Plasma Biomarkers of Mitochondrial Dysfunction in Patients with Myasthenia Gravis
Abstract
1. Introduction
2. Materials and Methods
2.1. Selecting MicroRNAs for Analysis
2.2. Ethics and Patient Recruitment
- Confirmed diagnosis of Myasthenia Gravis;
- Age 18–55 years;
- No signs of infectious disease during the collection of samples.
- Centrifugation for microRNA expression analysis to separate the plasma fraction according to standard protocols [25];
- Centrifugation for enzyme immunoassay according to reagent manufacturers’ protocols. The separated plasma was aliquoted and stored in a low-temperature freezer at −80 °C until further analysis.
2.3. Analysis of Plasma MicroRNA Expression
2.4. Enzyme-Linked Immunosorbent Assay of Plasma
2.5. Analysis of the Data Obtained
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noridomi, K.; Watanabe, G.; Hansen, M.N.; Han, G.W.; Chen, L. Structural Insights into the Molecular Mechanisms of Myasthenia Gravis and Their Therapeutic Implications. eLife 2017, 6, e23043. [Google Scholar] [CrossRef]
- Diversity in Mental Fatigue and Social Profile of Patients with Myasthenia Gravis in Two Different Northern European Countries—Sabre—2017—Brain and Behavior—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/brb3.653 (accessed on 24 February 2025).
- Koneczny, I.; Herbst, R. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019, 8, 671. [Google Scholar] [CrossRef]
- Cavalcante, P.; Mantegazza, R.; Antozzi, C. Targeting Autoimmune Mechanisms by Precision Medicine in Myasthenia Gravis. Front. Immunol. 2024, 15, 1404191. [Google Scholar] [CrossRef]
- Gilhus, N.E.; Tzartos, S.; Evoli, A.; Palace, J.; Burns, T.M.; Verschuuren, J.J.G.M. Myasthenia Gravis. Nat. Rev. Dis. Primers 2019, 5, 30. [Google Scholar] [CrossRef]
- Rodolico, C.; Bonanno, C.; Toscano, A.; Vita, G. MuSK-Associated Myasthenia Gravis: Clinical Features and Management. Front. Neurol. 2020, 11, 660. [Google Scholar] [CrossRef]
- Chen, B.H.; Lin, Z.Y.; Zeng, X.X.; Jiang, Y.H.; Geng, F. LRP4-Related Signalling Pathways and Their Regulatory Role in Neurological Diseases. Brain Res. 2024, 1825, 148705. [Google Scholar] [CrossRef] [PubMed]
- Rousseff, R.T. Diagnosis of Myasthenia Gravis. J. Clin. Med. 2021, 10, 1736. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, C.; Bevilacqua, L.; Lupica, A.; Ginanneschi, F.; Piscosquito, G.; Rini, N.; Rossi, A.; Barone, P.; Brighina, F.; Di Stefano, V. Diagnosis and Management of Seronegative Myasthenia Gravis: Lights and Shadows. Brain Sci. 2023, 13, 1286. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.L.; Najjar, R.P.; Teo, K.Y.; Tow, S.L.; Loo, J.L.; Milea, D. A Reappraisal of Diagnostic Tests for Myasthenia Gravis in a Large Asian Cohort. J. Neurol. Sci. 2017, 376, 153–158. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J.; Lv, Z.G.; Wang, B.; Zhang, S.; Xu, P.; Wang, J. Mitochondrial Dysfunction in Myasthenia Gravis: Exploring Directions for Future Immunotherapy? A Review. Biomol. Biomed. 2025, 25, 346–359. [Google Scholar] [CrossRef]
