Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
- -
- Microalga Spirulina platensis (Arthrospira platensis): This marine-derived cyanobacterium was cultivated and obtained from the Microbiology Department, Faculty of Agriculture, Zagazig University. The chemical composition of the microalga was analyzed and confirmed at the Agriculture Research Center, Regional Center for Food and Feed. Afterwards, it was obtained as a refined dark blue green powder of ≥98% purity and stored far from light at room temperature for experimental use.
- -
- Simvastatin: High-purity simvastatin ≥ 97% (HPLC, CAS No. 79902-63-9) was purchased from Sigma-Aldrich (Steinheim, Germany) for research purposes under agreement from Merck & Co., Inc., Kenilworth, NJ, USA. It was provided in the form of white powder and stored away from light at 2–8 °C.
2.2. Experimental Animals
2.3. Induction of Dyslipidemia
2.4. Experimental Design
- Group I (Control group)
- Group II (High fat-diet group)
- Subgroup IIa (Dyslipidemic group)
- Subgroup IIb (Simvastatin-treated group)
- Subgroup IIc (Spirulina platensis-treated group)
2.5. General Observations and Body Weight Measurements
2.6. Biochemical Analysis
- At the end of the experiment, all animals were fasted overnight; 2 mL of blood was collected in the morning from the orbital sinus with the help of a capillary tube by pressing the thumb behind the angle of the jaw, resulting in the engorgement of the retro-orbital plexus. The blood was centrifuged; serum was collected for estimation of lipid profile (TC, TG, LDL, and HDL) and serum creatine kinase (CK-MM) (as muscular damage injury). Lipid profile was measured twice: at the end of the 4th week (to confirm dyslipidemia in the HFD group) and at the end of the experiment by the 8th week. Dyslipidemia was confirmed by elevated concentration of TC (≥240 mg/dL), LDL-C (>160 mg/dL), and TGs (>200 mg/dL), along with reduced HDL-C (<40 mg/dL) [19].
- Determination of oxidative stress parameter, malondialdehyde (MDA), for monitoring lipid peroxidation rate in tissue samples [20]. Muscular samples were homogenized in 5–10 mL cold (4 °C) buffer (50 mM potassium phosphate at PH 7.5) and centrifuged (at 4000 rotations/min for 15 min), and the supernatant was submitted to a spectrophotometric assay (Rat malondialdehyde ELISA Kits, Bio Basic, Toronto, Canada). The results were expressed in nmol/g tissue.
2.7. Histological Study
2.7.1. Light Microscope Study
- Hematoxylin and eosin stain (H&E) for the gastrocnemius muscle and liver
- Masson trichrome stain (MT) for the gastrocnemius muscle.
- Immuno-histochemical study
2.7.2. Transmission Electron Microscope Study
2.8. Morphometric Study
2.9. Statistical Analysis
3. Results
3.1. Body Weight Results in Different Groups
3.2. Biochemistry Results
3.2.1. Serum CK (IU\L) Level
- ➢
- There was a highly statistically significant increase in the mean serum CK in the skeletal muscle of the simvastatin-treated group and dyslipidemic group, respectively, compared to the other groups.
- ➢
- A highly statistically significant decrease was detected in the Spirulina platensis-treated group.
- ➢
- No statistically significant difference was revealed between the control and Spirulina platensis-treated groups (Table 3).
3.2.2. Mean Value of Lipid Profile (mg/dL) Level After 4 Weeks
- ➢
- There was a highly significant increase in the levels of TC, TG, and LDL in the high fat-diet group in comparison to the control group; however, the serum level of HDL was significantly decreased in comparison to the control group (Table 4).
