Evaluation of Cardiac Autonomic Function in Patients Undergoing Thoracoscopic Sympathetic Chain Clamping for Primary Focal Hyperhidrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Procedures
2.3.1. ECG and HRV Recording
Thoracoscopic Sympathetic Chain Clamping
Satisfaction Questionnaire
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Compensatory Hyperhidrosis (CH)
3.3. Other Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Converse, C.; Lyons, M.C.; Hsu, W.H. Neural control of sweat secretion: A review. Br. J. Dermatol. 2018, 178, 1246–1256. [Google Scholar] [CrossRef]
- Brandenburger, M.; Kruse, C. Heterogeneity of Sweat Gland Stem Cells. In Stem Cells Heterogeneity in Different Organs; Springer International Publishing: Cham, Switzerland, 2019; pp. 55–62. [Google Scholar]
- Wohlrab, J.; Bechara, F.G.; Schick, C.; Naumann, M. Hyperhidrosis: A Central Nervous Dysfunction of Sweat Secretion. Dermatol. Ther. 2023, 13, 453–463. [Google Scholar] [CrossRef]
- Nawrocki, S.; Cha, J. The etiology, diagnosis, and management of hyperhidrosis: A comprehensive review. J. Am. Acad. Dermatol. 2019, 81, 669–680. [Google Scholar] [CrossRef]
- Oshima, Y.; Fujimoto, T.; Nomoto, M.; Fukui, J.; Ikoma, A. Hyperhidrosis: A targeted literature review of the disease burden. J. Dermatol. 2023, 50, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Solish, N.; Murray, C.A. Primary focal hyperhidrosis: Diagnosis and management. Dermatol. Nurs. 2008, 20, 467–470. [Google Scholar] [PubMed]
- Sato, K.; Kang, W.H.; Saga, K.; Sato, K.T. Biology of sweat glands and their disorders. II. Disorders of sweat gland function. J. Am. Acad. Dermatol. 1989, 20, 713–726. [Google Scholar] [CrossRef] [PubMed]
- McConaghy, J.R.; Fosselman, D. Hyperhidrosis: Management Options. Am. Fam. Physician 2018, 97, 729–734. [Google Scholar]
- Sciuchetti, J.F.; Ballabio, D.; Corti, F.; Benenti, C.; Romano, F.; Costa Angeli, M. Thoracic sympathetic block by clamping in the treatment of primary hyperhidrosis: Indications and results in 281 patients. Minerva Chir. 2006, 61, 473–481. [Google Scholar]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, 74–83. [Google Scholar] [CrossRef]
- Berntson, G.G.; Thomas Bigger, J.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Philip Saul, J.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart Rate Monitoring. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Birner, P.; Heinzl, H.; Schindl, M.; Pumprla, J.; Schnider, P. Cardiac Autonomic Function in Patients Suffering from Primary Focal Hyperhidrosis. Eur. Neurol. 2000, 44, 112–116. [Google Scholar] [CrossRef]
- Niwa, A.S.M.; Gregório, M.L.; Leão, L.E.V.; de Godoy, M.F. Heart Rate Variability Assessment and Its Application for Autonomic Function Evaluation in Patients with Hyperhidrosis. Eur. Neurol. 2020, 83, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.C.; Kim, J.J.; Kim, Y.H.; Kim, I.S.; Han, J.W.; Moon, S.W. Heart rate variability as a potential diagnostic tool to predict compensatory hyperhidrosis after sympathectomy in patients with primary focal hyperhidrosis. J. Thorac. Dis. 2020, 12, 6789–6796. [Google Scholar] [CrossRef] [PubMed]
