Vitamin D Deficiency and Risk of Surgical Site Infections: A Retrospective Chart Review from a Tertiary Care Center in Qatar
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Patients’ Selection
2.3. Study Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SSI | Surgical Site Infection |
HAIs | Hospital-acquired infections |
HMC | Hamad Medical Corporation |
References
- Thacher, T.D.; Clarke, B.L. Vitamin D insufficiency. Mayo Clin. Proc. 2011, 86, 50–60. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Islam, N.; Ganji, V.; Zughaier, S.M. Serum 25-Hydroxyvitamin D Is Inversely Associated with Monocyte Percentage to HDL Cholesterol Ratio among Young Healthy Adults in Qatar. Nutrients 2020, 13, 127. [Google Scholar] [CrossRef]
- Zainel, A.A.L.; Qotba, H.; Al Nuaimi, A.; Syed, M. Vitamin D status among adults (18–65 years old) attending primary healthcare centres in Qatar: A cross-sectional analysis of the Electronic Medical Records for the year 2017. BMJ Open 2019, 9, e029334. [Google Scholar] [CrossRef]
- Boccia, M.; Ploβ, K.; Kunert, M.; Keshan, R.; Hatam, M.; Grabe, V.; O’Connor, S.E.; Sonawane, P.D. Metabolic engineering of vitamin D(3) in Solanaceae plants. Plant Biotechnol. J. 2024, 22, 3389–3391. [Google Scholar] [CrossRef]
- Gombart, A.F. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009, 4, 1151–1165. [Google Scholar] [CrossRef]
- Wei, R.; Christakos, S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients 2015, 7, 8251–8260. [Google Scholar] [CrossRef]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef] [PubMed]
- Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef]
- Laviano, E.; Sanchez Rubio, M.; González-Nicolás, M.T.; Palacian, M.P.; López, J.; Gilaberte, Y.; Calmarza, P.; Rezusta, A.; Serrablo, A. Association between preoperative levels of 25-hydroxyvitamin D and hospital-acquired infections after hepatobiliary surgery: A prospective study in a third-level hospital. PLoS ONE 2020, 15, e0230336. [Google Scholar] [CrossRef]
- Alkaaki, A.; Al-Radi, O.O.; Khoja, A.; Alnawawi, A.; Alnawawi, A.; Maghrabi, A.; Altaf, A.; Aljiffry, M. Surgical site infection following abdominal surgery: A prospective cohort study. Can. J. Surg. 2019, 62, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, D.A.; Alemu, A.; Abdukadir, A.A.; Mohammed Husen, A.; Ahmed, F.; Mohammed, B.; Musa, I. Global Incidence of Surgical Site Infection Among Patients: Systematic Review and Meta-Analysis. Inquiry 2023, 60, 469580231162549. [Google Scholar] [CrossRef]
- Guanche Garcell, H.; Al-Ajmi, J.; Villanueva Arias, A.; Abraham, J.C.; Fernandez Hernandez, T.M. Incidence of surgical site infection among appendectomy, herniorrhaphy and caesarean section patients in Qatar. East. Mediterr. Health J. 2025, 31, 37–44. [Google Scholar] [CrossRef]
- Mujagic, E.; Marti, W.R.; Coslovsky, M.; Soysal, S.D.; Mechera, R.; von Strauss, M.; Zeindler, J.; Saxer, F.; Mueller, A.; Fux, C.A.; et al. Associations of Hospital Length of Stay with Surgical Site Infections. World J. Surg. 2018, 42, 3888–3896. [Google Scholar] [CrossRef]
- Anderson, D.J.; Podgorny, K.; Berríos-Torres, S.I.; Bratzler, D.W.; Dellinger, E.P.; Greene, L.; Nyquist, A.C.; Saiman, L.; Yokoe, D.S.; Maragakis, L.L.; et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 2014, 35, 605–627. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.A.; Ranasinghe, T.; Grant, W.B.; Peiris, A.N. Vitamin D’s potential to reduce the risk of hospital-acquired infections. Derm.-Endocrinol. 2012, 4, 167–175. [Google Scholar] [CrossRef]
- Farsakoury, R.; Farooqui, H.H.; Khan, M.N.; Zughaier, S.M. Vitamin D Deficiency and Risk of Surgical Site Infections: A Systematic Review and Meta-analysis. Surg. Infect. 2025; accepted. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Ministry of Public Health Qatar. National Clinical Guideline: The Prevention and Management of Orofacial Injuries in Professional Sports. Available online: https://www.moph.gov.qa/english/OurServices/eservices/Pages/Clinical-Guidelines.aspx#T (accessed on 1 February 2024).
