Serum Calcium Concentration Is Associated with Bone Mineral Density and Synonymous Variants in the RYR1 Gene in a Mexican-Mestizo Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. BMD Measurement
2.3. Serum Sample Preparation
2.4. Ionized Calcium Serum Determination
2.5. Single Nucleotide Variant Selection and Genotyping
2.6. Localization of Genetic Variants in the Homotetrameric Structure of RYR1
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Minor Allele Frequency of Genetic Variants
3.3. Association Analyses Between Serum Calcium Concentrations and BMD
3.4. Analysis of the Association Between RYR1 Variants, Serum Calcium Concentration and BMD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RYR1 | Ryanodine Receptor 1 |
| OP | Osteoporosis |
| BMD | Bone Mineral Density |
| Ca2+ | Calcium |
References
- Arnold, A.; Dennison, E.; Kovacs, C.S.; Mannstadt, M.; Rizzoli, R.; Brandi, M.L.; Clarke, B.; Thakker, R.V. Hormonal regulation of biomineralization. Nat. Rev. Endocrinol. 2021, 17, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Tu, R.; Yao, X.; Zhu, Z. Associations between serum calcium, 25(OH)D level and bone mineral density in adolescents. Adv. Rheumatol. 2021, 61, 16. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yao, X.; Zhu, Z. Associations between serum calcium, 25(OH)D level and bone mineral density in older adults. J. Orthop. Surg. Res. 2019, 14, 458. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, H.; Zhang, Y.; Wang, L.; Sun, B.; Gao, F.; Liu, G. Impact of serum calcium levels on total body bone mineral density: A mendelian randomization study in five age strata. Clin. Nutr. 2021, 40, 2726–2733. [Google Scholar] [CrossRef]
- Cerani, A.; Zhou, S.; Forgetta, V.; Morris, J.A.; Trajanoska, K.; Rivadeneira, F.; Larsson, S.C.; Michaëlsson, K.; Richards, J.B. Genetic predisposition to increased serum calcium, bone mineral density, and fracture risk in individuals with normal calcium levels: Mendelian randomisation study. BMJ 2019, 366, l4410. [Google Scholar] [CrossRef]
- Tucci, J.R. Importance of early diagnosis and treatment of osteoporosis to prevent fractures. Am. J. Manag. Care 2006, 12, S181–S190. [Google Scholar]
- Sozen, T.; Ozisik, L.; Calik Basaran, N. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Yan, G.; Han, Y.; Wang, X. Serum Proteomics in Biomedical Research: A Systematic Review. Appl. Biochem. Biotechnol. 2013, 170, 774–786. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Spiezia, F.; Tingart, M.; Maria, P.G.; Riccardo, G. Biomarkers as therapy monitoring for postmenopausal osteoporosis: A systematic review. J. Orthop. Surg. Res. 2021, 16, 318. [Google Scholar] [CrossRef]
- Aparicio-Bautista, D.I.; Becerra-Cervera, A.; Rivera-Paredez, B.; Aguilar-Ordoñez, I.; Ríos-Castro, E.; Reyes-Grajeda, J.P.; Salmerón, J.; Hidalgo-Bravo, A.; Velázquez-Cruz, R. Label-free quantitative proteomics in serum reveals candidate biomarkers associated with low bone mineral density in Mexican postmenopausal women. GeroScience 2024, 46, 2177–2195. [Google Scholar] [CrossRef]
- Santulli, G.; Lewis, D.; des Georges, A.; Marks, A.R.; Frank, J. Ryanodine Receptor Structure and Function in Health and Disease. Cells 2018, 4, 329–352. [Google Scholar]
