Psilocybin and Chronic Pain: A New Perspective for Future Pain Therapists?
Abstract
1. Introduction
2. Materials and Methods
Search Strategy
3. Discussion
3.1. Preclinical Evidence of Psilocybin in Pain Management
3.1.1. BDNF-Mediated Neuroplasticity Enhancement
3.1.2. Emotional–Cognitive Integration
3.1.3. Anti-Inflammatory Action
3.2. Clinical Studies
3.3. Ethical Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stretanski, M.F.; Kopitnik, N.L.; Matha, A.; Conermann, T. Chronic Pain; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553030 (accessed on 6 October 2025).
- Rikard, S.M.; Strahan, A.E.; Schmit, K.M.; Guy, G.P., Jr. Chronic pain among adults—United States, 2019–2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 379–385. [Google Scholar] [CrossRef]
- Nadeau, S.E.; Wu, J.K.; Lawhern, R.A. Opioids and chronic pain: An analytic review of the clinical evidence. Front. Pain Res. 2021, 2, 721357. [Google Scholar] [CrossRef]
- Hagemeier, N.E. Introduction to the opioid epidemic: The economic burden on the healthcare system and impact on quality of life. Am. J. Manag. Care 2018, 24, S200–S206. [Google Scholar] [PubMed]
- Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Ojeda, B.; Salazar, A.; Mico, J.A.; Failde, I. A review of chronic pain impact on patients, their social environment and the health care system. J. Pain Res. 2016, 9, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.L.; Fonseca, A.C.; Diejomaoh, E.M.; D’souza, R.S.; Schatman, M.; Orhurhu, V.; Emerick, T. Scoping review: The role of psychedelics in the management of chronic pain. J. Pain Res. 2024, 17, 965–973. [Google Scholar] [CrossRef]
- Vamvakopoulou, I.A.; Nutt, D.J. Psychedelics: From cave art to 21st-century medicine for addiction. Eur. Addict. Res. 2024, 30, 302–320. [Google Scholar] [CrossRef]
- Askey, T.; Lasrado, R.; Maiarú, M.; Stephens, G.J. Psilocybin as a novel treatment for chronic pain. Br. J. Pharmacol. 2024. [Google Scholar] [CrossRef]
- Gungor, N.Z.; Johansen, J. A chronic pain in the ACC. Neuron 2019, 102, 903–905. [Google Scholar] [CrossRef] [PubMed]
- Weiss, F.; Magnesa, A.; Gambini, M.; Gurrieri, R.; Annuzzi, E.; Elefante, C.; Perugi, G.; Marazziti, D. Psychedelic-induced neural plasticity: A comprehensive review and a discussion of clinical implications. Brain Sci. 2025, 15, 117. [Google Scholar] [CrossRef]
- Laabi, S.; LeMmon, C.; Vogel, C.; Chacon, M.; Jimenez, V.M., Jr. Deciphering psilocybin: Cytotoxicity, anti-inflammatory effects, and mechanistic insights. Int. Immunopharmacol. 2024, 130, 111753. [Google Scholar] [CrossRef]
- Aday, J.S.; McAfee, J.; Conroy, D.A.; Hosanagar, A.; Tarnal, V.; Weston, C.; Scott, K.; Horowitz, D.; Geller, J.; Harte, S.E.; et al. Preliminary safety and effectiveness of psilocybin-assisted therapy in adults with fibromyalgia: An open-label pilot clinical trial. Front. Pain Res. 2025, 6, 1527783. [Google Scholar] [CrossRef]
- Gukasyan, N.; Davis, A.K.; Barrett, F.S.; Cosimano, M.P.; Sepeda, N.D.; Johnson, M.W.; Griffiths, R.R. Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: Prospective 12-month follow-up. J. Psychopharmacol. 2022, 36, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Nguyen, Q.A.; Matthews, S.J.; Carpenter, E.; Mathews, D.B.; Patten, C.A.; Hammond, C.J. Psilocybin history, action and reaction: A narrative clinical review. J. Psychopharmacol. 2023, 37, 849–865. [Google Scholar] [CrossRef] [PubMed]
- Carhart-Harris, R.L.; Bolstridge, M.; Rucker, J.; Day, C.M.J.; Erritzoe, D.; Kaelen, M.; Bloomfield, M.; Rickard, J.A.; Forbes, B.; Feilding, A.; et al. Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. Lancet Psychiatry 2016, 3, 619–627. [Google Scholar] [CrossRef]
