Pulmonary Function Among COVID-19 Patients in Home Isolation Program
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Procedures
2.3. Pulmonary Function Outcomes
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Pulmonary Function Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARDS | Acute respiratory distress syndrome; |
BDR | Bronchodilator responsiveness; |
COPD | Chronic obstructive pulmonary disease; |
COVID-19 | Coronavirus disease 2019; |
DLCO | Diffusing capacity of the lungs for carbon monoxide; |
FEF25–75 | Forced expiratory flow at 25–75% of FVC; |
FEV1 | Forced expiratory volume in 1 s; |
FVC | Forced vital capacity; |
L | Liters; |
LLN | Lower limit of normal; |
L/s | Liters per second; |
PEF | Peak expiratory flow. |
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard: Situation by Region, Country, Territory & Area. Available online: https://covid19.who.int/table (accessed on 1 April 2024).
- Department of Medical Services Ministry of Public Health. Guidelines for Heath Personnel for the Management of COVID-19 with Home Isolation. Available online: https://covid19dashboard.mohfw.gov.in/pdf/RevisedIllustratedGuidelinesforHomeIsolationofMildAsymptomaticCOVID19Cases.pdf (accessed on 1 April 2024).
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar]
- Romagnoli, S.; Peris, A.; De Gaudio, A.R.; Geppetti, P. SARS-CoV-2 and COVID-19: From the bench to the bedside. Physiol. Rev. 2020, 100, 1455–1466. [Google Scholar]
- Parasher, A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgrad. Med. J. 2021, 97, 312–320. [Google Scholar]
- Aguilar, R.B.; Hardigan, P.; Mayi, B.; Sider, D.; Piotrkowski, J.; Mehta, J.P.; Dev, J.; Seijo, Y.; Camargo, A.L.; Andux, L.; et al. Current understanding of COVID-19 clinical course and investigational treatments. Front. Med. 2020, 7, 555301. [Google Scholar]
- Chaudhary, S.; Natt, B.; Bime, C.; Knox, K.S.; Glassberg, M.K. Antifibrotics in COVID-19 Lung Disease: Let Us Stay Focused. Front. Med. 2020, 7, 539. [Google Scholar]
- Eksombatchai, D.; Wongsinin, T.; Phongnarudech, T.; Thammavaranucupt, K.; Amornputtisathaporn, N.; Sungkanuparph, S. Pulmonary function and six-minute-walk test in patients after recovery from COVID-19: A prospective cohort study. PLoS ONE 2021, 16, e0257040. [Google Scholar]
- Strumiliene, E.; Zeleckiene, I.; Bliudzius, R.; Samuilis, A.; Zvirblis, T.; Zablockiene, B.; Strumila, A.; Gruslys, V.; Malinauskiene, L.; Kasiulevicius, V.; et al. Follow-up analysis of pulmonary function, exercise capacity, radiological changes, and quality of life two months after recovery from SARS-CoV-2 pneumonia. Medicina 2021, 57, 568. [Google Scholar]
- Frija-Masson, J.; Debray, M.P.; Gilbert, M.; Lescure, F.X.; Travert, F.; Borie, R.; Khalil, A.; Crestani, B.; d’Ortho, M.P.; Bancal, C. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection. Eur. Respir. J. 2020, 56, 2001754. [Google Scholar]
- Huang, Y.; Tan, C.; Wu, J.; Chen, M.; Wang, Z.; Luo, L.; Zhou, X.; Liu, X.; Huang, X.; Yuan, S.; et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 2020, 21, 163. [Google Scholar]
- Ekbom, E.; Frithiof, R.; Emilsson, Ö.; Larson, I.M.; Lipcsey, M.; Rubertsson, S.; Wallin, E.; Janson, C.; Hultström, M.; Malinovschi, A. Impaired diffusing capacity for carbon monoxide is common in critically ill COVID-19 patients at four months post-discharge. Respir. Med. 2021, 182, 106394. [Google Scholar]
- Liang, L.; Yang, B.; Jiang, N.; Fu, W.; He, X.; Zhou, Y.; Ma, W.L.; Wang, X. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J. Korean Med. Sci. 2020, 35, e418. [Google Scholar] [PubMed]
