NUDT15 Pharmacogenetics in Acute Lymphoblastic Leukemia: Synthesizing Progress for Personalized Thiopurine Therapy
Abstract
1. Introduction
2. Fundamentals of Thiopurine Pharmacogenetics in Acute Lymphoblastic Leukemia
2.1. Acute Lymphoblastic Leukemia
2.2. Metabolism and Mechanism of Action of Thiopurines
2.3. Nucleoside Diphosphatase-Linked Moiety X-Type Motif 15 (NUDT15)
2.3.1. Gene Structure and Enzymatic Function of NUDT15
2.3.2. Functional Impact of Key Genetic Variants
3. NUDT15 Pharmacogenetics: Unraveling the Molecular and Functional Basis
4. The Clinical Impact of NUDT15 Variants: Insights from Observational Studies and RCTs
5. Challenges and Future Perspectives
5.1. Preclinical Studies: Expanding Mechanistic Understanding
5.2. Clinical Studies: Refining Precision and Expanding Generalizability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALL | Acute lymphoblastic leukemia |
6-MP | 6-Mercaptopurine |
ADR | Adverse drug reaction |
NUDT15 | Nudix hydrolase 15 |
TPMT | Thiopurine S-methyltransferase |
RCT | Randomized controlled trial |
T-ALL | T-cell acute lymphoblastic leukemia |
B-ALL | B-cell acute lymphoblastic leukemia |
AZA | Azathioprine |
MeMP | Methyl mercaptopurine |
HGPRT | Hypoxanthine-guanine phosphoribosyltransferase |
TGMP | Thioguanine monophosphate |
IMPDH | Inosine monophosphate dehydrogenase |
GMPS | Guanosine monophosphate synthetase |
TG | Thioguanine |
TGMP | Thioguanosine monophosphate |
6-TGTP | 6-thioguanosine triphosphate |
6-TdGTP | 6-thio-deoxyguanosine triphosphate |
DNA | Deoxyribonucleic acid |
ATP | Adenosine triphosphate |
RNA | Ribonucleic acid |
NT5C2 | 5′-Nucleotidase, Cytosolic II |
PRPS1 | Phosphoribosyl pyrophosphate synthetase 1 |
Trp53 | Transformation related protein 53 |
IBD | Inflammatory bowel disease |
References
- Malard, F.; Mohty, M. Acute Lymphoblastic Leukaemia. Lancet 2020, 395, 1146–1162. [Google Scholar] [CrossRef] [PubMed]
- Toksvang, L.N.; Lee, S.H.R.; Yang, J.J.; Schmiegelow, K. Maintenance Therapy for Acute Lymphoblastic Leukemia: Basic Science and Clinical Translations. Leukemia 2022, 33, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Lafolie, P.; Hayder, S.; Björk, O.; Peterson, C. Intraindividual Variation in 6-Mercaptopurine Pharmacokinetics during Oral Maintenance Therapy of Children with Acute Lymphoblastic Leukaemia. Eur. J. Clin. Pharmacol. 1991, 40, 599–601. [Google Scholar] [CrossRef]
- Bhatia, S.; Landier, W.; Hageman, L.; Sun, C.-L.; Kim, H.; Kornegay, N.; Evans, W.E.; Bostrom, B.C.; Casillas, J.; Angiolillo, A.; et al. High Intra-Individual Variability In Systemic Exposure To 6 Mercaptopurine (6MP) In Children with Acute Lymphoblastic Leukemia (ALL) Contributes To ALL Relapse: Results From a Children’s Oncology Group (COG) Study (AALL03N1). Blood 2013, 122, 59. [Google Scholar] [CrossRef]
- Lafolie, P.; Hayder, S.; Björk, O.; Åhström, L.; Liliemark, J.; Peterson, C. Large Interindividual Variations in the Pharmacokinetics of Oral 6-Mercaptopurine in Maintenance Therapy of Children with Acute Leukaemia and Non-Hodgkin Lymphoma. Acta Paediatr. 1986, 75, 797–803. [Google Scholar] [CrossRef]