- Ramasamy, I. Vitamin D Metabolism and Guidelines for Vitamin D Supplementation. Clin. Biochem. Rev. 2020, 41, 103–126. [Google Scholar] [CrossRef]
- StataCorp, L. Stata Statistical Software, Release 18 (2023); StataCorp LLC: College Station, TX, USA, 2023. [Google Scholar]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2017, 45, 1887–1894. [Google Scholar] [CrossRef]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, S.A.; Bittner, E.A.; Blum, L.; Hutter, M.M.; Camargo, C.A., Jr. Association between preoperative 25-hydroxyvitamin D level and hospital-acquired infections following Roux-en-Y gastric bypass surgery. JAMA Surg. 2014, 149, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Kuhn, J.; Ernst, J.B.; Becker, T.; Larisch, J.; Dreier, J.; Knabbe, C.; Börgermann, J.; Gummert, J.F. Circulating 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Concentrations and Postoperative Infections in Cardiac Surgical Patients: The CALCITOP-Study. PLoS ONE 2016, 11, e0158532. [Google Scholar] [CrossRef] [PubMed]
- Hegde, V.; Arshi, A.; Wang, C.; Buser, Z.; Wang, J.C.; Jensen, A.R.; Adams, J.S.; Zeegen, E.N.; Bernthal, N.M. Preoperative Vitamin D Deficiency Is Associated With Higher Postoperative Complication Rates in Total Knee Arthroplasty. Orthopedics 2018, 41, e489–e495. [Google Scholar] [CrossRef]
- Laviano, E.; Sanchez, M.; González-Nicolás, M.T.; Palacian, M.P.; López, J.; Gilaberte, Y.; Calmarza, P.; Rezusta, A.; Serrablo, A. Surgical site infection in hepatobiliary surgery patients and its relationship with serum vitamin D concentration. Cir. Esp. (Engl. Ed.) 2020, 98, 456–464. [Google Scholar] [CrossRef]
- Abdehgah, A.G.; Monshizadeh, A.; Tehrani, M.M.; Afhami, S.; Molavi, B.; Jafari, M.; Nasiri, S.; Soroush, A. Relationship Between Preoperative 25-Hydroxy Vitamin D and Surgical Site Infection. J. Surg. Res. 2020, 245, 338–343. [Google Scholar] [CrossRef]
- Sadeghian, E.; Notash, A.Y.; Eslamian, R.; Ghorbani Abdehgah, A.; Mohajeri Tehrani, M. The Effect of Preoperative 25-Hydroxy Vitamin D Supplement and Surgical Site Infection. Acta Med. Iran. 2023, 61, 36–42. [Google Scholar] [CrossRef]
- Mahfouz, M.E.M.; Althobaiti, H.S.; Alqthami, A.F.; Alamri, K.A.; Mahfouz, Y.S.; Elashkar, M.M.; Althomali, M.M.; Mahfouz, S.A.M. Prevalence of Surgical Site Infection (SSI) and Its Association With Vitamin D Deficiency. Cureus 2024, 16, e52015. [Google Scholar] [CrossRef]
- Ametejani, M.; Masoudi, N.; Homapour, F.; Rezaei, S.; Moosavi, S.A.; Kafili, E.; Heidarlou, A.J. Association between Pre-Operative 25-Hydroxy Vitamin D Deficiency and Surgical Site Infection after Right Hemicolectomy Surgery. Surg. Infect. 2022, 23, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Moromizato, T.; Litonjua, A.A.; Braun, A.B.; Gibbons, F.K.; Giovannucci, E.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit. Care Med. 2014, 42, 97–107. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, B.P.; Soleas, I.M.; Ferko, N.C.; Cameron, C.G.; Hinoul, P. Prolonged Operative Duration Increases Risk of Surgical Site Infections: A Systematic Review. Surg. Infect. 2017, 18, 722–735. [Google Scholar] [CrossRef]