- Hyun, K.Y.; Kim, J.J.; Im, K.S.; Lee, B.S.; Kim, Y.J. Machine learning analysis of primary hyperhidrosis for classification of hyperhidrosis type and prediction of compensatory hyperhidrosis. J. Thorac. Dis. 2023, 15, 4808–4817. [Google Scholar] [CrossRef]
- Martinez-Barenys, C.; Pérez, J.; López De Castro, P.; Melero, A.; Mesa, M.; García, S.; Fernández, E.; Astudillo, J. Experiencia inicial de un programa de clipaje del sistema nervioso simpático para el tratamiento de la hiperhidrosis y el rubor facial. Cirugía Española 2013, 91, 115–120. [Google Scholar] [CrossRef]
- Sletten, D.M.; Suarez, G.A.; Low, P.A.; Mandrekar, J.; Singer, W. COMPASS 31: A Refined and Abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012, 87, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T. Pathophysiology and Treatment of Hyperhidrosis. Curr. Probl. Dermatol. 2016, 51, 86–93. [Google Scholar]
- Liu, Y.; Bahar, R.; Kalia, S.; Huang, R.Y.; Phillips, A.; Su, M.; Yang, S.; Zhang, X.; Zhou, P.; Zhou, Y. Hyperhidrosis Prevalence and Demographical Characteristics in Dermatology Outpatients in Shanghai and Vancouver. PLoS ONE 2016, 11, e0153719. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Yasuma, F.; Hayano, J.I. Respiratory Sinus Arrhythmia. Chest 2004, 125, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Montano, N.; Porta, A.; Malliani, A.; Abboud, F.M.; Birkett, C.; Somers, V.K. Relationship Between Spectral Components of Cardiovascular Variabilities and Direct Measures of Muscle Sympathetic Nerve Activity in Humans. Circulation 1997, 95, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.; Karaca, S.; Barutcu, I.; Esen, A.M.; Kulac, M.; Esen, O. Heart Rate Variability in Patients with Essential Hyperhidrosis: Dynamic Influence of Sympathetic and Parasympathetic Maneuvers. Ann. Noninvasive Electrocardiol. 2005, 10, 1–6. [Google Scholar] [CrossRef]
- Pumprla, J.; Howorka, K.; Groves, D.; Chester, M.; Nolan, J. Functional assessment of heart rate variability: Physiological basis and practical applications. Int. J. Cardiol. 2002, 84, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Kang, D.Y.; Lee, H.S.; Lee, J.W.; Lee, Y.J.; Lee, S. To avoid compensatory hyperhidrosis after sympathetic surgery for craniofacial hyperhidrosis. J. Thorac. Dis. 2020, 12, 2529–2535. [Google Scholar] [CrossRef]
- Ruan, G.J.; Thuppal, S.; Sawyer, J.D.; Seadler, B.; Markwell, S.; Hazelrigg, S.R. Compensatory Hyperhidrosis and Quality of Life Post Sympathectomy for Palmar Hyperhidrosis. Am. Surg. 2019, 85, 438–440. [Google Scholar] [CrossRef]
- Hajjar, W.; Al-Nassar, S.; Al-Sharif, H.; Al-Olayet, D.; Al-Otiebi, W.; Al-Huqayl, A.; Hajjar, A.W. The quality of life and satisfaction rate of patients with upper limb hyperhidrosis before and after bilateral endoscopic thoracic sympathectomy. Saudi J. Anaesth. 2019, 13, 16–22. [Google Scholar] [CrossRef]
- Hynes, C.F.; Marshall, M.B. Reversibility of Sympathectomy for Primary Hyperhidrosis. Thorac. Surg. Clin. 2016, 26, 421–426. [Google Scholar] [CrossRef]
- Hobart, J.; Burke, L.; Kirsch, B.; Chadha, D. Hyperhidrosis Disease Severity Measure-Axillary (HDSM-Ax): Evaluation of Measurement Performance. J. Drugs Dermatol. 2021, 20, 410–418. [Google Scholar] [CrossRef] [PubMed]