3.2.3. Mean Value of Lipid Profile (mg/dL) Level at End of Experiment
- ➢
- There was a highly significant decrease in the levels of TC, TG, and LDL in the simvastatin-treated group and the Spirulina platensis-treated group in comparison to the dyslipidemic group. There was a highly significant increase in the serum level of HDL in the simvastatin-treated group and the Spirulina platensis-treated group compared to the dyslipidemic group. There was no significant difference between the simvastatin- and Spirulina platensis-treated groups (Table 5).
3.2.4. Mean Value of Tissue MDA (nmol/g Tissue) Level
3.3. Light Microscopy Histological Results
3.3.1. Hematoxylin and Eosin Stain (H&E) Results
3.3.2. Masson Trichrome Stain (MT) Results
3.3.3. Immunohistochemical Results of Pro-Fibrotic and Anti-Apoptotic Markers
3.4. Transmission Electron Microscopy Results
3.5. Morphometrical Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.A.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar] [CrossRef]
- Asbaghi, O.; Ashtary-Larky, D.; Bagheri, R.; Nazarian, B.; Pourmirzaei Olyaei, H.; Rezaei Kelishadi, M.; Naeini, A.A. Beneficial effects of folic acid supplementation on lipid markers in adults: A GRADE-assessed systematic review and dose-response meta-analysis of data from 21,787 participants in 34 randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 8435–8453. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, J.; Zhu, S.; Zhang, Z.; Guo, Z.; An, J.; Ma, Y. The effects of sesamin supplementation on obesity, blood pressure, and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2022, 13, 842152. [Google Scholar] [CrossRef]
- Cederberg, H.; Stančáková, A.; Yaluri, N.; Modi, S.; Kuusisto, J.; Laakso, M. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: A 6-year follow-up study of the METSIM cohort. Diabetologia 2015, 58, 1109–1117. [Google Scholar] [CrossRef]
- Talreja, O.; Cassagnol, M. Simvastatin. In Stat Pearls; Stat Pearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Yeboah, J. Guideline on the management of blood cholesterol: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 73, 3168–3209. [Google Scholar] [CrossRef]
- Danielak, D.; Karaźniewicz-Łada, M.; Główka, F. Assessment of the risk of rhabdomyolysis and myopathy during concomitant treatment with ticagrelor and statins. Drugs 2018, 78, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Pierno, S.; Musumeci, O. Pharmacotherapy of the lipid-lowering drugs: Update on efficacy and risk. Int. J. Mol. Sci. 2023, 24, 996. [Google Scholar] [CrossRef]
- Rostami, H.A.A.; Marjani, A.; Mojerloo, M.; Rahimi, B.; Marjani, M. Effect of spirulina on lipid Profile, glucose and malondialdehyde levels in type 2 diabetic patients. Braz. J. Pharm. Sci. 2022, 58, e191140. [Google Scholar] [CrossRef]