- Leong, G.; Wilson, J.; Charlett, A. Duration of operation as a risk factor for surgical site infection: Comparison of English and US data. J. Hosp. Infect. 2006, 63, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ortega, G.; Rhee, D.S.; Papandria, D.J.; Yang, J.; Ibrahim, A.M.; Shore, A.D.; Makary, M.A.; Abdullah, F. An evaluation of surgical site infections by wound classification system using the ACS-NSQIP. J. Surg. Res. 2012, 174, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, E.M.; Bacelar, T.S.; Aguiar, J.L.; Ferraz, A.A.; Pagnossin, G.; Batista, J.E. Wound infection rates in clean surgery: A potentially misleading risk classification. Infect. Control Hosp. Epidemiol. 1992, 13, 457–462. [Google Scholar] [CrossRef]
- Eisenberg, D. Surgical site infections: Time to modify the wound classification system? J. Surg. Res. 2012, 175, 54–55. [Google Scholar] [CrossRef]
- Onyekwelu, I.; Yakkanti, R.; Protzer, L.; Pinkston, C.M.; Tucker, C.; Seligson, D. Surgical Wound Classification and Surgical Site Infections in the Orthopaedic Patient. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2017, 1, e022. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, L.; Li, M.; Quan, Z.; Wang, Y.; Luo, H.; Liu, J.; Wang, J. Effect of Pre-Operative Low Serum Pre-Albumin on Surgical Site Infection in Post-Surgery Subjects: A Systematic Review and Meta-Analysis. Surg. Infect. 2023, 24, 684–691. [Google Scholar] [CrossRef]
- Sigurdardottir, M.; Sigurdsson, M.I.; Olafsson, Y.; Sverrisdottir, S.H.; Gunnarsdottir, I.; Sigurdsson, E.L.; Karason, S. Prevalence of modifiable risk factors in primary elective arthroplasty and their association with infections. Acta Orthop. 2023, 94, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sulovari, A.; Joo, P.; Thirukumaran, C.; Benn, L.; Mesfin, A. Relationship between 25-hydroxy Vitamin D level and surgical site infection in spine surgery. Surg. Neurol. Int. 2024, 15, 173. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Number Patients N = 24,097 | p-Value | |||
---|---|---|---|---|---|
Deficient | Insufficient | Sufficient | |||
N (%) | 3818 (15.8%) | 6736 (28.0%) | 13,543 (56.2%) | ||
Gender, n (%) | Female | 2098 (55.0%) | 3624 (53.8%) | 7997 (59.0%) | <0.01 |
Male | 1720 (45.0%) | 3112 (46.2%) | 5546 (41.0%) | ||
Age(years), mean ± SD | 38 ± 13 | 42 ± 14 | 49 ± 15 | <0.01 | |
Nationality | Non-Qatari | 2345 (61.4%) | 4547 (67.5%) | 8143 (60.1%) | <0.01 |
Qatari | 1473 (38.6%) | 2189 (32.5%) | 5400 (39.9%) | ||