- de Campos, J.R.M.; da Fonseca, H.V.S.; Wolosker, N. Quality of Life Changes Following Surgery for Hyperhidrosis. Thorac. Surg. Clin. 2016, 26, 435–443. [Google Scholar] [CrossRef]
- Estrella-Gaibor, C.; Rivero, Y.; Jaramillo-Montaño, F.; Veitia, L.; Cordova Guilarte, J.; Garcia, A. Enhancing Quality of Life: Pre- and Postoperative Assessment in Idiopathic Hyperhidrosis Patients. Cureus 2023, 15, e49588. [Google Scholar] [CrossRef]
- Zhu, L.H.; Du, Q.; Chen, L.; Yang, S.; Tu, Y.; Chen, S.; Chen, W. One-year follow-up period after transumbilical thoracic sympathectomy for hyperhidrosis: Outcomes and consequences. J. Thorac. Cardiovasc. Surg. 2014, 147, 25–29. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Z.Q.D.; Li, H. Quality of life after thoracic sympathectomy for palmar hyperhidrosis: A meta-analysis. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 746–753. [Google Scholar] [CrossRef]
- Yamamoto, H.; Okada, M. The management of compensatory sweating after thoracic sympathectomy. J. Thorac. Cardiovasc. Surg. 2019, 158, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, A.; Messina, G.; Chiodini, P.; Costanzo, S.; Viggiano, A.; Monda, M.; Vicidomini, G.; Santini, M. Cardiac Autonomic Changes After Thoracic Sympathectomy: A Prospective, Randomized Study. Ann. Thorac. Surg. 2017, 103, 216–224. [Google Scholar] [CrossRef] [PubMed]
Domain | Parameter | Units | Description |
---|---|---|---|
Time-domain | Mean RR | ms | Average interval between consecutive heartbeats (RR intervals) |
SDNN | ms | Standard deviation of RR intervals–reflects overall HRV | |
RMSSD | ms | Root mean square of successive RR interval differences–parasympathetic marker | |
pNN50 | % | Percentage of successive RR intervals differing by >50 ms | |
Mean HR | bpm | Average heart rate over the recording period | |
Frequency-domain | VLF (Very Low Frequency) | ms2 or nu (normalized units) | Power in the 0.003–0.04 Hz band–physiological interpretation still debated |
LF (Low Frequency) | ms² or nu | Power in the 0.04–0.15 Hz band–reflects both sympathetic and parasympathetic activity | |
HF (High Frequency) | ms2 or nu | Power in the 0.15–0.4 Hz band–represents parasympathetic (vagal) activity | |
LF/HF ratio | - | Ratio of LF to HF power–used as an index of sympathovagal balance | |
Nonlinear | SD1 (Poincaré) | ms | Short-term variability–vagal modulation |
SD2 (Poincaré) | ms | Long-term variability–associated with sympathetic activity | |
Baevsky’s Stress Index | - | Index derived from histogram of RR intervals–reflects sympathetic dominance | |
PSN Index | - | Parasympathetic nervous system index–derived from Mean RR, RMSSD, and SD1 | |
SNS Index | - | Sympathetic nervous system index–derived from Mean HR, Baevsky’s Index, and SD2 |
PFHH | Control | p-Value | |
---|---|---|---|
N | 111 | 222 | |
Age (years) | 30.4 ± 10.35 | 31.97 ± 11.87 | 0.17 |
BMI (Kg/m2) | 23.24 ± 3.27 | 22.82 ± 3.71 | 0.30 |
MEAN HR (bpm) | 78.25 ± 13.41 | 77.04 ± 12.37 | 0.43 |
MIN HR (bpm) | 68.78 ± 11.8 | 67.50 ± 11.01 | 0.35 |
MAX HR (bpm) | 90.91 ± 15.94 | 90.45 ± 14.26 | 0.8 |
PR (ms) | 151.36 ± 19.01 | 155.74 ± 20.68 | 0.06 |