- Huang, C.L.-H.; Sun, L.; Fraser, J.A.; Grace, A.A.; Zaidi, M. Similarities and Contrasts in Ryanodine Receptor Localization and Function in Osteoclasts and Striated Muscle Cells. Ann. N. Y. Acad. Sci. 2007, 1116, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Mowrey, D.D.; Chirasani, V.R.; Wang, Y.; Pasek, D.A.; Dokholyan, N.V.; Meissner, G. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca2+. J. Biol. Chem. 2018, 293, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Xiao, B.; Li, X.; Chen, S.R.W. Smooth Muscle Tissues Express a Major Dominant Negative Splice Variant of the Type 3 Ca2+ Release Channel (Ryanodine Receptor). J. Biol. Chem. 2003, 278, 4763–4769. [Google Scholar] [CrossRef] [PubMed]
- Lynch, P.J.; Tong, J.; Lehane, M.; Mallet, A.; Giblin, L.; Heffron, J.J.A.; Vaughan, P.; Zafra, G.; MacLennan, D.H.; McCarthy, T.V. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc. Natl. Acad. Sci. USA 1999, 96, 4164–4169. [Google Scholar] [CrossRef]
- Touat-Hamici, Z.; Blancard, M.; Ma, R.; Lin, L.; Iddir, Y.; Denjoy, I.; Leenhardt, A.; Yuchi, Z.; Guicheney, P. A SPRY1 domain cardiac ryanodine receptor variant associated with short-coupled torsade de pointes. Sci. Rep. 2021, 11, 5243. [Google Scholar] [CrossRef]
- Hu, Y.; Jin, L.; Wang, Z. Genome-wide association study of dilated cardiomyopathy-induced heart failure associated with renal insufficiency in a Chinese population. BMC Cardiovasc. Disord. 2023, 23, 335. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Liu, L.; Zhang, X.; Pan, X.; Yao, H.; Ma, Y.; Tan, B. Prenatal diagnosis identifies compound heterozygous variants in RYR1 that causes ultrasound abnormalities in a fetus. BMC Med. Genom. 2022, 15, 202. [Google Scholar] [CrossRef]
- AlBakri, A.; Karaoui, M.; Alkuraya, F.S.; Khan, A.O. Congenital ptosis, scoliosis, and malignant hyperthermia susceptibility in siblings with recessive RYR1 mutations. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2015, 19, 577–579. [Google Scholar] [CrossRef]
- Tariq, E.; Mirza, L. Early Osteoporosis in RYR1-Related Central Core Disease. J. Endocr. Soc. 2021, 5, A191. [Google Scholar] [CrossRef]
- Robinson, L.J.; Blair, H.C.; Barnett, J.B.; Zaidi, M.; Huang, C.L.H. Regulation of bone turnover by calcium-regulated calcium channels. Ann. N. Y. Acad. Sci. 2010, 1192, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Comparán, M.; Jiménez-Ortega, R.F.; Estrada, K.; Parra-Torres, A.Y.; González-Mercado, A.; Patiño, N.; Castillejos-López, M.; Quiterio, M.; Fernandez-López, J.C.; Ibarra, B.; et al. A Pilot Genome-Wide Association Study in Postmenopausal Mexican-Mestizo Women Implicates the RMND1/CCDC170 Locus Is Associated with Bone Mineral Density. Int. J. Genom. 2017, 2017, 5831020. [Google Scholar] [CrossRef] [PubMed]
- Denova-Gutiérrez, E.; Flores, Y.N.; Gallegos-Carrillo, K.; Ramírez-Palacios, P.; Rivera-Paredez, B.; Muñoz-Aguirre, P.; Velázquez-Cruz, R.; Torres-Ibarra, L.; Meneses-León, J.; Méndez-Hernández, P.; et al. Health workers cohort study: Methods and study design. Salud Publica Mex. 2016, 58, 708–716. [Google Scholar] [CrossRef]