- Heal, D.J.; Smith, S.L.; Belouin, S.J.; Henningfield, J.E. Psychedelics: Threshold of a therapeutic revolution. Neuropharmacology 2023, 236, 109610. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Y.; Yao, Y.; Dai, W.; Yin, Y.; Wang, G.; Li, Y.; Zhang, L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J. Psychopharmacol. 2024, 38, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Moliner, R.; Girych, M.; Brunello, C.A.; Kovaleva, V.; Biojone, C.; Enkavi, G.; Antenucci, L.; Kot, E.F.; Goncharuk, S.A.; Kaurinkoski, K.; et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat. Neurosci. 2023, 26, 1032–1041. [Google Scholar] [CrossRef]
- Park, H.; Poo, M.-M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef]
- Davis, K.D.; Moayedi, M. Central mechanisms of pain revealed through functional and structural MRI. J. Neuroimmune Pharmacol. 2013, 8, 518–534. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Collingridge, G.L.; Kaang, B.-K.; Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 2016, 17, 485–496. [Google Scholar] [CrossRef]
- Meda, K.S.; Patel, T.; Braz, J.M.; Malik, R.; Turner, M.L.; Seifikar, H.; Basbaum, A.I.; Sohal, V.S. Microcircuit mechanisms through which mediodorsal thalamic input to anterior cingulate cortex exacerbates pain-related aversion. Neuron 2019, 102, 944–959.e3. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, M.; Kiritoshi, T.; Presto, P.; Hurtado, Z.; Antenucci, N.; Ji, G.; Neugebauer, V. BDNF signaling and pain modulation. Cells 2025, 14, 476. [Google Scholar] [CrossRef]
- Luo, C.; Kuner, T.; Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci. 2014, 37, 343–355. [Google Scholar] [CrossRef]
- Ding, X.; Cai, J.; Li, S.; Liu, X.-D.; Wan, Y.; Xing, G.-G. BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation. Neurobiol. Dis. 2015, 73, 428–451. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Ren, W.-J.; Zhong, Y.; Yang, T.; Wei, X.-H.; Xin, W.-J.; Liu, C.-C.; Zhou, L.-H.; Li, Y.-Y.; Liu, X.-G. Limited BDNF contributes to the failure of injury to skin afferents to produce a neuropathic pain condition. Pain 2010, 148, 148–157. [Google Scholar] [CrossRef]
- White, A.O.; Kramár, E.A.; López, A.J.; Kwapis, J.L.; Doan, J.; Saldana, D.; Davatolhagh, M.F.; Alaghband, Y.; Blurton-Jones, M.; Matheos, D.P.; et al. BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nat. Commun. 2016, 7, 11725. [Google Scholar] [CrossRef] [PubMed]
- Tanqueiro, S.R.; Mouro, F.M.; Ferreira, C.B.; Freitas, C.F.; Fonseca-Gomes, J.; Couto, F.S.D.; Sebastião, A.M.; Dawson, N.; Diógenes, M.J. Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice. J. Psychopharmacol. 2021, 35, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.-H.; Miao, Z.; Pan, J.-G.; Li, X.-H.; Zhuo, M. Brain-derived neurotrophic factor produced long-term synaptic enhancement in the anterior cingulate cortex of adult mice. Mol. Brain 2021, 14, 140. [Google Scholar] [CrossRef]
- Yang, C.R.; Bai, Y.Y.; Ruan, C.S.; Zhou, F.H.; Li, F.; Li, C.Q.; Zhou, X.F. Injection of Anti-proBDNF in Anterior Cingulate Cortex (ACC) Reverses Chronic Stress-Induced Adverse Mood Behaviors in Mice. Neurotox. Res. 2017, 31, 298–308. [Google Scholar] [CrossRef]
- Koseli, E.; Buzzi, B.; Honaker, T.; Rakholia, Y.; Lewis, M.; Gaines-Smith, M.; Jaster, A.M.; Gonzalez-Maeso, J.; Damaj, M.I. IUPHAR Article: Psilocybin induces long-lasting effects via 5-HT2A receptors in mouse models of chronic pain. Pharmacol. Res. 2025, 215, 107699. [Google Scholar] [CrossRef]