- Monzel, A.S.; Enríquez, J.A.; Picard, M. Multifaceted Mitochondria: Moving Mitochondrial Science beyond Function and Dysfunction. Nat. Metab. 2023, 5, 546. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; An, X.; Xiao, Y.; Sun, X.; Li, S.; Wang, Y.; Sun, W.; Yu, D. Mitochondrial-Related MicroRNAs and Their Roles in Cellular Senescence. Front. Physiol. 2023, 14, 1279548. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yan, M.; Wang, Y.; Zhang, J.; Yang, H.; Tian, F.; Zhou, W.; Zhang, N.; Li, J. Altered Expression of MiR-146a in Myasthenia Gravis. Neurosci. Lett. 2013, 555, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Wang, R.Q.; Hu, B.; Luo, M.C.; Zeng, Q.M.; Zhou, H.; Huang, K.; Dong, X.H.; Luo, Y.B.; Luo, Z.H.; et al. MiR-15a Contributes Abnormal Immune Response in Myasthenia Gravis by Targeting CXCL10. Clin. Immunol. 2016, 164, 106–113. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L. Emerging Roles of Dysregulated MicroRNAs in Myasthenia Gravis. Front. Neurosci. 2020, 14, 517650. [Google Scholar] [CrossRef]
- Sabre, L.; Punga, T.; Punga, A.R. Circulating MiRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front. Immunol. 2020, 11, 511028. [Google Scholar] [CrossRef]
- Mamrut, S.; Avidan, N.; Truffault, F.; Staun-Ram, E.; Sharshar, T.; Eymard, B.; Frenkian, M.; Pitha, J.; de Baets, M.; Servais, L.; et al. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J. Autoimmun. 2017, 82, 62–73. [Google Scholar] [CrossRef]
- Du, P.; Kibbe, W.A.; Lin, S.M. Lumi: A Pipeline for Processing Illumina Microarray. Bioinformatics 2008, 24, 1547–1548. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Kariyawasam, H.; Su, S.; Voogd, O.; Ritchie, M.E.; Law, C.W. Dashboard-Style Interactive Plots for RNA-Seq Analysis Are R Markdown Ready with Glimma 2.0. NAR Genom. Bioinform. 2021, 3, lqab116. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Participants—WMA—The World Medical Association. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki/ (accessed on 20 February 2025).
- Zheng, X.H.; Cui, C.; Zhou, X.X.; Zeng, Y.X.; Jia, W.H. Centrifugation: An Important Pre-Analytic Procedure That Influences Plasma MicroRNA Quantification during Blood Processing. Chin. J. Cancer Res. 2013, 32, 667. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.; Roberts, H.; Rai, S.N.; Galandiuk, S. Housekeeping Genes for Studies of Plasma MicroRNA: A Need for More Precise Standardization. Surgery 2015, 158, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Horner, S.M.; Liu, H.M.; Park, H.S.; Briley, J.; Gale, M. Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM) Form Innate Immune Synapses and Are Targeted by Hepatitis C Virus. Proc. Natl. Acad. Sci. USA 2011, 108, 14590–14595. [Google Scholar] [CrossRef]
- He, Q.; Huang, Y.; Nie, L.; Ren, S.; Xu, G.; Deng, F.; Cheng, Z.; Zuo, Q.; Zhang, L.; Cai, H.; et al. MAVS Integrates Glucose Metabolism and RIG-I-like Receptor Signaling. Nat. Commun. 2023, 14, 5343. [Google Scholar] [CrossRef]