- Belen, B.F.; Gürsel, T.; Akyürek, N.; Albayrak, M.; Kaya, Z.; Koçak, Ü. Severe Myelotoxicity Associated with Thiopurine S-Methyltransferase*3A/*3C polymorphisms in a patient with pediatric leukemia and the effect of steroid therapy. Turk. J. Hematol. 2014, 31, 276–285. [Google Scholar] [CrossRef]
- Carvalho, A.T.P.; Esberard, B.C.; Fróes, R.S.B.; Rapozo, D.C.M.; Grinman, A.B.; Simão, T.A.; Santos, J.C.V.C.; Carneiro, A.J.V.; Ribeiro-Pinto, L.F.; de Souza, H.S.P. Thiopurine-Methyltransferase Variants in Inflammatory Bowel Disease: Prevalence and Toxicity in Brazilian Patients. World J. Gastroenterol. 2014, 20, 3327–3334. [Google Scholar] [CrossRef]
- Ramsey, L.B.; Janke, L.J.; Edick, M.J.; Cheng, C.; Williams, R.T.; Sherr, C.J.; Evans, W.E.; Relling, M. V Host Thiopurine Methyltransferase Status Affects Mercaptopurine Antileukemic Effectiveness in a Murine Model. Pharmacogenet. Genom. 2014, 24, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.L.; Wallace, M.C.; Drake, J.M.; Stamp, L.K. Identification of a Novel Thiopurine S-Methyltransferase Allele (TPMT*37). Pharmacogenet. Genom. 2014, 24, 320–323. [Google Scholar] [CrossRef]
- El-Rashedy, F.H.; Ragab, S.M.; Dawood, A.A.; Temraz, S.A. Clinical Implication of Thiopurine Methyltransferase Polymorphism in Children with Acute Lymphoblastic Leukemia: A Preliminary Egyptian Study. Indian J. Med. Paediatr. Oncol. 2015, 36, 265–270. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Xu, H.-Q.; Li, M.; Yang, X.; Yu, S.; Fu, W.-L.; Huang, Q. Association between Thiopurine S-Methyltransferase Polymorphisms and Azathioprine-Induced Adverse Drug Reactions in Patients with Autoimmune Diseases: A Meta-Analysis. PLoS ONE 2015, 10, e0144234. [Google Scholar] [CrossRef]
- Zeglam, H.B.; Benhamer, A.; Aboud, A.; Rtemi, H.; Mattardi, M.; Saleh, S.S.; Bashein, A.; Enattah, N. Polymorphisms of the Thiopurine S-Methyltransferase Gene among the Libyan Population. Libyan J. Med. 2015, 10, 27053. [Google Scholar] [CrossRef]
- Katara, P.; Kuntal, H. TPMT Polymorphism: When Shield Becomes Weakness. Interdiscip. Sci. 2016, 8, 150–155. [Google Scholar] [CrossRef]
- Kim, M.G.; Ko, M.; Kim, I.-W.; Oh, J.M. Meta-Analysis of the Impact of Thioprine S-Methyltransferase Polymorphisms on the Tolerable 6-Mercaptopurine Dose Considering Initial Dose and Ethnic Difference. OncoTargets Ther. 2016, 9, 7133–7139. [Google Scholar] [CrossRef]
- Abaji, R.; Krajinovic, M. Thiopurine S-Methyltransferase Polymorphisms in Acute Lymphoblastic Leukemia, Inflammatory Bowel Disease and Autoimmune Disorders: Influence on Treatment Response. Pharmgenom. Pers. Med. 2017, 10, 143–156. [Google Scholar] [CrossRef]
- Guillotin, V.; Galli, G.; Viallard, J.-F. Usefulness of Thiopurine Methyltransferase Polymorphism Study and Metabolites Measurement for Patients Treated by Azathioprine. Rev. Med. Interne 2018, 39, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Tárnok, A. A Tiopurinkezelés Súlyos Mellékhatásainak Gyakorisága Normális Tiopurin-S-Metiltranszferáz-Genotípusú Gyulladásos Bélbetegségben Szenvedő Gyermekekben. Orv. Hetil. 2019, 160, 179–185. [Google Scholar] [CrossRef]