- Iversen, K.K.; Ronit, A.; Ahlstrom, M.G.; Nordestgaard, B.G.; Afzal, S.; Benfield, T. Lung function trajectories in mild COVID-19 with 2-year follow-up. J. Infect. Dis. 2024, 229, 1750–1758. [Google Scholar] [PubMed]
- van Willigen, H.D.G.; Wynberg, E.; Verveen, A.; Dijkstra, M.; Verkaik, B.J.; Figaroa, O.J.A.; de Jong, M.C.; van der Veen, A.; Makowska, A.; Koedoot, N.; et al. One-fourth of COVID-19 patients have an impaired pulmonary function after 12 months of disease onset. PLoS ONE 2023, 18, e0290893. [Google Scholar]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020, 55, 2001217. [Google Scholar]
- Fortini, A.; Torrigiani, A.; Sbaragli, S.; Lo Forte, A.; Crociani, A.; Cecchini, P.; Innocenti Bruni, G.; Faraone, A. COVID-19: Persistence of symptoms and lung alterations after 3–6 months from hospital discharge. Infection 2021, 49, 1007–1015. [Google Scholar]
- Lerum, T.V.; Aalokken, T.M.; Bronstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar]
- Gonzalez, J.; Benitez, I.D.; Carmona, P.; Santisteve, S.; Monge, A.; Moncusi-Moix, A.; Gort-Paniello, C.; Pinilla, L.; Carratala, A.; Zuil, M.; et al. Pulmonary function and radiologic features in survivors of critical COVID-19: A 3-month prospective cohort. Chest 2021, 160, 187–198. [Google Scholar]
- Polese, J.; Sant’Ana, L.; Moulaz, I.R.; Lara, I.C.; Bernardi, J.M.; Lima, M.D.; Turini, E.A.S.; Silveira, G.C.; Duarte, S.; Mill, J.G. Pulmonary function evaluation after hospital discharge of patients with severe COVID-19. Clinics 2021, 76, e2848. [Google Scholar]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaro, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar]
- Ciprandi, G.; Capasso, M.; Tosca, M.; Salpietro, C.; Salpietro, A.; Marseglia, G.; La Rosa, M. A forced expiratory flow at 25–75% value <65% of predicted should be considered abnormal: A real-world, cross-sectional study. Allergy Asthma Proc. 2012, 33, e5–e8. [Google Scholar]
- Saiphoklang, N.; Ruchiwit, P.; Kanitsap, A.; Tantiyavarong, P.; Vatcharavongvan, P.; Palungrit, S.; Leelasittikul, K.; Pugongchai, A.; Poachanukoon, O. Prevalence of chronic obstructive pulmonary disease and asthma in the community of Pathumthani, Thailand. Diseases 2025, 13, 130. [Google Scholar] [CrossRef]
- Department of Disease Control Ministry of Public Health. Guidelines on Clinical Practice, Diagnosis, Treatment, and Prevention of Healthcare-Associated Infection for COVID-19. Available online: https://ddc.moph.go.th/viralpneumonia/eng/file/guidelines/g_CPG_22Mar22.pdf (accessed on 30 June 2025).
- He, Q.; Du, F.; Simonse, L.W.L. A patient journey map to improve the home isolation experience of persons with mild COVID-19: Design research for service touchpoints of artificial intelligence in eHealth. J. Med. Internet Res. Med. Inform. 2021, 9, e23238. [Google Scholar]
- Pisaturo, M.; De Angelis, G.; Maggi, P.; Sangiovanni, V.; Numis, F.G.; Gentile, I.; Masullo, A.; Rescigno, C.; Calabria, G.; Salomone Megna, A.; et al. Clinical features of patients with home isolation SARS-CoV-2 infection: A multicenter retrospective study in Southern Italy. Life 2021, 11, 347. [Google Scholar] [CrossRef]
- Ju, Y.; Chen, W.; Liu, J.; Yang, A.; Shu, K.; Zhou, Y.; Wang, M.; Huang, M.; Liao, M.; Liu, J.; et al. Effects of centralized isolation vs. home isolation on psychological distress in patients with COVID-19. J. Psychosom. Res. 2021, 143, 110365. [Google Scholar]
- Li, H.; Peng, Y.Y.; Lu, J.P. Investigation and analysis of 108 cases of home isolated patients with mild COVID-19. Disaster Med. Public Health Prep. 2021, 15, e8–e11. [Google Scholar]