- Nobari, H.; Gandomani, E.E.; Reisi, J.; Vahabidelshad, R.; Suzuki, K.; Volpe, S.L.; Pérez-Gómez, J. Effects of 8 weeks of high-intensity interval training and spirulina supplementation on immunoglobin levels, cardio-respiratory fitness, and body composition of overweight and obese women. Biology 2022, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- Serban, M.C.; Sahebkar, A.; Dragan, S.; Stoichescu-Hogea, G.; Ursoniu, S.; Andrica, F.; Banach, M. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin. Nutr. 2016, 35, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Amerizadeh, A.; Behshood, P.; Moradi, S.; Asgary, S. Effect of microalgae arthrospira on biomarkers of glycemic control and glucose metabolism: A systematic review and meta-analysis. Curr. Probl. Cardiol. 2022, 47, 100942. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.M.; Costa, J.A.V.; da Rosa, A.P.C.; Santos, L.O. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour. Technol. 2017, 244, 1425–1432. [Google Scholar] [CrossRef]
- Abdel-Daim, M.; El-Bialy, B.E.; Rahman, H.G.A.; Radi, A.M.; Hefny, H.A.; Hassan, A.M. Antagonistic effects of Spirulina platensis against subacute deltamethrin toxicity in mice: Biochemical and histopathological studies. Biomed. Pharmacother. 2016, 77, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Chow, T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc. Ther. 2010, 28, e33–e45. [Google Scholar] [CrossRef]
- Ren, L.; Xuan, L.; Han, F.; Zhang, J.; Gong, L.; Lv, Y.; Liu, L. Vitamin D supplementation rescues simvastatin induced myopathy in mice via improving mitochondrial cristae shape. Toxicol. Appl. Pharmacol. 2020, 401, 115076. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.C.; Fenning, A.S.; Ryan, K.R.; Vella, R.K. Validation of a clinically-relevant rodent model of statin-associated muscle symptoms for use in pharmacological studies. Toxicol. Appl. Pharmacol. 2018, 360, 78–87. [Google Scholar] [CrossRef]
- Brito, A.D.F.; Silva, A.S.; de Oliveira, C.V.C.; de Souza, A.A.; Ferreira, P.B.; de Souza, I.L.L.; da Silva, B.A. Spirulina platensis prevents oxidative stress and inflammation promoted by strength training in rats: Dose-response relation study. Sci. Rep. 2020, 10, 6382. [Google Scholar] [CrossRef]
- Dobiášová, M. Atherogenic index of plasma [log (triglycerides/HDLcholesterol)]: Theoretical and practical implications. Clin. Chem. 2004, 50, 1113–1115. [Google Scholar] [CrossRef]
- Wang, L.; Shan, Y.; Chen, L.; Lin, B.; Xiong, X.; Lin, L.; Jin, L. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation. Iran. J. Basic Med. Sci. 2016, 19, 670–675. [Google Scholar]
- Laferriere, C.A.; Pang, D.S. Review of intraperitoneal injection of sodium pentobarbital as a method of euthanasia in laboratory rodents. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 254–263. [Google Scholar]
- Meli, R.; Mattace Raso, G.; Irace, C.; Simeoli, R.; Di Pascale, A.; Paciello, O.; Santamaria, R. High fat diet induces liver steatosis and early dysregulation of iron metabolism in rats. PLoS ONE 2013, 8, e66570. [Google Scholar] [CrossRef]
- Buyuklu, M.; Kandemir, F.M.; Ozkaraca, M.; Set, T.U.R.A.N.; Bakirci, E.M.; Topal, E.; Turkmen, K. Benefical effects of lycopene against contrast medium-induced oxidative stress, inflammation, autophagy, and apoptosis in rat kidney. Hum. Exp. Toxicol. 2015, 34, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Sun, Z.; Zhang, L.; Li, X.; Dong, Y.; Liu, T.C.Y. Effects of lowlevel laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process. Lasers Med. Sci. 2013, 28, 725–734. [Google Scholar] [CrossRef]