- Kouwenberg, T.W.; van den Bosch, B.J.C.; Bierau, J.; Te Loo, D.M.W.M.; Coenen, M.J.H.; Hagleitner, M.M. Dosage of 6-Mercaptopurine in Relation to Genetic TPMT and ITPA Variants: Toward Individualized Pediatric Acute Lymphoblastic Leukemia Maintenance Treatment. J. Pediatr. Hematol. Oncol. 2020, 42, e94–e97. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, P.J.; Kay, C.S.K.; Zanlorenzi, M.F.; Ducci, R.D.-P.; Werneck, L.C.; Scola, R.H. Myasthenia Gravis and Azathioprine Treatment: Adverse Events Related to Thiopurine S-Methyl-Transferase (TPMT) Polymorphisms. J. Neurol. Sci. 2020, 412, 116734. [Google Scholar] [CrossRef] [PubMed]
- Sookaromdee, P.; Wiwanitkit, V. Thiopurine S-Methyltransferase Genetic Polymorphism and Its Contribution for Azathioprine-Induced Myelosuppression in Kidney Transplant Recipients: A Summative Analysis. Saudi J. Kidney Dis. Transpl. 2020, 31, 1154–1155. [Google Scholar] [CrossRef]
- Dreisig, K.; Brünner, E.D.; Marquart, H.V.; Helt, L.R.; Nersting, J.; Frandsen, T.L.; Jonsson, O.G.; Taskinen, M.; Vaitkeviciene, G.; Lund, B.; et al. TPMT Polymorphisms and Minimal Residual Disease after 6-Mercaptopurine Post-Remission Consolidation Therapy of Childhood Acute Lymphoblastic Leukaemia. Pediatr. Hematol. Oncol. 2021, 38, 227–238. [Google Scholar] [CrossRef]
- Jantararoungtong, T.; Wiwattanakul, S.; Tiyasirichokchai, R.; Prommas, S.; Sukprasong, R.; Koomdee, N.; Jinda, P.; Rachanakul, J.; Nuntharadthanaphong, N.; Pakakasama, S.; et al. TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia. J. Pers. Med. 2021, 11, 783. [Google Scholar] [CrossRef]
- Schaeffeler, E.; Jaeger, S.U.; Klumpp, V.; Yang, J.J.; Igel, S.; Hinze, L.; Stanulla, M.; Schwab, M. Impact of NUDT15 Genetics on Severe Thiopurine-Related Hematotoxicity in Patients with European Ancestry. Genet. Med. 2019, 21, 2145–2150. [Google Scholar] [CrossRef]
- Zhou, H.; Li, L.; Yang, P.; Yang, L.; Zheng, J.; Zhou, Y.; Han, Y. Optimal Predictor for 6-Mercaptopurine Intolerance in Chinese Children with Acute Lymphoblastic Leukemia: NUDT15, TPMT, or ITPA Genetic Variants? BMC Cancer 2018, 18, 516. [Google Scholar] [CrossRef]
- Dieck, C.L.; Ferrando, A. Genetics and Mechanisms of NT5C2-Driven Chemotherapy Resistance in Relapsed ALL. Blood 2019, 133, 2263–2268. [Google Scholar] [CrossRef] [PubMed]
- Dieck, C.L.; Tzoneva, G.; Forouhar, F.; Carpenter, Z.; Ambesi-Impiombato, A.; Sánchez-Martín, M.; Kirschner-Schwabe, R.; Lew, S.; Seetharaman, J.; Tong, L.; et al. Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 2018, 34, 136–147.e6. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, W.; Moriyama, T.; Liu, C.; Smith, C.; Yang, W.; Qian, M.; Li, Z.; Tulstrup, M.; Schmiegelow, K.; et al. Effects of NT5C2 Germline Variants on 6-Mecaptopurine Metabolism in Children with Acute Lymphoblastic Leukemia. Clin. Pharmacol. Ther. 2021, 109, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Tulstrup, M.; Grosjean, M.; Nielsen, S.N.; Grell, K.; Wolthers, B.O.; Wegener, P.S.; Jonsson, O.G.; Lund, B.; Harila-Saari, A.; Abrahamsson, J.; et al. NT5C2 Germline Variants Alter Thiopurine Metabolism and Are Associated with Acquired NT5C2 Relapse Mutations in Childhood Acute Lymphoblastic Leukaemia. Leukemia 2018, 32, 2527–2535. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, T.; Liu, S.; Li, J.; Meyer, J.; Zhao, X.; Yang, W.; Shao, Y.; Heath, R.; Hnízda, A.; Carroll, W.L.; et al. Mechanisms of NT5C2-Mediated Thiopurine Resistance in Acute Lymphoblastic Leukemia. Mol. Cancer Ther. 2019, 18, 1887–1895. [Google Scholar] [CrossRef]