- Komici, K.; Bianco, A.; Perrotta, F.; Dello Iacono, A.; Bencivenga, L.; D’Agnano, V.; Rocca, A.; Bianco, A.; Rengo, G.; Guerra, G. Clinical characteristics, exercise capacity and pulmonary function in post-COVID-19 competitive athletes. J. Clin. Med. 2021, 10, 3053. [Google Scholar]
- Lund Berven, L.; Selvakumar, J.; Havdal, L.; Stiansen-Sonerud, T.; Einvik, G.; Leegaard, T.M.; Tjade, T.; Michelsen, A.E.; Mollnes, T.E.; Wyller, V.B.B. Inflammatory markers, pulmonary function, and clinical symptoms in acute COVID-19 among non-hospitalized adolescents and young adults. Front. Immunol. 2022, 13, 837288. [Google Scholar]
- Suess, C.; Hausmann, R. Gross and histopathological pulmonary findings in a COVID-19 associated death during self-isolation. Int. J. Leg. Med. 2020, 134, 1285–1290. [Google Scholar]
- Ordinola Navarro, A.; Cervantes-Bojalil, J.; Cobos Quevedo, O.J.; Avila Martinez, A.; Hernandez-Jimenez, C.A.; Perez Alvarez, E.; Gonzalez Gil, A.; Peralta Amaro, A.L.; Vera-Lastra, O.; Lopez Luis, B.A. Decreased quality of life and spirometric alterations even after mild-moderate COVID-19. Respir. Med. 2021, 181, 106391. [Google Scholar] [PubMed]
- Cortes-Telles, A.; Lopez-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar]
- Chai, C.S.; Bin Ibrahim, M.A.; Binti Azhar, N.A.; Binti Roslan, Z.; Binti Harun, R.; Krishnabahawan, S.L.; Karthigayan, A.A.P.; Binti Abdul Kadir, R.F.; Binti Johari, B.; Ng, D.L.; et al. Post-discharge spirometry evaluation in patients recovering from moderate-to-critical COVID-19: A cross-sectional study. Sci. Rep. 2024, 14, 16413. [Google Scholar]
- Genzor, S.; Jakubec, P.; Sova, M.; Mizera, J.; Joppa, P.; Burget, R.; Pobeha, P. Clinical presentation and pulmonary function tests in post-acute COVID-19 patients. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2023, 167, 185–191. [Google Scholar]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J.C. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993, 6 (Suppl. 16), 5–40. [Google Scholar]
- Polverino, F.; Soriano, J.B. Small airways and early origins of COPD: Pathobiological and epidemiological considerations. Eur. Respir. J. 2020, 55, 1902457. [Google Scholar]
Characteristics | Total (n = 250) | Normal Lung Function (n = 179) | Abnormal Lung Function (n = 71) | p-Value |
---|---|---|---|---|
Age, years | 37.4 ± 15.2 | 36.0 ± 14.5 | 41.0 ± 16.6 | 0.031 |
Female | 146 (58.4) | 105 (58.7) | 41 (57.7) | 0.895 |
Male | 104 (41.6) | 74 (41.3) | 30 (42.3) | 0.895 |
Body mass index, kg/m2 | 23.8 ± 4.9 | 24.2 ± 4.8 | 22.8 ± 5.1 | 0.042 |
Smoking | 50 (20) | 33 (18.4) | 17 (23.9) | 0.165 |
Amount of smoking, pack-years | 6.4 ± 8.9 | 4.4 ± 6.5 | 10.3 ± 11.7 | 0.130 |
Preexisting comorbidities | ||||
Hypertension | 24 (9.6) | 11 (6.1) | 13 (18.3) | 0.003 |
Hyperlipidemia | 18 (7.2) | 8 (4.5) | 10 (14.1) | 0.008 |
Diabetes | 13 (5.2) | 5 (2.8) | 8 (11.3) | 0.011 |
Coronary heart disease | 2 (0.8) | 1 (0.6) | 1 (1.4) | 0.488 |
Cerebrovascular disease | 4 (1.6) | 2 (1.1) | 2 (2.8) | 0.320 |
Obesity | 2 (0.8) | 2 (1.1) | 0 (0) | 1.000 |
Allergic rhinitis | 44 (17.6) | 35 (19.6) | 9 (12.7) | 0.198 |
Asthma | 5 (2.0) | 2 (1.1) | 3 (4.2) | 0.140 |
COPD | 1 (0.4) | 0 (0) | 1 (1.4) | 1.000 |
Symptoms during COVID-19 | ||||
No symptom | 19 (7.6) | 14 (7.8) | 5 (7.0) | 0.834 |
Fever | 139 (55.6) | 100 (55.9) | 39 (54.9) | 0.893 |
Cough | 151 (60.4) | 117 (65.4) | 34 (47.9) | 0.011 |
Breathlessness | 79 (31.6) | 57 (31.8) | 22 (31.0) | 0.895 |
Muscle pain | 80 (32.0) | 61 (34.1) | 19 (26.8) | 0.263 |
Headache | 68 (27.2) | 52 (29.1) | 16 (22.5) | 0.297 |
