e180071. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Gharibyan, V.; Yang, H.; Wei, Y.; Pierce, S.; Kantarjian, H.M.; Garcia-Manero, G.; Rytting, M. Impact of Aberrant DNA Methylation Patterns Including CYP1B1 Methylation in Adolescents and Young Adults with Acute Lymphocytic Leukemia. Am. J. Hematol. 2013, 88, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Cecotka, A.; Krol, L.; O’Brien, G.; Badie, C.; Polanska, J. May Gender Have an Impact on Methylation Profile and Survival Prognosis in Acute Myeloid Leukemia? In Practical Applications of Computational Biology & Bioinformatics, Proceedings of the 15th International Conference (PACBB 2021), Salamanca, Spain, 6–8 October 2021; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2021; Volume 325 LNNS, pp. 126–135. [Google Scholar]
- Lin, S.; Liu, Y.; Goldin, L.R.; Lyu, C.; Kong, X.; Zhang, Y.; Caporaso, N.E.; Xiang, S.; Gao, Y. Sex-Related DNA Methylation Differences in B Cell Chronic Lymphocytic Leukemia. Biol. Sex. Differ. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, F.M.; Nafea, D.A.; El-Attar, L.M.; Saied, M.H. Epigenetic Silencing of the DAPK1 Gene in Egyptian Patients with Chronic Myeloid Leukemia. Meta Gene 2020, 26, 100779. [Google Scholar] [CrossRef]
- Márquez, E.J.; Chung, C.H.; Marches, R.; Rossi, R.J.; Nehar-Belaid, D.; Eroglu, A.; Mellert, D.J.; Kuchel, G.A.; Banchereau, J.; Ucar, D. Sexual-Dimorphism in Human Immune System Aging. Nat. Commun. 2020, 11, 751. [Google Scholar] [CrossRef]
- Tollefsbol, T. Personalized Epigenetics; Elsevier: Amsterdam, The Netherlands, 2024; ISBN 0443238030. [Google Scholar]
- Gemmati, D.; Varani, K.; Bramanti, B.; Piva, R.; Bonaccorsi, G.; Trentini, A.; Manfrinato, M.C.; Tisato, V.; Carè, A.; Bellini, T. “Bridging the Gap” Everything That Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int. J. Mol. Sci. 2019, 21, 296. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2012, 41, D801–D807. [Google Scholar] [CrossRef]
- Szczepski, K.; Al-Younis, I.; Dhahri, M.; Lachowicz, J.I.; Al-Talla, Z.A.; Almahasheer, H.; Alasmael, N.; Rahman, M.; Emwas, A.-H.; Jaremko, Ł; et al. Metabolic Biomarkers in Cancer. In Metabolomics: A Path Towards Personalized Medicine; Academic Press: Cambridge, MA, USA, 2023; pp. 173–198. [Google Scholar]
- Petrick, L.; Imani, P.; Perttula, K.; Yano, Y.; Whitehead, T.; Metayer, C.; Schiffman, C.; Dolios, G.; Dudoit, S.; Rappaport, S. Untargeted Metabolomics of Newborn Dried Blood Spots Reveals Sex-Specific Associations with Pediatric Acute Myeloid Leukemia. Leuk. Res. 2021, 106, 106585. [Google Scholar] [CrossRef]
- Allain, E.P.; Venzl, K.; Caron, P.; Turcotte, V.; Simonyan, D.; Gruber, M.; Le, T.; Lévesque, E.; Guillemette, C.; Vanura, K. Sex-Dependent Association of Circulating Sex Steroids and Pituitary Hormones with Treatment-Free Survival in Chronic Lymphocytic Leukemia Patients. Ann. Hematol. 2018, 97, 1649–1661. [Google Scholar] [CrossRef]
- Bond, K.M.; McCarthy, M.M.; Rubin, J.B.; Swanson, K.R. Molecular Omics Resources Should Require Sex Annotation: A Call for Action. Nat. Methods 2021, 18, 585–588. [Google Scholar] [CrossRef]
- Costanzo, M.; Caterino, M.; Sotgiu, G.; Ruoppolo, M.; Franconi, F.; Campesi, I. Sex Differences in the Human Metabolome. Biol. Sex. Differ. 2022, 13, 30. [Google Scholar] [CrossRef]