- Saliba, J.; Evensen, N.A.; Meyer, J.A.; Newman, D.; Nersting, J.; Narang, S.; Ma, X.; Schmiegelow, K.; Carroll, W.L. Feasibility of Monitoring Peripheral Blood to Detect Emerging Clones in Children with Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2020, 67, e28306. [Google Scholar] [CrossRef]
- Yu, S.-L.; Zhang, H.; Ho, B.-C.; Yu, C.-H.; Chang, C.-C.; Hsu, Y.-C.; Ni, Y.-L.; Lin, K.-H.; Jou, S.-T.; Lu, M.-Y.; et al. FPGS Relapse-Specific Mutations in Relapsed Childhood Acute Lymphoblastic Leukemia. Sci. Rep. 2020, 10, 12074. [Google Scholar] [CrossRef]
- Yang, S.-K.; Hong, M.; Baek, J.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.-J.; Park, S.H.; et al. A Common Missense Variant in NUDT15 Confers Susceptibility to Thiopurine-Induced Leukopenia. Nat. Genet. 2014, 46, 1017–1020. [Google Scholar] [CrossRef]
- Lee, J.W.; Cho, H.W.; Ju, H.Y.; Ma, Y.; Yi, E.S.; Yoo, K.H.; Sung, K.W.; Choi, R.; Koo, H.H.; Lee, S.-Y. DNA-Thioguanine Nucleotide as a Treatment Marker in Acute Lymphoblastic Leukemia Patients with NUDT15 Variant Genotypes. PLoS ONE 2021, 22, e0245667. [Google Scholar] [CrossRef]
- Miao, Q.; Lin, Y.; Zhou, Y.; Li, Y.; Zou, Y.; Wang, L.; Bai, Y.; Zhang, J. Association of Genetic Variants in TPMT, ITPA, and NUDT15 With Azathioprine-Induced Myelosuppression in Southwest China Patients with Autoimmune Hepatitis. Sci. Rep. 2021, 11, 7984. [Google Scholar] [CrossRef]
- Khoo, X.H.; Wong, S.Y.; Ibrahim, N.R.W.; Ng, R.T.; Chew, K.S.; Lee, W.S.; Wong, Z.Q.; Ali, R.A.R.; Shahrani, S.; Leow, A.H.; et al. Nudix Hydroxylase 15 Mutations Strongly Predict Thiopurine-Induced Leukopenia Across Different Asian Ethnicities: Implications for Screening in a Diverse Population. Front. Med. 2022, 9, 880937. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Urayama, K.Y.; Mori, M.; Arakawa, Y.; Hasegawa, D.; Noguchi, Y.; Yanagimachi, M.; Keino, D.; Ota, S.; Akahane, K.; et al. Prominence of NUDT15 Genetic Variation Associated with 6-mercaptopurine Tolerance in a Genome-wide Association Study of Japanese Children with Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2022, 199, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Wang, Y.; Duan, S.; Chen, J.; Yang, C.; Cui, T.; Fang, C.; Zhou, Y.; Zhang, H.; Tian, X. NUDT15 Polymorphism in Healthy Children with Bai Nationality in Yunnan of China. Pediatr. Int. 2021, 63, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Raniewicz, M.; Dubaj, M.; Bigosiński, K.; Dembowska, A.; Mitura-Lesiuk, M. Importance of Genetic Diagnosis for Treatment and Prognosis in Acute Lymphoblastic Leukaemia (ALL)—A Case Report. Med. Res. J. 2024, 9, 103–106. [Google Scholar] [CrossRef]
- Hidaka, M.; Inokuchi, K.; Uoshima, N.; Takahashi, N.; Yoshida, N.; Ota, S.; Nakamae, H.; Iwasaki, H.; Watanabe, K.; Kosaka, Y.; et al. Development and Evaluation of a Rapid One-Step High Sensitivity Real-Time Quantitative PCR System for Minor BCR-Abl (E1a2) Test in Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph+ ALL). Jpn. J. Clin. Oncol. 2023, 54, 153–159. [Google Scholar] [CrossRef]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and Adolescent Cancer Statistics, 2014. CA Cancer J Clin 2014, 64, 83–103. [Google Scholar] [CrossRef]