- Ortega-Yáñez, A.; Barquera, R.; Curiel-Giles, L.; Martínez-Álvarez, J.C.; Macías-Medrano, R.M.; Arrieta-Bolaños, E.; Clayton, S.; Bravo-Acevedo, A.; Hernández-Zaragoza, D.I.; Immel, A.; et al. Genetic diversity of HLA system in two populations from Morelos, Mexico: Cuernavaca and rural Morelos. Hum. Immunol. 2020, 81, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Dalemo, S.; Eggertsen, R.; Hjerpe, P.; Almqvist, E.G.; Boström, K.B. Bone mineral density in primary care patients related to serum calcium concentrations: A longitudinal cohort study from Sweden. Scand. J. Prim. Health Care 2018, 36, 198–206. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, L.; Yao, X.; Zhu, Z. The association between abdominal obesity and femoral neck bone mineral density in older adults. J. Orthop. Surg. Res. 2023, 18, 171. [Google Scholar] [CrossRef]
- Srinivasan, B.; Kopperdahl, D.L.; Amin, S.; Atkinson, E.J.; Camp, J.; Robb, R.A.; Riggs, B.L.; Orwoll, E.S.; Melton, L.J.; Keaveny, T.M.; et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos. Int. 2012, 23, 155–162. [Google Scholar] [CrossRef]
- Li, G.H.-Y.; Robinson-Cohen, C.; Sahni, S.; Au, P.C.-M.; Tan, K.C.-B.; Kung, A.W.-C.; Cheung, C.-L. Association of Genetic Variants Related to Serum Calcium Levels with Reduced Bone Mineral Density. J. Clin. Endocrinol. Metab. 2020, 105, e328–e336. [Google Scholar] [CrossRef]
- da Silva Lopes, K.; Abe, S.K. Polymorphisms Contributing to Calcium Status: A Systematic Review. Nutrients 2021, 13, 2488. [Google Scholar] [CrossRef]
- Iyer, K.A.; Hu, Y.; Klose, T.; Murayama, T.; Samsó, M. Molecular mechanism of the severe MH/CCD mutation Y522S in skeletal ryanodine receptor (RyR1) by cryo-EM. Proc. Natl. Acad. Sci. USA 2022, 119, e2122140119. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, N.; Sun, M.; Yang, S.; Chen, X. The role of calcium channels in osteoporosis and their therapeutic potential. Front. Endocrinol. 2024, 15, 1450328. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tae, H.-S.; Norris, N.C.; Karunasekara, Y.; Pouliquin, P.; Board, P.G.; Dulhunty, A.F.; Casarotto, M.G. A dihydropyridine receptor α1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. Int. J. Biochem. Cell Biol. 2009, 41, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Tae, H.; Wei, L.; Willemse, H.; Mirza, S.; Gallant, E.M.; Board, P.G.; Dirksen, R.T.; Casarotto, M.G.; Dulhunty, A. The elusive role of the SPRY2 domain in RyR1. Channels 2011, 5, 148–160. [Google Scholar] [CrossRef]
- Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011, 12, 683–691. [Google Scholar] [CrossRef]
- Rauscher, R.; Ignatova, Z. Timing during translation matters: Synonymous mutations in human pathologies influence protein folding and function. Biochem. Soc. Trans. 2018, 46, 937–944. [Google Scholar] [CrossRef]
- Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.-W.; Sauna, Z.E.; Calcagno, A.M.; Ambudkar, S.V.; Gottesman, M.M. A “Silent” Polymorphism in the MDR 1 Gene Changes Substrate Specificity. Science 2007, 315, 525–528. [Google Scholar] [CrossRef]
- van der Veldt, A.A.M.; Eechoute, K.; Gelderblom, H.; Gietema, J.; Guchelaar, H. Genetic Polymorphisms Associated with a Prolonged Progression-Free Survival in Patients with Metastatic Renal Cell Cancer Treated with Sunitinib. Clin. Cancer Res. 2011, 17, 620–629. [Google Scholar] [CrossRef]
- Zullo, A.; Klingler, W.; De Sarno, C.; Ferrara, M.; Fortunato, G.; Perrotta, G.; Gravino, E.; Di Noto, R.; Lehmann-Horn, F.; Melzer, W.; et al. Functional characterization of ryanodine receptor (RYR1) sequence variants using a metabolic assay in immortalized B-lymphocytes. Hum Mutat. 2009, 30, E575–E590. [Google Scholar] [CrossRef]



| Females | ||||
| Males (n = 240) | Females (n = 726) | <47 Years (n = 143) | ≥47 Years (n = 583) | |