- Goel, D.B.; Zilate, S. Potential therapeutic effects of psilocybin: A systematic review. Cureus 2022, 14, e30214. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, W.; Kozak, D.; Sotocinal, S.G.; Tansley, S.; Bannister, K.; Mogil, J.S. Monoaminergic mediation of hyperalgesic and analgesic descending control of nociception in mice. Pain 2023, 164, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Metabolism of psilocybin and psilocin: Clinical and forensic toxicological relevance. Drug Metab. Rev. 2017, 49, 84–91. [Google Scholar] [CrossRef]
- Halberstadt, A.L.; Geyer, M.A. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 2011, 61, 364–381. [Google Scholar] [CrossRef]
- Horita, L.J. Dephosphorylation of psilocybin in the intact mouse. Toxicol. Appl. Pharm. 1962, 4, 730–737. [Google Scholar] [CrossRef]
- Kolbman, T.; Liu, P.; Guzzo, J.; Gilligan, G.A.; Mashour, G.; Vanini, D. Intravenous psilocybin attenuates mechanical hypersensitivity in a rat model of chronic pain. Curr. Biol. 2023, 33, R1282–R1283. [Google Scholar] [CrossRef]
- Hammo, A.; Wisser, S.; Cichon, J. Single-dose psilocybin rapidly and sustainably relieves allodynia and anxiodepressive-like behaviors in mouse models of chronic pain. Nat. Neurosci. 2025, 28, 2285–2295. [Google Scholar] [CrossRef]
- Wei, F.; Dubner, R.; Zou, S.; Ren, K.; Bai, G.; Wei, D.; Wei, G. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J. Neurosci. 2010, 30, 8624–8636. [Google Scholar] [CrossRef]
- Ferrini, F.; De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013, 2013, 429815. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Chen, J.; Su, M.; Lin, Z.; Zhan, H.; Yang, F.; Li, W.; Xie, J.; Huang, Y.; Liu, X.; et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J. Neuroinflamm. 2020, 17, 19. [Google Scholar] [CrossRef]
- Zheng, S.; Ma, R.; Yang, Y.; Li, G. Psilocybin for the treatment of Alzheimer’s disease. Front. Neurosci. 2024, 18, 1420601. [Google Scholar] [CrossRef]
- Laabi, S.; LeMmon, C.; Vogel, C.; Chacon, M.; Jimenez, V.M., Jr. Psilocybin and psilocin regulate microglial immunomodulation and support neuroplasticity via serotonergic and AhR signaling. Int. Immunopharmacol. 2025, 159, 114940. [Google Scholar] [CrossRef]
- Kurtz, J.S.; A Patel, N.; Gendreau, J.L.; Yang, C.; Brown, N.; Bui, N.; Picton, B.; Harris, M.; Hatter, M.; Beyer, R.; et al. The Use of Psychedelics in the Treatment of Medical Conditions: An Analysis of Currently Registered Psychedelics Studies in the American Drug Trial Registry. Cureus 2022, 14, e29167. [Google Scholar] [CrossRef]
- Haikazian, S.; Chen-Li, D.C.; Johnson, D.E.; Fancy, F.; Levinta, A.; Husain, M.I.; Mansur, R.B.; McIntyre, R.S.; Rosenblat, J.D. Psilocybin-assisted therapy for depression: A systematic review and meta-analysis. Psychiatry Res. 2023, 329, 115531. [Google Scholar] [CrossRef]
- Griffiths, R.R.; Johnson, M.W.; A Carducci, M.; Umbricht, A.; A Richards, W.; Richards, B.D.; Cosimano, M.P.; A Klinedinst, M. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J. Psychopharmacol. 2016, 30, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Park, S.Y.; Park, J.; Na, S.; Lee, H.-S.; Kim, T.; Ham, J.; Park, Y.-T. A narrative exploration of psilocybin’s potential in mental health. Front. Psychiatry. 2024, 15, 1429373. [Google Scholar] [CrossRef] [PubMed]
- Bader, H.; Farraj, H.; Maghnam, J.; Abu Omar, Y. Investigating the therapeutic efficacy of psilocybin in advanced cancer patients: A comprehensive review and meta-analysis. World J. Clin. Oncol. 2024, 15, 908–919. [Google Scholar] [CrossRef]
- Lyes, M.; Yang, K.H.; Castellanos, J.; Furnish, T. Microdosing psilocybin for chronic pain: A case series. Pain 2023, 164, 698–702. [Google Scholar] [CrossRef]