- Ślifirczyk, A.; Piszcz, P.; Ślifirczyk, M.; Michalczuk, T.; Urbańczuk, M.; Celinski, M.; Bytys, M.; Domańska, D.; Nikoniuk, M. Nursing Care of a Child with Acute Lymphoblastic Leukemia. Prog. Health Sci. 2018, 8, 168–173. [Google Scholar] [CrossRef]
- Tillett, T. Zeroing in on a Risk Factor? PBDE Exposure and Acute Lymphoblastic Leukemia. Environ. Health Perspect. 2014, 122, A282. [Google Scholar] [CrossRef]
- Garcia-Hernandez, S.C.; Meneses-Sanchez, P.; Porchia, L.M.; Torres-Rasgado, E.; Pérez-Fuentes, R.; González-Mejia, M.E. Differential Effects of the Methylenetetrahydrofolate Reductase Polymorphisms (C677T and A1298C) on Hematological Malignancies Among Latinos: A Meta-Analysis. Genet. Mol. Biol. 2019, 42, 549–559. [Google Scholar] [CrossRef]
- Clarke, R.; Bruel, A.V.d.; Bankhead, C.; Mitchell, C.; Phillips, B.; Thompson, M. Clinical Presentation of Childhood Leukaemia: A Systematic Review and Meta-Analysis. Arch. Dis. Child. 2016, 101, 894–901. [Google Scholar] [CrossRef]
- Sherief, L.M.; Zakaria, M.; Soliman, B.K.; Kamal, N.M.; Alharthi, S.A.; Abosabie, S.A.; Abdelazeem, M. Cerebral Sinuses Thrombosis Prior to the Diagnosis of Acute Lymphoblastic Leukemia in a Child: A Case Report. SAGE Open Med. Case Rep. 2022, 10, 2050313X221117337. [Google Scholar] [CrossRef]
- Bhatia, R.; Landier, W.; Hageman, L.; Chen, Y.; Kim, H.; Sun, C.-L.; Kornegay, N.; Evans, W.E.; Angiolillo, A.; Bostrom, B.; et al. Systemic Exposure to Thiopurines and Risk of Relapse in Children with Acute Lymphoblastic Leukemia. JAMA Oncol. 2015, 1, 287. [Google Scholar] [CrossRef]
- Möricke, A.; Zimmermann, M.; Reiter, A.; Henze, G.; Schrauder, A.; Gadner, H.; Ludwig, W.D.; Ritter, J.; Harbott, J.; Mann, G.; et al. Long-Term Results of Five Consecutive Trials in Childhood Acute Lymphoblastic Leukemia Performed by the ALL-BFM Study Group from 1981 to 2000. Leukemia 2010, 24, 265–284. [Google Scholar] [CrossRef]
- Moyer, A.M. NUDT15: A Bench to Bedside Success Story. Clin. Biochem. 2021, 92, 1–8. [Google Scholar] [CrossRef]
- Zaza, G.; Cheok, M.; Krynetskaia, N.; Thorn, C.; Stocco, G.; Hebert, J.M.; McLeod, H.; Weinshilboum, R.M.; Relling, M.V.; Evans, W.E.; et al. Thiopurine Pathway. Pharmacogenet. Genom. 2010, 20, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Karran, P.; Attard, N. Thiopurines in Current Medical Practice: Molecular Mechanisms and Contributions to Therapy-Related Cancer. Nat. Rev. Cancer 2008, 8, 24–36. [Google Scholar] [CrossRef]
- Misdaq, M.; Ziegler, S.; Ahsen, N.v.; Oellerich, M.; Asif, A.R. Thiopurines Induce Oxidative Stress in T-Lymphocytes: A Proteomic Approach. Mediat. Inflamm. 2015, 2015, 434825. [Google Scholar] [CrossRef] [PubMed]
- Schmiegelow, K.; Nygaard Nielsen, S.; Frandsen, T.; Nersting, J. Mercaptopurine/Methotrexate Maintenance Therapy of Childhood Acute Lymphoblastic Leukemia: Clinical Facts and Fiction. J. Pediatr. Hematol. Oncol. 2014, 36, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Bhatia, P.; Khera, S.; Trehan, A. Emerging Role of NUDT15 Polymorphisms in 6-Mercaptopurine Metabolism and Dose Related Toxicity in Acute Lymphoblastic Leukaemia. Leuk. Res. 2017, 62, 17–22. [Google Scholar] [CrossRef]