- Basaranlar, G.; Derin, N.; Manas, C.K.; Tanriover, G.; Aslan, M. The effects of sulfite on cPLA2, caspase-3, oxidative stress and locomotor activity in rats. Food Chem. Toxicol. 2019, 123, 453–458. [Google Scholar] [CrossRef]
- Jung, M.; Lee, J.H.; Lee, C.; Park, J.H.; Park, Y.R.; Moon, K.C. Prognostic implication of pAMPK immunohistochemical staining by subcellular location and its association with SMAD protein expression in clear cell renal cell carcinoma. Cancers 2019, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.N.; Low Wang, C.C.; Hiatt, W.R. PCSK9 inhibitors: Mechanisms of action, metabolic effects, and clinical outcomes. Annu. Rev. Med. 2018, 69, 133–145. [Google Scholar] [CrossRef]
- Gargouri, M.; Magné, C.; El Feki, A. Hyperglycemia, oxidative stress, liver damage and dysfunction in alloxan-induced diabetic rat are prevented by Spirulina supplementation. Nutr. Res. 2016, 36, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Savranoglu, S.; Tumer, T.B. Inhibitory effects of spirulina platensis on carcinogen-activating cytochrome P450 isozymes and potential for drug interactions. Int. J. Toxicol. 2013, 32, 376–384. [Google Scholar] [CrossRef]
- Chien, M.Y.; Ku, Y.H.; Chang, J.M.; Yang, C.M.; Chen, C.H. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet. J. Food Drug Anal. 2016, 24, 594–601. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, X.; Ye, R.; Hu, Y.; Zheng, T.; Shi, R.; Liang, P. The effect of simvastatin on gut microbiota and lipid metabolism in hyperlipidemic rats induced by a high-fat diet. Front. Pharmacol. 2020, 11, 522. [Google Scholar] [CrossRef]
- Xu, Z.J.; Fan, J.G.; Ding, X.D.; Qiao, L.; Wang, G.L. Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig. Dis. Sci. 2010, 55, 931–940. [Google Scholar] [CrossRef]
- Lastra, G.; Syed, S.; Kurukulasuriya, L.R.; Manrique, C.; Sowers, J.R. Type 2 diabetes mellitus and hypertension: An update. Endocrinol. Metab. Clin. 2014, 43, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.M.; Samy, M.; Arisha, A.H.; Saadeldin, I.M.; Alshammari, G.M. Anti-obesity effects of individual or combination treatment with Spirulina platensis and green coffee bean aqueous extracts in high-fat diet-induced obese rats. All Life 2020, 13, 328–338. [Google Scholar] [CrossRef]
- Balasubramanian, V.S.B.; Md, G.; Samreen, S. Anti-obesity activity of Spirulina platensis in high fat diet induced rats. Int. J. Pharmacol. Screen. Methods 2013, 3, 1–5. [Google Scholar]
- Zeinalian, R.; Farhangi, M.A.; Shariat, A.; Saghafi-Asl, M. The effects of Spirulina platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: A randomized double blinded placebo-controlled trial. BMC Complement. Altern. Med. 2017, 17, 225. [Google Scholar] [CrossRef]
- Molchanova, O.V.; Pokrovskaya, T.G.; Povetkin, S.V.; Reznikov, K.M. Endothelioprotective property of the combination of the thioctic acid and rosuvastatin shown in the endothelial dysfunction models. Res. Results Pharmacol. 2016, 2, 9–15. [Google Scholar] [CrossRef]
- Wang, X.X.; Ye, T.; Li, M.; Li, X.; Qiang, O.; Tang, C.W.; Liu, R. Effects of octreotide on hepatic glycogenesis in rats with high fat diet-induced obesity. Mol. Med. Rep. 2017, 16, 109–118. [Google Scholar] [CrossRef]