Smoking status, n (%) | No | 3100 (81.2%) | 5465 (81.1%) | 11,427 (84.4%) | <0.01 |
Yes | 718 (18.8%) | 1271 (18.9%) | 2116 (15.6%) | ||
BMI, mean ± SD | 31 ± 8 | 30 ± 7 | 30 ± 7 | <0.01 | |
Comorbidities | |||||
Diabetes, n (%) | No | 3631 (95.1%) | 6422 (95.3%) | 12,589 (93.0%) | <0.01 |
Yes | 187 (4.9%) | 314 (4.7%) | 954 (7.0%) | ||
Hypertension, n (%) | No | 3692 (96.7%) | 6433 (95.5%) | 12,699 (93.8%) | <0.01 |
Yes | 126 (3.3%) | 303 (4.5%) | 844 (6.2%) | ||
Dyslipidemia, n (%) | No | 3754 (98.3%) | 6552 (97.3%) | 12,860 (95.0%) | <0.01 |
Yes | 64 (1.7%) | 184 (2.7%) | 683 (5.0%) | ||
ASA Classification, n (%) | 0 (0.0%) | 2 (<1%) | 6 (<1%) | <0.01 | |
1 | 872 (22.8%) | 1617 (24.0%) | 3352 (24.8%) | ||
2 | 2178 (57.0%) | 3936 (58.4%) | 7323 (54.1%) | ||
3 | 686 (18.0%) | 1043 (15.5%) | 2613 (19.3%) | ||
4 | 80 (2.1%) | 138 (2.0%) | 237 (1.7%) | ||
5 | 2 (0.1%) | 0 (0.0%) | 12 (0.1%) | ||
Preoperative Labs | |||||
WBC, mean ± SD | 10 ± 4 | 10 ± 3 | 10 ± 4 | <0.01 | |
Neutrophils, mean ± SD | 7.3 ± 3.5 | 7.2 ± 3.4 | 6.9 ± 3.3 | <0.01 | |
Hemoglobin, mean ± SD | 11.4 ± 2.1 | 11.4 ± 2.0 | 11.4 ± 1.9 | 0.46 | |
CRP, mean ± SD | 16 ± 39 | 7.6 ± 26 | 11 ± 32 | 0.21 | |
ALT, mean ± SD | 33 ± 48 | 35 ± 107 | 34 ± 94 | 0.86 | |
AST, mean ± SD | 33 ± 134 | 32 ± 146 | 32 ± 135 | 0.99 | |
Albumin, mean ± SD | 32 ± 7 | 32 ± 6 | 31 ± 6 | <0.01 | |
Creatinine, mean ± SD | 91 ± 118 | 95 ± 124 | 113 ± 157 | <0.01 | |
Calcium, mean ± SD | 2.21 ± 0.15 | 2.22 ± 0.14 | 2.21 ± 0.15 | 0.13 |
Variable | SSI | p-Value | ||
---|---|---|---|---|
Negative | Positive | |||
N (%) | 23,614 (98%) | 483 (2%) | ||
25(OH)D (ng/mL), mean ± SD | 25 ± 13 | 23 ± 13 | <0.01 | |
Admission type | Elective | 18,280 (77.4%) | 202 (41.8%) | <0.01 |
Emergency | 5334 (22.6%) | 281 (58.2%) | ||
Wound class | Clean | 12,534 (53.1%) | 212 (43.9%) | <0.01 |
Clean-Contaminated | 9805 (41.5%) | 174 (36.0%) | ||
Contaminated | 506 (2.1%) | 39 (8.1%) | ||
Dirty-Infected | 769 (3.3%) | 58 (12.0%) | ||
LOS (days), mean ± SD | 2.8 ± 6.4 | 25 ± 34 | <0.01 | |
ICU | No | 22,363 (94.7%) | 314 (65.0%) | <0.01 |
Yes | 1251 (5.3%) | 169 (35.0%) | ||
ICU LOS (days), mean ± SD | 4.2 ± 5.9 | 16.6 ± 20.5 | <0.01 | |
Case level | Minor | 7351 (31.1%) | 178 (36.9%) | 0.02 |
Intermediate | 2491 (10.5%) | 53 (11.0%) | ||
Major | 13,772 (58.3%) | 252 (52.2%) | ||
Preoperative antibiotics | No | 21,644 (91.7%) | 382 (79.1%) | <0.01 |
Yes | 1970 (8.3%) | 101 (20.9%) | ||
Operative time (hours), mean ± SD | 1.2 ± 3.0 | 1.7 ± 1.6 | <0.01 | |
Type of surgery | Cardiothoracic Surgery | 265 (1.1%) | 21 (4.3%) | <0.01 |
ENT | 1090 (4.6%) | 8 (1.7%) | ||
General Surgery | 6506 (27.6%) | 212 (43.9%) | ||
Gynecology | 1524 (6.5%) | 25 (5.2%) | ||
Neurosurgery | 391 (1.7%) | 41 (8.5%) | ||
Obstetrics | 2481 (10.5%) | 13 (2.7%) | ||