- Schindler, E.A.D.; Sewell, R.A.; Gottschalk, C.H.; Luddy, C.; Flynn, L.T.; Lindsey, H.; Pittman, B.P.; Cozzi, N.V.; D’Souza, D.C. Exploratory Controlled Study of the Migraine-Suppressing Effects of Psilocybin. Neurotherapeutics 2021, 18, 534–543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schindler, E.A.D.; Sewell, R.A.; Gottschalk, C.H.; Luddy, C.; Flynn, L.T.; Zhu, Y.; Lindsey, H.; Pittman, B.P.; Cozzi, N.V.; D’Souza, D.C. Exploratory investigation of a patient-informed low-dose psilocybin pulse regimen in the suppression of cluster headache: Results from a randomized, double-blind, placebo-controlled trial. Headache 2022, 62, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Schindler, E.A.D.; Sewell, R.A.; Gottschalk, C.H.; Flynn, L.T.; Zhu, Y.; Pittman, B.P.; Cozzi, N.V.; D’Souza, D.C. Psilocybin pulse regimen reduces cluster headache attack frequency in the blinded extension phase of a randomized controlled trial. J. Neurol. Sci. 2024, 460, 122993. [Google Scholar] [CrossRef] [PubMed]
- Rucker, J.; Butler, M.; Hambleton, S.; Bird, C.; Seynaeve, M.; Cheema, S.; Campbell-Coker, K.; Maggio, C.; Dunbar, F.; Lambru, G.; et al. Low-dose psilocybin in short-lasting unilateral neuralgiform headache attacks: Results from an open-label phase Ib ascending dose study. Headache 2024, 64, 1309–1317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jevotovsky, D.S.; Chopra, H.; Wing, C.; Spotswood, C.J.; Castellanos, J. Refractory CRPS pain treated with psilocybin: A case report. Clin. Case Rep. 2024, 12, e9421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smigielski, L.; Scheidegger, M.; Kometer, M.; Vollenweider, F.X. Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage 2019, 196, 207–215. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, D.E.-W.; Madsen, M.K.; Stenbæk, D.S.; Kristiansen, S.; Ozenne, B.; Jensen, P.S.; Knudsen, G.M.; Fisher, P.M. Lasting effects of a single psilocybin dose on resting-state functional connectivity in healthy individuals. J. Psychopharmacol. 2022, 36, 74–84. [Google Scholar] [CrossRef]
- Borissova, A.; Rucker, J.J. The development of psilocybin therapy for treatment-resistant depression: An update. BJPsych Bull. 2024, 48, 38–44. [Google Scholar] [CrossRef]
- Johnson, M.; Richards, W.; Griffiths, R. Human hallucinogen research: Guidelines for safety. J. Psychopharmacol. 2008, 22, 603–620. [Google Scholar] [CrossRef]
- Nichols, D.E. Hallucinogens. Pharmacol. Ther. 2004, 101, 131–181. [Google Scholar] [CrossRef] [PubMed]
- Polito, V.; Stevenson, R.J. A systematic study of microdosing psychedelics. PLoS ONE 2019, 14, e0211023. [Google Scholar] [CrossRef] [PubMed]
- Zylko, A.L.; Rakoczy, R.J.; Roberts, B.F.; Wilson, M.; Powell, A.; Page, A.; Heitkamp, M.; Feist, D.; Jones, J.A.; McMurray, M.S. Age- and estrous-dependent effects of psilocybin in rats. Neuropharmacology 2025, 279, 110619. [Google Scholar] [CrossRef]
- Marks, M.; Brendel, R.W.; Shachar, C.; Cohen, I.G. Essentials of informed consent to psychedelic medicine. JAMA Psychiatry 2024, 81, 611–617. [Google Scholar] [CrossRef]
- Dino, F. A modern overview of the potential therapeutic effects of psilocybin in the treatment of depressive disorders, treatment-resistant depression, and end-of-life distress. Cureus 2025, 17, e80707. [Google Scholar] [CrossRef]
- McGuire, A.L.; Cohen, I.G.; Sisti, D.; Baggott, M.; Celidwen, Y.; Devenot, N.; Gracias, S.; Grob, C.; Harvey, I.; Kious, B.; et al. Developing an Ethics and Policy Framework for Psychedelic Clinical Care: A Consensus Statement. JAMA Netw. Open 2024, 7, e2414650. [Google Scholar] [CrossRef] [PubMed]