- Huh, J.; Moon, H.; Chung, W.S. Incidence and Clinical Significance of Sex Chromosome Losses in Bone Marrow of Patients with Hematologic Diseases. Korean J. Lab. Med. 2007, 27, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Scotland, R.S.; Stables, M.J.; Madalli, S.; Watson, P.; Gilroy, D.W. Sex Differences in Resident Immune Cell Phenotype Underlie More Efficient Acute Inflammatory Responses in Female Mice. Blood 2011, 118, 5918–5927. [Google Scholar] [CrossRef]
- Lee, B.W.; Yap, H.K.; Chew, F.T.; Quah, T.C.; Prabhakaran, K.; Chan, G.S.H.; Wong, S.C.; Seah, C.C. Age- and Sex-Related Changes in Lymphocyte Subpopulations of Healthy Asian Subjects: From Birth to Adulthood. Commun. Clin. Cytom. 1996, 26, 8–15. [Google Scholar] [CrossRef]
- Lisse, I.M.; Aaby, P.; Whittle, H.; Jensen, H.; Engelmann, M.; Christensen, L.B. T-Lymphocyte Subsets in West African Children: Impact of Age, Sex, and Season. J. Pediatr. 1997, 130, 77–85. [Google Scholar] [CrossRef]
- Abdullah, M.; Chai, P.S.; Chong, M.Y.; Tohit, E.R.M.; Ramasamy, R.; Pei, C.P.; Vidyadaran, S. Gender Effect on in Vitro Lymphocyte Subset Levels of Healthy Individuals. Cell Immunol. 2012, 272, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Uppal, S.S.; Verma, S.; Dhot, P.S. Normal Values of CD4 and CD8 Lymphocyte Subsets in Healthy Indian Adults and the Effects of Sex, Age, Ethnicity, and Smoking. Cytom. B Clin. Cytom. 2003, 52, 32–36. [Google Scholar] [CrossRef]
- Kim, H.-I.; Lim, H.; Moon, A. Sex Differences in Cancer: Epidemiology, Genetics and Therapy. Biomol. Ther. 2018, 26, 335. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Foo, Y.Z.; Nakagawa, S.; Rhodes, G.; Simmons, L.W. The Effects of Sex Hormones on Immune Function: A Meta-analysis. Biol. Rev. 2017, 92, 551–571. [Google Scholar] [CrossRef]
- Bupp, M.R.G.; Potluri, T.; Fink, A.L.; Klein, S.L. The Confluence of Sex Hormones and Aging on Immunity. Front. Immunol. 2018, 9, 1269. [Google Scholar] [CrossRef]
- Ben-Batalla, I.; Vargas-Delgado, M.E.; Meier, L.; Loges, S. Sexual Dimorphism in Solid and Hematological Malignancies. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 41, pp. 251–263. [Google Scholar]
- Thabit, J.A.; Almzaiel, A.J.; Kadhim, M.I.; Alrufaie, M.M. The Impact of Reproductive Hormone Changes on the Immune Response of Patients with Leukemia. Anaesth. Pain Intensive Care 2023, 27, 585–591. [Google Scholar] [CrossRef]
- Rosenquist, R.; Fröhling, S.; Stamatopoulos, K. Precision Medicine in Cancer: A Paradigm Shift. Semin. Cancer Biol. 2022, 84, 1–2. [Google Scholar] [CrossRef]
- Rosenquist, R.; Bernard, E.; Erkers, T.; Scott, D.W.; Itzykson, R.; Rousselot, P.; Soulier, J.; Hutchings, M.; Östling, P.; Cavelier, L.; et al. Novel Precision Medicine Approaches and Treatment Strategies in Hematological Malignancies. J. Intern. Med. 2023, 294, 413–436. [Google Scholar] [CrossRef] [PubMed]
- Dierlamm, J.; Michaux, L.; Criel, A.; Wlodarska, I.; Zeller, W.; Louwagie, A.; Michaux, J.-L.; Mecucci, C.; Berghe, H. Van Den Isodicentric (X)(Q13) in Haematological Malignancies: Presentation of Five New Cases, Application of Fluorescence in Situ Hybridization (FISH) and Review of the Literature. Br. J. Haematol. 1995, 91, 885–891. [Google Scholar] [CrossRef]