- Valerie, N.C.K.; Hagenkort, A.; Page, B.D.G.; Masuyer, G.; Rehling, D.; Carter, M.; Bevc, L.; Herr, P.; Homan, E.; Sheppard, N.G.; et al. NUDT15 Hydrolyzes 6-Thio-DeoxyGTP to Mediate the Anticancer Efficacy of 6-Thioguanine. Cancer Res. 2016, 76, 5501–5511. [Google Scholar] [CrossRef]
- Moriyama, T.; Nishii, R.; Lin, T.-N.; Kihira, K.; Toyoda, H.; Nersting, J.; Kato, M.; Koh, K.; Inaba, H.; Manabe, A.; et al. The Effects of Inherited NUDT15 Polymorphisms on Thiopurine Active Metabolites in Japanese Children with Acute Lymphoblastic Leukemia. Pharmacogenet. Genom. 2017, 27, 236–239. [Google Scholar] [CrossRef]
- Beaumais, T.A.d.; Fakhoury, M.; Médard, Y.; Azougagh, S.; Zhang, D.; Yakouben, K.; Jacqz-Aigrain, E. Determinants of Mercaptopurine Toxicity in Paediatric Acute Lymphoblastic Leukemia Maintenance Therapy. Br. J. Clin. Pharmacol. 2011, 71, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yin, R.; Sun, G.; Zhou, Y.; Yang, C.; Fang, C.; Wu, Y.; Cui, T.; Liu, L.; Gan, J.; et al. Effects of TPMT, NUDT15, and ITPA Genetic Variants on 6-Mercaptopurine Toxicity for Pediatric Patients with Acute Lymphoblastic Leukemia in Yunnan of China. Front. Pediatr. 2021, 9, 719803. [Google Scholar] [CrossRef]
- da Silva Menezes, E.; de Moraes, F.C.A.; de Nazaré Cohen-Paes, A.; Wanderley, A.V.; Pereira, E.E.B.; Pastana, L.F.; Modesto, A.A.C.; de Assumpção, P.P.; Burbano, R.M.R.; dos Santos, S.E.B.; et al. Influence of Genetic Variations in MiRNA and Genes Encoding Proteins in the MiRNA Synthesis Complex on Toxicity of the Treatment of Pediatric B-Cell ALL in the Brazilian Amazon. Int. J. Mol. Sci. 2023, 24, 4431. [Google Scholar] [CrossRef]
- Moriyama, T.; Nishii, R.; Pérez-Andreu, V.; Yang, W.; Klüssmann, F.A.; Zhao, X.; Lin, T.-N.; Hoshitsuki, K.; Nersting, J.; Kihira, K.; et al. NUDT15 Polymorphisms Alter Thiopurine Metabolism and Hematopoietic Toxicity. Nat. Genet. 2016, 48, 367–373. [Google Scholar] [CrossRef]
- Moriyama, T.; Yang, Y.-L.; Nishii, R.; Ariffin, H.; Liu, C.; Lin, T.-N.; Yang, W.; Lin, D.-T.; Yu, C.-H.; Kham, S.; et al. Novel Variants in NUDT15 and Thiopurine Intolerance in Children with Acute Lymphoblastic Leukemia from Diverse Ancestry. Blood 2017, 130, 1209–1212. [Google Scholar] [CrossRef] [PubMed]
- Somazu, S.; Tanaka, Y.; Tamai, M.; Watanabe, A.; Kagami, K.; Abe, M.; Harama, D.; Shinohara, T.; Akahane, K.; Goi, K.; et al. NUDT15 Polymorphism and NT5C2 and PRPS1 Mutations Influence Thiopurine Sensitivity in Acute Lymphoblastic Leukaemia Cells. J. Cell. Mol. Med. 2021, 25, 10521–10533. [Google Scholar] [CrossRef]
- Yamashita, N.; Kawahara, M.; Imai, T.; Tatsumi, G.; Asai-Nishishita, A.; Andoh, A. Loss of Nudt15 Thiopurine Detoxification Increases Direct DNA Damage in Hematopoietic Stem Cells. Sci. Rep. 2023, 13, 11908. [Google Scholar] [CrossRef]
- Tatsumi, G.; Kawahara, M.; Imai, T.; Nishishita-Asai, A.; Nishida, A.; Inatomi, O.; Yokoyama, A.; Kakuta, Y.; Kito, K.; Andoh, A. Thiopurine-Mediated Impairment of Hematopoietic Stem and Leukemia Cells in Nudt15R138C Knock-in Mice. Leukemia 2020, 34, 882–894. [Google Scholar] [CrossRef]