- Gujjala, S.; Putakala, M.; Nukala, S.; Bangeppagari, M.; Rajendran, R.; Desireddy, S. Modulatory effects of Caralluma fimbriata extract against high-fat diet induced abnormalities in carbohydrate metabolism in Wistar rats. Biomed. Pharmacother. 2017, 92, 1062–1072. [Google Scholar] [CrossRef]
- Choi, H.K.; Won, E.K.; Choung, S.Y. Effect of coenzyme Q10 supplementation in statin-treated obese rats. Biomol. Ther. 2016, 24, 171. [Google Scholar] [CrossRef] [PubMed]
- Ghalwash, M.; Elmasry, A.; El-Adeeb, N. Effect of L-carnitine on the skeletal muscle contractility in simvastatin-induced myopathy in rats. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 483–491. [Google Scholar] [CrossRef]
- Piette, A.B.; Dufresne, S.S.; Frenette, J. A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles. BMC Musculoskelet. Disord. 2016, 17, 449. [Google Scholar] [CrossRef]
- Bonifacio, A.; Sanvee, G.M.; Bouitbir, J.; Krähenbühl, S. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2015, 1853, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Elshama, S.S.; El-Kenawy, A.E.M.; Osman, H.E.H. Curcumin improves atorvastatin-induced myotoxicity in rats: Histopathological and biochemical evidence. Int. J. Immunopathol. Pharmacol. 2016, 29, 742–752. [Google Scholar] [CrossRef]
- Kashani, A.; Keshavarz, S.A.; Jafari-Vayghan, H.; Azam, K.; Hozoori, M.; Alinavaz, M.; Djafarian, K. Preventive effects of Spirulina platensis on exercise-induced muscle damage, oxidative stress and inflammation in taekwondo athletes: A randomized cross-over trial. Pharm. Sci. 2022, 28, 589–595. [Google Scholar] [CrossRef]
- Chaouachi, M.; Gautier, S.; Carnot, Y.; Guillemot, P.; Pincemail, J.; Moison, Y.; Vincent, S. Spirulina supplementation prevents exercise-induced lipid peroxidation, inflammation and skeletal muscle damage in elite rugby players. J. Hum. Nutr. Diet. 2022, 35, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Murakami, T.; Nakai, N.; Nagasaki, M.; Harris, R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004, 134, 1583S–1587S. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, S.H.; Jeong, W.S.; Lee, H.Y. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances. J. Exerc. Nutr. Biochem. 2013, 17, 169. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.Y.; Wei, Y.L.; Hao, J.Y.; Lei, Y.Q.; Zhao, W.B.; Sun, A.D. The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats. Nutr. Metab. 2020, 17, 54. [Google Scholar] [CrossRef]
- Termkwancharoen, C.; Malakul, W.; Phetrungnapha, A.; Tunsophon, S. Naringin ameliorates skeletal muscle atrophy and improves insulin resistance in high-fat-diet-induced insulin resistance in obese rats. Nutrients 2022, 14, 4120. [Google Scholar] [CrossRef]
- Oikonomidis, N.; Kavantzas, N.; Korou, L.M.; Konstantopoulos, P.; Pergialiotis, V.; Misiakos, E.; Perrea, D.N. Pre-treatment with simvastatin prevents the induction of diet-induced atherosclerosis in a rabbit model. Biomed. Rep. 2016, 5, 667–674. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C.; Liu, B.; Lin, L.; Sarker, S.D.; Nahar, L.; Xiao, J. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci. Technol. 2018, 72, 1–12. [Google Scholar] [CrossRef]
- Rahnama, I.; Arabi, S.M.; Chambari, M.; Bahrami, L.S.; Hadi, V.; Mirghazanfari, S.M.; Sahebkar, A. The effect of Spirulina supplementation on lipid profile: GRADE-assessed systematic review and dose-response meta-analysis of data from randomized controlled trials. Pharmacol. Res. 2023, 193, 106802. [Google Scholar] [CrossRef]