- Barrera, M.J.; Aguilera, S.; Castro, I.; Carvajal, P.; Jara, D.; Molina, C.; González, S.; González, M.J. Dysfunctional Mitochondria as Critical Players in the Inflammation of Autoimmune Diseases: Potential Role in Sjögren’s Syndrome. Autoimmun. Rev. 2021, 20, 102867. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Hu, J.; Wu, Y.; Yang, J.; Fan, H.; Li, L.; Luo, D.; Ye, Y.; Gao, Y.; et al. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjogren’s Syndrome. Front. Immunol. 2022, 13, 845209. [Google Scholar] [CrossRef]
- Staal, J.; Blanco, L.P.; Perl, A. Editorial: Mitochondrial Dysfunction in Inflammation and Autoimmunity. Front. Immunol. 2023, 14, 1304315. [Google Scholar] [CrossRef]
- Fa, H.; Xiao, D.; Chang, W.; Ding, L.; Yang, L.; Wang, Y.; Wang, M.; Wang, J. MicroRNA-194-5p Attenuates Doxorubicin-Induced Cardiomyocyte Apoptosis and Endoplasmic Reticulum Stress by Targeting P21-Activated Kinase 2. Front. Cardiovasc. Med. 2022, 9, 815916. [Google Scholar] [CrossRef]
- Nie, H.; Pan, Y.; Zhou, Y. Exosomal MicroRNA-194 Causes Cardiac Injury and Mitochondrial Dysfunction in Obese Mice. Biochem. Biophys. Res. Commun. 2018, 503, 3174–3179. [Google Scholar] [CrossRef]
- Li, Q.; Wang, K.; Shen, Y.; Lin, C.; Miao, J.; Hu, X. Bioinformatics Based Exploration of Hsa-MiR-194-5p Regulation of CHD4 through PI3K/AKT Signal Pathway to Enhance Tumor Resistance to Apoptosis Due to Loss of Nests and Participate in Poor Prognosis of Oral Squamous Cell Carcinoma. Ann. Transl. Med. 2023, 11, 107. [Google Scholar] [CrossRef]
- Anastasio, C.; Donisi, I.; Colloca, A.; D’Onofrio, N.; Balestrieri, M.L. MiR-148a-3p/SIRT7 Axis Relieves Inflammatory-Induced Endothelial Dysfunction. Int. J. Mol. Sci. 2024, 25, 5087. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Xin, N.; Shao, Z.; Zhang, X.; Zhang, Y.; Chen, J.; Zheng, S.; Fu, L.; Wang, Y.; et al. Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis. Clin. Exp. Med. 2016, 16, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Cronm, M.A.; Guillochonm, É.; Kusnerm, L.; Le Panse, R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front. Immunol. 2020, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Ye, Y.; Qi, J.; Zhang, L.; Xu, L.; Tan, X.; Yu, X.; Liu, Q.; Liu, J.; Zhang, Y.; et al. MicroRNA-181a-5p enhances cell proliferation in medullary thymic epithelial cells via regulating TGF-beta signaling. Acta Biochim Biophys Sin. 2016, 48, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Johnson, S.; Steffens, D.C.; Doraiswamy, P.M. Coenzyme Q10: A Review of Its Promise as a Neuroprotectant. CNS Spectr. 2007, 12, 62–68. [Google Scholar] [CrossRef]
- Andreani, C.; Bartolacci, C.; Guescini, M.; Battistelli, M.; Stocchi, V.; Orlando, F.; Provinciali, M.; Amici, A.; Marchini, C.; Tiano, L.; et al. Combination of Coenzyme Q10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model, Oxidative Med. Cell. Longev. 2018, 2018, 8936251. [Google Scholar] [CrossRef]
- Stefely, J.A.; Pagliarini, D.J. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem. Sci. 2017, 42, 824–843. [Google Scholar] [CrossRef]
- Kokkinopoulou, I.; Moutsatsou, P. Mitochondrial Glucocorticoid Receptors and Their Actions. Int. J. Mol. Sci. 2021, 22, 6054. [Google Scholar] [CrossRef]
Characteristic | Patients with Myasthenia Gravis | Healthy Volunteers | Significance Level (p-Value) |