| β (95%CI) | β (95%CI) | β (95%CI) | β (95%CI) | |
| Total hip | ||||
| Serum calcium categories | Adjusted Model | |||
| Low category | −0.030 (−0.073, 0.014) | −0.008 (−0.028, 0.012) | 0.006 (−0.041, 0.053) | −0.005 (−0.028, 0.017) |
| Medium category | Reference | Reference | Reference | Reference |
| High category | −0.0003 (−0.047, 0.046) | −0.024 (−0.045, −0.003) * | −0.016 (−0.064, 0.032) | −0.019 (−0.044, 0.005) |
| Femoral neck | ||||
| Serum calcium categories | ||||
| Low category | −0.045 (−0.089, 0.002) | −0.007 (−0.027, 0.013) | 0.007 (−0.042, 0.056) | −0.004 (−0.026, 0.018) |
| Medium category | Reference | Reference | Reference | Reference |
| High category | −0.009 (−0.058, 0.040) | −0.025 (−0.045, −0.004) * | −0.018 (−0.067, 0.032) | −0.018 (−0.042, 0.006) |
| Females | ||||
| Males (n = 240) | Females (n = 726) | <47 Years (n = 143) | ≥47 years (n = 583) | |
| OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | |
| Total hip | ||||
| Serum calcium categories | Adjusted model | |||
| Low category | 1.14 (0.51–2.55) | 1.46 (0.92–2.31) | 2.59 (0.46–14.45) | 1.33 (0.82–2.16) |
| Medium category | Reference | Reference | Reference | Reference |
| High category | 0.38 (0.14–1.08) | 1.78 (1.11–2.87) * | 1.62 (0.29–9.15) | 1.77 (1.06–2.96) * |
| Femoral neck | ||||
| Serum calcium categories | ||||
| Low category | 2.48 (1.17–5.27) * | 1.14 (0.73–1.79) | 0.99 (0.22–4.36) | 1.16 (0.72–1.89) |
| Medium category | Reference | Reference | Reference | Reference |
| High category | 0.99 (0.42–2.33) | 1.18 (0.74–1.90) | 0.67 (0.15–3.08) | 1.30 (0.78–2.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Pérez, T.V.; Jiménez-Ortega, R.F.; Cruz-Rangel, A.; Aparicio-Bautista, D.I.; Fernández-López, J.C.; Becerra-Cervera, A.; Reyes-Grajeda, J.P.; Salmerón, J.; Hidalgo-Bravo, A.; Rivera-Paredez, B.; et al. Serum Calcium Concentration Is Associated with Bone Mineral Density and Synonymous Variants in the RYR1 Gene in a Mexican-Mestizo Population. Med. Sci. 2025, 13, 324. https://doi.org/10.3390/medsci13040324
López-Pérez TV, Jiménez-Ortega RF, Cruz-Rangel A, Aparicio-Bautista DI, Fernández-López JC, Becerra-Cervera A, Reyes-Grajeda JP, Salmerón J, Hidalgo-Bravo A, Rivera-Paredez B, et al. Serum Calcium Concentration Is Associated with Bone Mineral Density and Synonymous Variants in the RYR1 Gene in a Mexican-Mestizo Population. Medical Sciences. 2025; 13(4):324. https://doi.org/10.3390/medsci13040324
Chicago/Turabian StyleLópez-Pérez, Tania V., Rogelio F. Jiménez-Ortega, Armando Cruz-Rangel, Diana I. Aparicio-Bautista, Juan C. Fernández-López, Adriana Becerra-Cervera, Juan P. Reyes-Grajeda, Jorge Salmerón, Alberto Hidalgo-Bravo, Berenice Rivera-Paredez, and et al. 2025. "Serum Calcium Concentration Is Associated with Bone Mineral Density and Synonymous Variants in the RYR1 Gene in a Mexican-Mestizo Population" Medical Sciences 13, no. 4: 324. https://doi.org/10.3390/medsci13040324
APA StyleLópez-Pérez, T. V., Jiménez-Ortega, R. F., Cruz-Rangel, A., Aparicio-Bautista, D. I., Fernández-López, J. C., Becerra-Cervera, A., Reyes-Grajeda, J. P., Salmerón, J., Hidalgo-Bravo, A., Rivera-Paredez, B., & Velázquez-Cruz, R. (2025). Serum Calcium Concentration Is Associated with Bone Mineral Density and Synonymous Variants in the RYR1 Gene in a Mexican-Mestizo Population. Medical Sciences, 13(4), 324. https://doi.org/10.3390/medsci13040324