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in clinical practice: Evidence-based human applications. Evid.-Based Complement. Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Qian, L.; Wang, Y.; Yuan, G. Spirulina platensis extract supplementation attenuates oxidative stress in acute exhaustive exercise: A pilot study. Int. J. Phys. Sci. 2011, 6, 2901–2906. [Google Scholar]
- Heo, J.W.; Yoo, S.Z.; No, M.H.; Park, D.H.; Kang, J.H.; Kim, T.W.; Kwak, H.B. Exercise training attenuates obesity-induced skeletal muscle remodeling and mitochondria-mediated apoptosis in the skeletal muscle. Int. J. Environ. Res. Public Health 2018, 15, 2301. [Google Scholar] [CrossRef] [PubMed]
- Meza, C.; Montenegro, C.; De La Peña, C.; O’keefe, L.; Naughton, S.; Simcocks, A.; Bajpeyi, S. High Fat Diet Induced Obesity Impairs Skeletal Muscle Glycogen and Lipid Preservation After Adiponectin Incubation. Int. J. Exerc. Sci. Conf. Proc. 2017, 2, 28. [Google Scholar]
- Kwak, H.B. Statin-induced myopathy in skeletal muscle: The role of exercise. J. Lifestyle Med. 2014, 4, 71. [Google Scholar] [CrossRef]
- Chogtu, B.; Ommurugan, B.; Thomson, S.R.; Kalthur, S.G. Effect of vitamin D analogue on rosuvastatin-induced myopathy in wistar rats. Sci. World J. 2020, 2020, 4704825. [Google Scholar] [CrossRef]
- Yang, W.; Hu, P. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Transl. 2018, 13, 25–32. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Corsini, A.; Roden, M. The role of mitochondria in statin-induced myopathy. Eur. J. Clin. Investig. 2015, 45, 745–754. [Google Scholar] [CrossRef]
- Vringer, E.; Tait, S.W. Mitochondria and inflammation: Cell death heats up. Front. Cell Dev. Biol. 2019, 7, 100. [Google Scholar] [CrossRef]
- Dolivo, D.M.; Reed, C.R.; Gargiulo, K.A.; Rodrigues, A.E.; Galiano, R.D.; Mustoe, T.A.; Hong, S.J. Anti-fibrotic effects of statin drugs: A review of evidence and mechanisms. Biochem. Pharmacol. 2023, 214, 115644. [Google Scholar] [CrossRef] [PubMed]
- Budi, E.H.; Schaub, J.R.; Decaris, M.; Turner, S.; Derynck, R. TGF-β as a driver of fibrosis: Physiological roles and therapeutic opportunities. J. Pathol. 2021, 254, 358–373. [Google Scholar] [CrossRef]
- Afkhami-Ardakani, M.; Hasanzadeh, S.; Shahrooz, R.; Delirezh, N.; Malekinejad, H. Spirulina platensis (Arthrospira platensis) attenuates cyclophosphamide-induced reproductive toxicity in male Wistar rats: Evidence for sperm apoptosis and p53/Bcl-2 expression. J. Food Biochem. 2021, 45, e13854. [Google Scholar] [CrossRef]
- Forcina, L.; Cosentino, M.; Musarò, A. Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. Cells 2020, 9, 1297. [Google Scholar] [CrossRef]
- Calella, P.; Cerullo, G.; Di Dio, M.; Liguori, F.; Di Onofrio, V.; Galle, F.; Liguori, G. Antioxidant, anti-inflammatory and immunomodulatory effects of spirulina in exercise and sport: A systematic review. Front. Nutr. 2022, 9, 1048258. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Reis, M.; Ferreira, L.; Grosso, C.; Ferraz, R.; Vieira, M.; Martins, R. The Neuroprotective Role of Cyanobacteria with Focus on the Anti-Inflammatory and Antioxidant Potential: Current Status and Perspectives. Molecules 2024, 29, 4799. [Google Scholar] [CrossRef]