- Adeyinka, A.; Smoley, S.; Fink, S.; Sanchez, J.; Van Dyke, D.L.; Dewald, G. Isochromosome (X)(P10) in Hematologic Disorders: FISH Study of 14 New Cases Show Three Types of Centromere Signal Patterns. Cancer Genet. Cytogenet. 2007, 179, 25–30. [Google Scholar] [CrossRef]
- Danielsson, M.; Halvardson, J.; Davies, H.; Moghadam, B.T.; Mattisson, J.; Rychlicka-Buniowska, E.; Jaszczyński, J.; Heintz, J.; Lannfelt, L.; Giedraitis, V.; et al. Longitudinal Changes in the Frequency of Mosaic Chromosome Y Loss in Peripheral Blood Cells of Aging Men Varies Profoundly between Individuals. Eur. J. Hum. Genet. 2020, 28, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Watson, N.; Sharma, P. Frequency of Trisomy 15 and Loss of the Y Chromosome in Adult Leukemia. Cancer Genet. Cytogenet. 1999, 114, 108–111. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Yang, Y.; Li, S.; Liu, Y.; Chen, C. Mosaic Loss of Chromosome Y Promotes Leukemogenesis and Clonal Hematopoiesis. JCI Insight 2022, 7, e153768. [Google Scholar] [CrossRef]
- Snell, D.M.; Turner, J.M.A. Sex Chromosome Effects on Male–Female Differences in Mammals. Curr. Biol. 2018, 28, R1313–R1324. [Google Scholar] [CrossRef]
- Kovats, S. Estrogen Receptors Regulate Innate Immune Cells and Signaling Pathways. Cell. Immunol. 2015, 294, 63–69. [Google Scholar] [CrossRef]
- Brooks, R.C.; Garratt, M.G. Life History Evolution, Reproduction, and the Origins of Sex-Dependent Aging and Longevity. Ann. N. Y. Acad. Sci. 2017, 1389, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, N.; Rafiee, M.; Azaryan, E.; Wilkinson, D.; Bagheri, V. Inhibitory Effects of Progesterone on the Human Acute Lymphoblastic Leukemia Cell Line. Gene Rep. 2024, 36, 101991. [Google Scholar] [CrossRef]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef] [PubMed]

| ALL | AML | CML | CLL | |
|---|---|---|---|---|
| Incidence Estimated new cases by sex, United States, 2025 [16] | 3450 males vs. 2650 females. | 12,060 males vs. 9950 females | 5610 males vs. 3950 females. | 14,340 males vs. 9350 females. |
| Mortality Estimated deaths by sex, United States, 2025 [16] | 720 males vs. 680 females. | 6130 males vs. 4960 females. | 740 males vs. 550 females. | 2810 males vs. 1650 females. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mostafa, M.; Elhaddad, A.; Gad, M.Z.; Hanafi, R.; Rashad, H.; El Deeb, S. Beyond XX and XY, Understanding Sex Differences in Leukemia. Med. Sci. 2026, 14, 38. https://doi.org/10.3390/medsci14010038
Mostafa M, Elhaddad A, Gad MZ, Hanafi R, Rashad H, El Deeb S. Beyond XX and XY, Understanding Sex Differences in Leukemia. Medical Sciences. 2026; 14(1):38. https://doi.org/10.3390/medsci14010038
Chicago/Turabian StyleMostafa, Mai, Alaa Elhaddad, Mohamed Z. Gad, Rasha Hanafi, Hanaa Rashad, and Sami El Deeb. 2026. "Beyond XX and XY, Understanding Sex Differences in Leukemia" Medical Sciences 14, no. 1: 38. https://doi.org/10.3390/medsci14010038
APA StyleMostafa, M., Elhaddad, A., Gad, M. Z., Hanafi, R., Rashad, H., & El Deeb, S. (2026). Beyond XX and XY, Understanding Sex Differences in Leukemia. Medical Sciences, 14(1), 38. https://doi.org/10.3390/medsci14010038