- Barber, G.S.; Dike, C.C. Ethical and Practical Considerations for the Use of Psychedelics in Psychiatry. Psychiatr Serv. 2023, 174, 838–846. [Google Scholar] [CrossRef]
- Lee, A.; Rosenbaum, D.; Buchman, D.Z. Informed Consent to Psychedelic-Assisted Psychotherapy: Ethical Considerations. Can. J. Psychiatry 2024, 69, 309–313. [Google Scholar] [CrossRef]
- Barnett, B.S.; Vest, M.F.; Delatte, M.S.; Iv, F.K.; Mauney, E.E.; Coulson, A.J.; Nayak, S.M.; Hendricks, P.S.; Greer, G.R.; Murnane, K.S. Practical considerations in the establishment of psychedelic research programs. Psychopharmacology 2025, 242, 27–43. [Google Scholar] [CrossRef]

| Study | Population | Dose | Design | Follow Up | Outcomes | Adverse Effect |
|---|---|---|---|---|---|---|
| Griffiths [47] | Advanced cancer (n = 51) | 22 or 30 mg/70 kg psilocybin | RCT vs. placebo like (1 or 3 mg/70 kg) | 6 months | Sustained improvement in mood, quality of life, optimism. | Rare, generally well tolerated |
| Lyes [50] | Chronic pain patients (n = 3) | 250–1000 mushroom powder | Observational | Over 6 months in 1 case | Reported analgesic effect with improved function | None reported |
| Schindler [51] | Adults with migraine (n = 10) | 0.143 mg/kg | RCT crossover vs. placebo | 2 weeks | Reduction in weekly migraine days | None reported |
| Schindler [52] | Cluster headache (n = 14) | 0.143 mg/kg, 3 doses once every 5 days | RCT vs. placebo | 8 weeks | No statistical difference in frequency, duration, or intensity of attacks | None reported |
| Schindler [53] | Cluster headache (continuation of [51]) (n = 10) | 0.143 mg/kg, 3 doses once every 5 days, second cycle after at least 6 months | Observational | 8 weeks | Significant reduction in cluster attack frequency | None reported |
| Rucker [54] | SUNHA (n = 4) | 5 mg on day 1, 7.5 mg on day 6, and 10 mg on day 11 | Observational | 39 days | Two participants had a >50% improvement in headache frequency | None reported |
| Aday [13] | Adults with fibromyalgia (n = 5) | 15 mg and 25 mg 2 weeks apart | Observational | 2.3 ± 1.3-point decrease in pain severity; 9.4 ± 4.2-point decrease in pain interference; 2 ± 2.8-point increase in chronic pain acceptance | Mild, transient psychological discomfort | |
| Jevotovsky [55] | Complex Regional Pain Syndrome (n = 1) | 2 g on day 1, 5.5 g on day 3, and 3.5 g on day 5; Psilocybe cubensis mushrooms | Case report | 9 months | From NRS 4 to NRS 0–1 | None reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natoli, S.; Cuomo, A.; Marchesini, M.; Luongo, L.; Lo Bianco, G.; Guardamagna, V.A.; Yamaguchi, S. Psilocybin and Chronic Pain: A New Perspective for Future Pain Therapists? Med. Sci. 2025, 13, 277. https://doi.org/10.3390/medsci13040277
Natoli S, Cuomo A, Marchesini M, Luongo L, Lo Bianco G, Guardamagna VA, Yamaguchi S. Psilocybin and Chronic Pain: A New Perspective for Future Pain Therapists? Medical Sciences. 2025; 13(4):277. https://doi.org/10.3390/medsci13040277
Chicago/Turabian StyleNatoli, Silvia, Arturo Cuomo, Maurizio Marchesini, Livio Luongo, Giuliano Lo Bianco, Vittorio Andrea Guardamagna, and Shigeki Yamaguchi. 2025. "Psilocybin and Chronic Pain: A New Perspective for Future Pain Therapists?" Medical Sciences 13, no. 4: 277. https://doi.org/10.3390/medsci13040277
APA StyleNatoli, S., Cuomo, A., Marchesini, M., Luongo, L., Lo Bianco, G., Guardamagna, V. A., & Yamaguchi, S. (2025). Psilocybin and Chronic Pain: A New Perspective for Future Pain Therapists? Medical Sciences, 13(4), 277. https://doi.org/10.3390/medsci13040277