- Piovan, A.; Filippini, R.; Argentini, C.; Moro, S.; Giusti, P.; Zusso, M. The effect of C-phycocyanin on microglia activation is mediated by toll-like receptor 4. Int. J. Mol. Sci. 2022, 23, 1440. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, Y.; Qiu, Y.; Yang, F.; Liu, G.; Dong, X.; Li, B. Three novel antioxidant peptides isolated from C-phycocyanin against H2O2-induced oxidative stress in zebrafish via Nrf2 signaling pathway. Front. Mar. Sci. 2022, 9, 1098091. [Google Scholar] [CrossRef]
- Citi, V.; Torre, S.; Flori, L.; Usai, L.; Aktay, N.; Dunford, N.T.; Nieri, P. Nutraceutical features of the phycobiliprotein c-phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients 2024, 16, 1752. [Google Scholar] [CrossRef]
Group | (Control Group) (n = 10) | (High Fat-Diet Group) (n = 30) | T | p Value |
---|---|---|---|---|
Mean ± SD of Body Weight at the End of 4th Week | Mean ± SD of Body Weight at the End of 4th Week | |||
4th Week | 263.50 ± 5.798 | 306.50 ± 19.305 | −6.886 | <0.001 ** |
Group | (Control Group) | (Dyslipidemic Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value | LSD |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD of Body Weight at the End of Experiment | Mean ± SD of Body Weight at the End of Experiment | Mean ± SD of Body Weight at the End of Experiment | ||||
8th week (End of experiment) | 272.50 ± 7.169 | 486.00 ± 56.016 | 276.00 ± 6.583 | 280.40 ± 7.074 | 134.091 | <0.001 ** | P1 < 0.001 ** P2 = 0.786 P3 = 0.541 P4 < 0.001 ** P5 < 0.001 ** P6 = 0.733 |
Group | (Control Group) | (Dyslipidemia Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value |
---|---|---|---|---|---|---|
Mean ± SD of Serum CK | Mean ± SD of Serum CK | Mean ± SD of Serum CK | Mean ± SD of Serum CK | |||
LSD | 327.7 ± 52.7 | 439.5 ± 20.47 | 589.0 ± 70.15 | 375.0 ± 44.17 | 54.4 | <0.001 ** |
(Control group) | P1 <0.001 ** | P2 <0.001 ** | P3 = 0.2 | |||
(Dyslipidemia group) | P4 < 0.001 ** | |||||
(Simvastatin-treated group) | P5 < 0.001 ** |
Group | (Control Group) (n = 10) | High Fat-Diet Group (n = 30) | T | p Value |
---|---|---|---|---|
Mean ± SD of Serum Lipid Profile After 4 Weeks | Mean ± SD of Serum Lipid Profile After 4 Weeks | |||
Total cholesterol | 98.27 ± 7.87 | 269.5 ± 24.89 | −21.2 | <0.001 ** |
Triglyceride | 92.78 ± 6.79 | 253.90 ± 23.87 | −20.8 | <0.001 ** |
LDL | 92.30 ± 9.34 | 234.50 ± 18.25 | −23.4 | <0.001 ** |
HDL | 56.60 ± 7.84 | 12.96 ± 4.16 | 22.65 | <0.001 ** |
Group | (Control Group) | (Dyslipidemic Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value | LSD |
---|---|---|---|---|---|---|---|
Mean ± SD of Serum Lipid Profile at End of Experiment | Mean ± SD of Serum Lipid Profile at End of Experiment | Mean ± SD of Serum Lipid Profile at End of Experiment | Mean ± SD of Serum Lipid Profile at End of Experiment | ||||
Total cholesterol | 96.60 ± 8.93 | 295.00 ± 21.60 | 162.60 ± 7.53 | 137.40 ± 5.60 | 464.27 | <0.001 ** | P1 < 0.001 ** P2 < 0.001 ** P3 < 0.001 ** P4 < 0.001 ** P5 < 0.001 ** P6 < 0.001 ** |
Triglyceride | 94.20 ± 4.82 | 248.60 ± 24.12 | 170.00 ± 7.45 | 152.40 ± 7.38 | 226.98 | <0.001 ** | P1 < 0.001 ** P2 < 0.001 ** P3 < 0.001 ** P4 < 0.001 ** P5 < 0.001 ** P6 = 0.06 |