QRS (ms) | 94.75 ± 10.43 | 85.42 ± 9.29 | >0.01 |
QTc (ms) | 398.71 ± 17.98 | 403.77 ± 28.99 | 0.05 |
PFHH | Control | p-Value | |
---|---|---|---|
Time-Domain HRV Analysis Methods | |||
MEAN RR (ms) | 787.6 ± 129.03 | 799.1 ± 130.85 | 0.45 |
SDNN (ms) | 44.9 ± 23.27 | 46.9 ± 23.85 | 0.46 |
RMSSD (ms) | 43.8 ± 30.55 | 43.54 ± 29.91 | 0.93 |
NN50 (beats) | 43 ± 44.1 | 52.9 ± 47.09 | 0.06 |
pNN50 (%) | 20.54 ± 20.03 | 20.65 ± 18.91 | 0.95 |
Autonomic function indexes | |||
PNS | −0.55 ± 1.34 | −0.52 ± 1.33 | 0.84 |
SNS | 1.33 ± 1.86 | 1.18 ± 1.71 | 0.48 |
Frequency-domain HRV analysis methods | |||
Peak VLF (Hz) | 0.034 ± 0.005 | 0.035 ± 0.016 | 0.57 |
Peak LF (Hz) | 0.09 ± 0.03 | 0.086 ± 0.028 | 0.31 |
Peak HF (Hz) | 0.23 ± 0.072 | 0.22 ± 0.077 | 0.49 |
VLF Power (ms2) | 82.8 ± 76.37 | 133.12 ± 123.31 | 0.006 |
LF Power (ms2) | 1147.5 ± 1230.25 | 1457.3 ± 1433.63 | 0.04 |
HF Power (ms2) | 1099 ± 1804.57 | 986 ± 1238.84 | 0.57 |
Total Power (ms2) | 2330 ± 28.36 | 2552 ± 2690.51 | 0.5 |
LF/HF | 2.54 ± 2.74 | 3.11 ± 2.89 | 0.08 |
Before Surgery | After Surgery | p-Value | |
---|---|---|---|
N | 111 | 111 | |
MEAN HR (bpm) | 70.5 ± 10.19 | 78.1 ± 12.39 | 0.04 |
MIN HR (bpm) | 62.3 ± 8.9 | 68.3 ± 11.42 | 0.06 |
MAX HR (bpm) | 84 ± 14.21 | 92.5 ± 14.73 | 0.06 |
PR (ms) | 156 ± 20.35 | 152 ± 18.82 | 0.53 |
QRS (ms) | 93.6 ± 10.62 | 93 ± 10.67 | 0.85 |
QT (ms) | 390 ± 27.5 | 384 ± 26.85 | 0.46 |
QTc (ms) | 403.7 ± 16.36 | 399.9 ± 16.69 | 0.43 |
Time-domain HRV analysis methods | |||
MEAN RR (ms) | 869.3 ± 138.34 | 784.7 ± 111.87 | 0.03 |
SDNN (ms) | 53.32 ± 18.57 | 40.68 ± 17.55 | 0.03 |
RMSSD (ms) | 57.64 ± 28.93 | 38.77 ± 22.85 | 0.02 |
NN50 (beats) | 69.05 ± 20.92 | 48.58 ± 44.46 | 0.17 |
pNN50 (%) | 29.22 ± 20.92 | 17.51 ± 17.92 | 0.06 |
Autonomic function indexes | |||
PNS | 0.24 ± 1.21 | −0.7 ± 1.11 | 0.01 |
SNS | 0.2 ± 1.08 | 1.38 ± 2.09 | 0.02 |
Frequency-domain HRV analysis methods | |||
Peak VLF (Hz) | 0.034 ± 0,006 | 0.033 ± 0.004 | 0.5 |
Peak LF (Hz) | 0.079 ± 0.03 | 0.09 ± 0.02 | 0.12 |
Peak HF (Hz) | 0.23 ± 0.079 | 0.23 ± 0.07 | 0.76 |
VLF Power (ms2) | 144.3 ± 178.83 | 110.8 ± 105.86 | 0.48 |
LF Power (ms2) | 1248 ± 1041.92 | 1025 ± 888.45 | 0.45 |
HF Power (ms2) | 1260 ± 1498.43 | 755.8 ± 840.17 | 0.17 |
Total Power (ms2) | 2654.7 ± 1972.57 | 1892 ± 1522.73 | 0.16 |
LF/HF | 2.59 ± 2.92 | 2.71 ± 2.88 | 0.9 |
Dysautonomic Manifestation | p-Value | Dysautonomic Manifestation | p-Value | ||
---|---|---|---|---|---|
Thermoregulation | No changes (34) | 0.454 | Gastrointestinal Disorders | No changes (68) | 0.301 |
Feeling warmer (32) | Functional dyspepsia (2) | ||||
Feeling cooler (20) | Meteorism (9) | ||||
Food sweating | No (51) | 0.058 | Constipation (2) | ||
Yes (35) | Diarrhea (2) | ||||
Rash | No (74) | 0.482 | Sickness and vomiting (2) | ||
Yes (12) | No answer (1) | ||||
GERD | No changes (75) | 0.852 | Urinary tract Disorders | No changes (82) | 0.103 |
Improved (4) | Urinary retention (2) | ||||
Worsened (3) | Incontinence (1) | ||||
Developed (4) | No answer (1) | ||||
Stamina | No changes (72) | 0.10 | Eye Disorders | No changes (77) | 0.766 |
Improved (3) | Photophobia (5) | ||||
Worsened (11) | Accommodative disorder (3) | ||||