Ophthalmology | 2514 (10.6%) | 1 (0.2%) | ||
Oral and Maxillofacial Surgery | 221 (0.9%) | 5 (1.0%) | ||
Orthopedic Surgery | 2183 (9.2%) | 60 (12.4%) | ||
Plastic and Reconstructive Surgery | 2035 (8.6%) | 67 (13.9%) | ||
Urology | 3213 (13.6%) | 11 (2.3%) | ||
Vascular Surgery | 1191 (5.0%) | 19 (3.9%) |
Surgical Site Infections | Adjusted Odds Ratio * | 95% Confidence Interval | p-Value |
---|---|---|---|
25(OH)D Status: | |||
Sufficient | Reference value | - | - |
Insufficient | 1.09 | 0.83–1.43 | 0.52 |
Deficient | 1.39 | 1.04–1.86 | 0.02 |
Surgical Site Infections | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
25(OH)D Status: | |||
Sufficient | Reference value | - | - |
Insufficient | 1.09 | 0.83–1.43 | 0.52 |
Deficient | 1.39 | 1.04–1.86 | 0.02 |
Age: | |||
1.01 | 1.00–1.02 | 0.03 | |
BMI: | |||
0.99 | 0.98–1.01 | 0.82 | |
Gender: | |||
Female | Reference value | - | - |
Male | 1.47 | 1.15–1.88 | <0.05 |
Diabetes: | |||
No Diabetes | Reference value | - | - |
Has Diabetes | 1.34 | 0.81–2.20 | 0.24 |
Hypertension: | |||
No Hypertension | Reference value | - | - |
Has Hypertension | 1.31 | 0.78–2.20 | 0.30 |
Case Level: | |||
Minor | Reference value | - | - |
Intermediate | 0.65 | 0.43–0.99 | 0.04 |
Major | 0.58 | 0.43–0.77 | <0.05 |
Operative Time (Hours): | |||
1.21 | 1.12–1.31 | <0.05 | |
Pre-Operation Serum Albumin (gm/L): | |||
0.91 | 0.89–0.92 | <0.05 | |
Wound Class: | |||
Clean | Reference value | - | - |
Clean-Contaminated | 0.95 | 0.73–1.25 | 0.75 |
Contaminated | 3.42 | 2.14–5.45 | <0.05 |
Dirty-Infected | 1.99 | 1.34–2.97 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farsakoury, R.; Hamdan, A.; Khan, M.N.; Farooqui, H.H.; Al Harami, S.; Zughaier, S.M. Vitamin D Deficiency and Risk of Surgical Site Infections: A Retrospective Chart Review from a Tertiary Care Center in Qatar. Med. Sci. 2025, 13, 163. https://doi.org/10.3390/medsci13030163
Farsakoury R, Hamdan A, Khan MN, Farooqui HH, Al Harami S, Zughaier SM. Vitamin D Deficiency and Risk of Surgical Site Infections: A Retrospective Chart Review from a Tertiary Care Center in Qatar. Medical Sciences. 2025; 13(3):163. https://doi.org/10.3390/medsci13030163
Chicago/Turabian StyleFarsakoury, Rana, Ahmad Hamdan, Muhammad Naseem Khan, Habib H. Farooqui, Sara Al Harami, and Susu M. Zughaier. 2025. "Vitamin D Deficiency and Risk of Surgical Site Infections: A Retrospective Chart Review from a Tertiary Care Center in Qatar" Medical Sciences 13, no. 3: 163. https://doi.org/10.3390/medsci13030163
APA StyleFarsakoury, R., Hamdan, A., Khan, M. N., Farooqui, H. H., Al Harami, S., & Zughaier, S. M. (2025). Vitamin D Deficiency and Risk of Surgical Site Infections: A Retrospective Chart Review from a Tertiary Care Center in Qatar. Medical Sciences, 13(3), 163. https://doi.org/10.3390/medsci13030163