---|---|---|---|
Gender distribution | |||
Males | 19.61% | 46.67% | 0.01 (X2) |
Females | 80.39% | 53.33% | |
Age, Me [Q1; Q2] | 37.00 [28.50; 41.50] | 35.00 [27.00; 40.75] | 0.40 (U test) |
GO | Genes and its Expression | FOLD | FDR |
---|---|---|---|
GO:0016491: oxidoreductase activity | HADHA ↓, OGDH ↑, IMPDH1 ↓, LDHB ↓, STEAP3 ↑, FDX1 ↓, ALDH4A1 ↓, MSRA ↓, LTC4S ↓, MICAL2 ↑, DECR2 ↓, CIAPIN1 ↓, COX6A1 ↓, GPD2 ↑, SDHB ↓, PRDX4 ↓, ALKBH8 ↑, SCCPDH ↓, RSBN1L ↑, NDUFS3 ↓, DUS4L-BCAP29 ↑, NCF1 ↑, NDUFA2 ↓, NDUFB10 ↓, NDUFB9 ↓, NDUFB8 ↓, NDUFA4 ↓, COX5A ↓ | 4.2 | 0.03 |
GO:0009055: electron transfer activity | FDX1 ↓, CIAPIN1 ↓, COX6A1 ↓, SDHB ↓, NDUFS3 ↓, NDUFA2 ↓, NDUFB10 ↓, NDUFB9 ↓, NDUFB8 ↓, NDUFA4 ↓, NCF1 ↑, ALDH4A1 ↓, COX5A ↓ | 3.7 | 0.01 |
GO:0008137: NADH dehydrogenase (ubiquinone) activity | MT-ND4L ↓, MT-ND1 ↓, NDUFS1 ↑ | 5.3 | 0.03 |
GO:0003954: NADH dehydrogenase activity | NDUFB10 ↓, NDUFA8 ↑, NDUFS1 ↑, NDUFA5 ↓, NDUFS8 ↓, NQO1 ↑, NDUFB4 ↓, NDUFV1 ↑, NDUFA10 ↓, NDUFS4 ↓ | 4.9 | 0.04 |
GO:0039529: RIG-I signaling pathway | RNF135 ↑, RNF125 ↑, BIRC3 ↑, USP15 ↑, C1QBP ↓, NOP53 ↓ | 6.76 | 0.03 |
MicroRNA | Gene Target | Predicted by |
---|---|---|
Hsa-miR-194-5p | RSBN1L RSBN1L RSBN1L SCCPDH RSBN1L NDUFB9 RSBN1L RNF125 RSBN1L RSBN1L | MAMI PicTar TargetRank TargetRank TargetScan TargetScan miRcode BCmicrO BCmicrO Cupid |
Hsa-miR-181a-5p | RSBN1L GPD2 USP15 RNF125 GPD2 USP15 GPD2 USP15 | MIRT707909 ElMMo3 MAMI TargetScan TargetScan TargetScan BCmicrO CoMeTa |
Hsa-miR-148a-3p | RSBN1L RSBN1L RSBN1L RSBN1L RSBN1L RSBN1L USP15 GPD2 | ElMMo3 MAMI PicTar TargetRank TargetScan microrna.org CoMeTa Cupid |
MicroRNA | Correlation Level (rs) | Significance Level (p-Value) |
---|---|---|
hsa-miR-148a-3p | −0.03 | 0.79 |
hsa-miR-181a-5p | 0.11 | 0.36 |
hsa-miR-194-5p | −0.05 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timechko, E.E.; Severina, M.I.; Yakimov, A.M.; Vasilieva, A.A.; Paramonova, A.I.; Isaeva, N.V.; Prokopenko, S.V.; Dmitrenko, D.V. Plasma Biomarkers of Mitochondrial Dysfunction in Patients with Myasthenia Gravis. Med. Sci. 2025, 13, 118. https://doi.org/10.3390/medsci13030118
Timechko EE, Severina MI, Yakimov AM, Vasilieva AA, Paramonova AI, Isaeva NV, Prokopenko SV, Dmitrenko DV. Plasma Biomarkers of Mitochondrial Dysfunction in Patients with Myasthenia Gravis. Medical Sciences. 2025; 13(3):118. https://doi.org/10.3390/medsci13030118
Chicago/Turabian StyleTimechko, Elena E., Marina I. Severina, Alexey M. Yakimov, Anastasia A. Vasilieva, Anastasia I. Paramonova, Natalya V. Isaeva, Semen V. Prokopenko, and Diana V. Dmitrenko. 2025. "Plasma Biomarkers of Mitochondrial Dysfunction in Patients with Myasthenia Gravis" Medical Sciences 13, no. 3: 118. https://doi.org/10.3390/medsci13030118
APA StyleTimechko, E. E., Severina, M. I., Yakimov, A. M., Vasilieva, A. A., Paramonova, A. I., Isaeva, N. V., Prokopenko, S. V., & Dmitrenko, D. V. (2025). Plasma Biomarkers of Mitochondrial Dysfunction in Patients with Myasthenia Gravis. Medical Sciences, 13(3), 118. https://doi.org/10.3390/medsci13030118