Breathing | No changes (79) | 0.418 | No answer (1) | ||
Improved (2) | Palpitation | No (69) | 0.283 | ||
Worsened (5) | Yes (16) | ||||
Focus | No changes (71) | 0.619 | No answer (1) | ||
Improved (12) | Syncope | No (84) | 0.683 | ||
Yes (1) | |||||
Worsened (3) | No answer (1) |
NO CH | CH | p-Value | |
---|---|---|---|
N | 83 | 28 | |
Age (years) | 37.83 ± 20.41 | 32.87 ± 10.48 | 0.30 |
BMI (Kg/m2) | 23.50 ± 4.01 | 23.34 ± 3.49 | 0.89 |
MEAN HR (bpm) | 82.7 ± 14.31 | 77.6 ± 14.45 | 0.29 |
MIN HR (bpm) | 72.6 ± 13.82 | 68.8 ± 13.49 | 0.40 |
MAX HR (bpm) | 97.1 ± 17.62 | 90.4 ± 16.01 | 0.23 |
PR (ms) | 139.46 ± 11.49 | 154.25 ± 22.14 | 0.029 |
QRS (ms) | 95 ± 12.51 | 97.71 ± 16.21 | 0.59 |
QT (ms) | 376.4 ± 20.26 | 364.5 ± 81.8 | 0.60 |
QTc (ms) | 399.5 ± 17.14 | 396.9 ± 22.46 | 0.71 |
Time-domain HRV analysis methods | |||
MEAN RR (ms) | 743.7 ± 123.18 | 793.7 ± 119.94 | 0.22 |
SDNN (ms) | 39.1 ± 16.66 | 42.2 ± 21.36 | 0.65 |
RMSSD (ms) | 36.3 ± 18.08 | 39.2 ± 22.07 | 0.67 |
NN50 (beats) | 47.2 ± 46.08 | 44.4 ± 41.35 | 0.84 |
pNN50 (%) | 16.3 ± 13.81 | 18.6 ± 16.30 | 0.66 |
Autonomic function indexes | |||
PNS | −0.94 ± 1 | −0.66 ± 1.12 | 0.45 |
SNS | 1.92 ± 2.62 | 1.50 ± 2.20 | 0.59 |
Frequency-domain HRV analysis methods | |||
Peak VLF (Hz) | 0.036 ± 0.004 | 0.034 ± 0.004 | 0.17 |
Peak LF (Hz) | 0.088 ± 0.03 | 0.095 ± 0.02 | 0.48 |
Peak HF (Hz) | 0.22 ± 0.066 | 0.21 ± 0.065 | 0.61 |
VLF Power (ms2) | 82.7 ± 69.18 | 78.17 ± 71.23 | 0.85 |
LF Power (ms2) | 854 ± 600.15 | 1207 ± 1527.9 | 0.42 |
HF Power (ms2) | 483 ± 394.78 | 900 ± 955.68 | 0.14 |
Total Power (ms2) | 1418.8 ± 938.6 | 2188.7 ± 2348.87 | 0.26 |
LF/HF | 3.08 ± 2.79 | 2.65 ± 2.92 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardi, D.; Valente, D.; Liporace, P.; Davoli, E.; Sposito, E.; Picarelli, F.; Gioia, F.A.; Calabrese, V.; Ussia, G.P.; Grigioni, F. Evaluation of Cardiac Autonomic Function in Patients Undergoing Thoracoscopic Sympathetic Chain Clamping for Primary Focal Hyperhidrosis. Med. Sci. 2025, 13, 147. https://doi.org/10.3390/medsci13030147
Ricciardi D, Valente D, Liporace P, Davoli E, Sposito E, Picarelli F, Gioia FA, Calabrese V, Ussia GP, Grigioni F. Evaluation of Cardiac Autonomic Function in Patients Undergoing Thoracoscopic Sympathetic Chain Clamping for Primary Focal Hyperhidrosis. Medical Sciences. 2025; 13(3):147. https://doi.org/10.3390/medsci13030147
Chicago/Turabian StyleRicciardi, Danilo, Daniele Valente, Paola Liporace, Enrico Davoli, Elisabetta Sposito, Francesco Picarelli, Flavio Angelo Gioia, Vito Calabrese, Gian Paolo Ussia, and Francesco Grigioni. 2025. "Evaluation of Cardiac Autonomic Function in Patients Undergoing Thoracoscopic Sympathetic Chain Clamping for Primary Focal Hyperhidrosis" Medical Sciences 13, no. 3: 147. https://doi.org/10.3390/medsci13030147
APA StyleRicciardi, D., Valente, D., Liporace, P., Davoli, E., Sposito, E., Picarelli, F., Gioia, F. A., Calabrese, V., Ussia, G. P., & Grigioni, F. (2025). Evaluation of Cardiac Autonomic Function in Patients Undergoing Thoracoscopic Sympathetic Chain Clamping for Primary Focal Hyperhidrosis. Medical Sciences, 13(3), 147. https://doi.org/10.3390/medsci13030147