Sore throat | 125 (50.0) | 99 (55.3) | 26 (36.6) | 0.008 |
Chest tightness | 13 (5.2) | 8 (4.5) | 5 (7.0) | 0.527 |
Diarrhea | 28 (11.2) | 23 (12.8) | 5 (7.0) | 0.189 |
Vomiting | 5 (2.0) | 4 (2.2) | 1 91.4) | 1.000 |
Nasal obstruction | 87 (34.8) | 63 (35.2) | 24 (33.8) | 0.835 |
Runny nose | 99 (36.6) | 76 (42.5) | 23 (32.4) | 0.142 |
Sneezing | 57 (22.8) | 48 (26.8) | 9 (12.7) | 0.016 |
Anosmia | 89 (35.6) | 61 (34.1) | 28 (39.4) | 0.425 |
Ageusia | 63 (25.2) | 48 (26.8) | 15 (21.1) | 0.350 |
Abnormality | Data (n = 250) |
---|---|
Restrictive defect | 36 (14.4) |
Airway obstruction | 13 (5.2) |
Mixed obstructive and restrictive defect | 1 (0.4) |
Small airway disease | 21 (8.4) |
Bronchodilator response | 7 (2.8) |
Parameters | Baseline (n = 250) | 3-Month Follow-Up (n = 200) | Mean Change (95% CI) | p-Value |
---|---|---|---|---|
FVC, L | 3.24 ± 0.84 | 3.24 ± 0.86 | −0.005 (−0.021, 0.031) | 0.717 |
FVC, %predicted | 94.19 ± 13.91 | 95.41 ± 14.81 | 1.217 (0.237, 2.197) | 0.015 |
FEV1, L | 2.73 ± 0.74 | 2.72 ± 0.77 | −0.009 (−0.032, 0.013) | 0.407 |
FEV1, % predicted | 94.16 ± 14.66 | 94.75 ± 14.99 | 0.593 (−0.320, 1.507) | 0.201 |
FEV1 change after BD test, % | 2.50 ± 3.44 | 2.44 ± 3.29 | −0.057 (−0.677, 0.563) | 0.856 |
FVC change after BD test, % | 0.28 ± 3.33 | −0.30 ± 3.24 | −0.580 (−1.253, 0.093) | 0.091 |
FEV1/FVC, % | 84.50 ± 8.23 | 84.26 ± 7.96 | −0.237 (−0.760, 0.285) | 0.370 |
FEV1/FVC, % predicted | 104.69 ± 9.27 | 103.18 ± 8.98 | −1.511 (−2.201, −0.821) | <0.001 |
PEF, L/s | 6.97 ± 1.90 | 7.17 ± 1.95 | 0.193 (0.064, 0.323) | 0.004 |
PEF, % predicted | 94.03 ± 17.38 | 96.39 ± 17.48 | 0.064 (0.642, 4.082) | 0.007 |
FEF25–75, L/s | 3.09 ± 1.28 | 3.01 ± 1.31 | −0.080 (−0.144, −0.016) | 0.015 |
FEF25–75, %predicted | 88.18 ± 25.83 | 85.42 ± 26.41 | −2.762 (−4.682, −0.843) | 0.005 |
Variables | Adjusted Odds Ratio (95%CI) | p-Value |
---|---|---|
Age for every 1-year increase | 0.999 (0.976–1.024) | 0.967 |
Body mass index for every 1-unit increase | 0.898 (0.836–0.965) | 0.004 |
Hypertension | 0.458 (0.136–1.539) | 0.207 |
Hyperlipidemia | 0.352 (0.099–1.248) | 0.106 |
Diabetes | 0.394 (0.088–1.766) | 0.224 |
Cough | 1.517 (0.787–2.923) | 0.213 |
Sore throat | 1.441 (0.723–2.874) | 0.299 |
Sneezing | 2.127 (0.905–5.000) | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiphoklang, N.; Ruchiwit, P.; Kanitsap, A.; Tantiyavarong, P.; Vatcharavongvan, P.; Palungrit, S.; Leelasittikul, K.; Pugongchai, A.; Poachanukoon, O. Pulmonary Function Among COVID-19 Patients in Home Isolation Program. Med. Sci. 2025, 13, 88. https://doi.org/10.3390/medsci13030088
Saiphoklang N, Ruchiwit P, Kanitsap A, Tantiyavarong P, Vatcharavongvan P, Palungrit S, Leelasittikul K, Pugongchai A, Poachanukoon O. Pulmonary Function Among COVID-19 Patients in Home Isolation Program. Medical Sciences. 2025; 13(3):88. https://doi.org/10.3390/medsci13030088
Chicago/Turabian StyleSaiphoklang, Narongkorn, Pitchayapa Ruchiwit, Apichart Kanitsap, Pichaya Tantiyavarong, Pasitpon Vatcharavongvan, Srimuang Palungrit, Kanyada Leelasittikul, Apiwat Pugongchai, and Orapan Poachanukoon. 2025. "Pulmonary Function Among COVID-19 Patients in Home Isolation Program" Medical Sciences 13, no. 3: 88. https://doi.org/10.3390/medsci13030088
APA StyleSaiphoklang, N., Ruchiwit, P., Kanitsap, A., Tantiyavarong, P., Vatcharavongvan, P., Palungrit, S., Leelasittikul, K., Pugongchai, A., & Poachanukoon, O. (2025). Pulmonary Function Among COVID-19 Patients in Home Isolation Program. Medical Sciences, 13(3), 88. https://doi.org/10.3390/medsci13030088