LDL | 89.00 ± 7.42 | 232. ± 22.50 | 116 ± 12.20 | 106 ± 12.20 | 197.38 | <0.001 ** | P1 < 0.001 ** P2 < 0.001 ** P3 = 0.14 P4 < 0.001 ** P5 < 0.001 ** P6 = 0.136 |
HDL | 55 ± 7.45 | 14.40 ± 4.55 | 40 ± 7.45 | 48 ± 5.73 | 76.30 | <0.001 ** | P1 < 0.001 ** P2 < 0.001 ** P3 = 0.020 P4 < 0.001 ** P5 < 0.001 ** P6 = 0.008 * |
Group | (Control Group) | (Dyslipidemic Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value |
---|---|---|---|---|---|---|
Mean ± SD of MDA Tissue Level | Mean ± SD of MDA Tissue Level | Mean ± SD of MDA Tissue Level | Mean ± SD of MDA Tissue Level | |||
LSD | 295.6 ± 24.06 | 375.2 ± 13.9 | 594 ± 10.91 | 307 ± 14.6 | 704.0 | <0.001 ** |
(Control group) | <0.001 ** | <0.001 ** | 0.131 | |||
(Dyslipidemic group) | <0.001 ** | 0.001 ** | ||||
(Simvastatin-treated group) | <0.001 ** |
Group | (Control Group) | (Dyslipidemic Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value |
---|---|---|---|---|---|---|
Mean ± SD of Collagen Area % | Mean ± SD of Collagen Area % | Mean ± SD of Collagen Area % | Mean ± SD of Collagen Area % | |||
Post hoc | 0.66 ± 0.21 | 1.45 ± 0.46 | 8.89 ± 2.81 | 1.09 ± 0.34 | 167.9 | <0.001 ** |
(Control group) | <0.001 ** | <0.001 ** | 0.123 | |||
Dyslipidemic group | <0.001 ** | <0.001 ** | ||||
(Simvastatin-treated group) | <0.001 ** |
Group | (Control Group) | (Dyslipidemic Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value ANOVA |
---|---|---|---|---|---|---|
Mean ± SD of Bcl2 Area % | Mean ± SD of Bcl2 Area % | Mean ± SD of Bcl2 Area % | Mean ± SD of Bcl2 Area % | |||
LSD | 41.14 ± 4.26 | 18.32 ± 4.1 | 4.99 ± 1.45 | 38.95 ± 2.32 | 279.04 | <0.001 ** |
Control group | <0.001 ** | <0.001 ** | 0.144 | |||
(Dyslipidemic group) | <0.001 ** | <0.001 ** | ||||
(Simvastatin-treated group) | <0.001 ** |
Group | (Control Group) | (Dyslipidemic Group) | (Simvastatin-Treated Group) | (Spirulina platensis-Treated Group) | F | p Value |
---|---|---|---|---|---|---|
Mean ± SD of Number of TGFβ1 Immunopositive Cells | Mean ± SD of Number of TGFβ1 Immunopositive Cells | Mean ± SD of Number of TGFβ1 Immunopositive Cells | Mean ± SD of Number of TGFβ1 Immunopositive Cells | |||
LSD | 4.60 ± 0.516 | 22.00 ± 2.404 | 133.70 ± 30.862 | 7.20 ± 1.751 | 158.334 | <0.001 ** |
Control group | 0.017 * | <0.001 ** | 0.710 | |||
(Dyslipidemic group) | <0.001 ** | 0.040 * | ||||
(Simvastatin-treated group) | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhady, M.E.; Elmosalamy, K.H.; Kattaia, A.A.A.; Samak, M.A. Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation. Med. Sci. 2025, 13, 137. https://doi.org/10.3390/medsci13030137
Abdelhady ME, Elmosalamy KH, Kattaia AAA, Samak MA. Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation. Medical Sciences. 2025; 13(3):137. https://doi.org/10.3390/medsci13030137
Chicago/Turabian StyleAbdelhady, Mai E., Khaled H. Elmosalamy, Asmaa A. A. Kattaia, and Mai A. Samak. 2025. "Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation" Medical Sciences 13, no. 3: 137. https://doi.org/10.3390/medsci13030137
APA StyleAbdelhady, M. E., Elmosalamy, K. H., Kattaia, A. A. A., & Samak, M. A. (2025). Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation. Medical Sciences, 13(3), 137. https://doi.org/10.3390/medsci13030137