- Nishii, R.; Moriyama, T.; Janke, L.J.; Yang, W.; Suiter, C.C.; Lin, T.-N.; Li, L.; Kihira, K.; Toyoda, H.; Hofmann, U.; et al. Preclinical Evaluation of NUDT15-Guided Thiopurine Therapy and Its Effects on Toxicity and Antileukemic Efficacy. Blood 2018, 131, 2466–2474. [Google Scholar] [CrossRef] [PubMed]
- Man, P.; Fábry, M.; Sieglová, I.; Kavan, D.; Novák, P.; Hnízda, A. Thiopurine Intolerance-Causing Mutations in NUDT15 Induce Temperature-Dependent Destabilization of the Catalytic Site. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 376–381. [Google Scholar] [CrossRef]
- Suiter, C.C.; Moriyama, T.; Matreyek, K.A.; Yang, W.; Scaletti, E.R.; Nishii, R.; Yang, W.; Hoshitsuki, K.; Singh, M.; Trehan, A.; et al. Massively Parallel Variant Characterization Identifies NUDT15 Alleles Associated with Thiopurine Toxicity. Proc. Natl. Acad. Sci. USA 2020, 117, 5394–5401. [Google Scholar] [CrossRef]
- Kennedy, A.M.; Griffiths, A.M.; Muise, A.M.; Walters, T.D.; Ricciuto, A.; Huynh, H.Q.; Wine, E.; Jacobson, K.; Lawrence, S.; Carman, N.; et al. Landscape of TPMT and NUDT15 Pharmacogenetic Variation in a Cohort of Canadian Pediatric Inflammatory Bowel Disease Patients. Inflamm. Bowel Dis. 2024, 30, 2418–2427. [Google Scholar] [CrossRef]
- Khaeso, K.; Udayachalerm, S.; Komvilaisak, P.; Chainansamit, S.-O.; Suwannaying, K.; Laoaroon, N.; Kuwatjanakul, P.; Nakkam, N.; Sukasem, C.; Puangpetch, A.; et al. Meta-Analysis of NUDT15 Genetic Polymorphism on Thiopurine-Induced Myelosuppression in Asian Populations. Front. Pharmacol. 2021, 12, 784712. [Google Scholar] [CrossRef]
- Wang, H.-H.; He, Y.; Wang, H.-X.; Liao, C.-L.; Peng, Y.; Tao, L.-J.; Zhang, W.; Yang, H.-X. Comparison of TPMT and NUDT15 Polymorphisms in Chinese Patients with Inflammatory Bowel Disease. World J. Gastroenterol. 2018, 24, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Kishibe, M.; Nozaki, H.; Fujii, M.; Iinuma, S.; Ohtsubo, S.; Igawa, S.; Kanno, K.; Honma, M.; Kishibe, K.; Okamoto, K.; et al. Severe Thiopurine-induced Leukocytopenia and Hair Loss in Japanese Patients with Defective NUDT15 Variant: Retrospective Case–Control Study. J. Dermatol. 2018, 45, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Choe, B.H.; Kang, B. Prevention of Thiopurine-Induced Early Leukopenia in a Korean Pediatric Patient with Crohn’s Disease Who Turned out to Possess Homozygous Mutations in NUDT15 R139C. Yeungnam Univ. J. Med. 2020, 37, 332–336. [Google Scholar] [CrossRef]
- Saida, K.; Kamei, K.; Matsumura, S.; Kano, Y.; Sato, M.; Ogura, M.; Andoh, A.; Ishikura, K. Azathioprine-Induced Agranulocytosis and Severe Alopecia After Kidney Transplantation Associated with a NUDT15 Polymorphism: A Case Report. Transpl. Proc. 2018, 50, 3925–3927. [Google Scholar] [CrossRef]
- Fei, X.; Shu, Q.; Zhu, H.; Hua, B.; Wang, S.; Guo, L.; Fang, Y.; Ge, W. NUDT15 R139C Variants Increase the Risk of Azathioprine-Induced Leukopenia in Chinese Autoimmune Patients. Front. Pharmacol. 2018, 9, 460. [Google Scholar] [CrossRef]
- Fang, J.; Jian, C.; Weng, A.; Lin, R. Importance of NUDT15 c.415C>T Phenotype in Treatment of Inflammatory Bowel Disease with Azathioprine and Occurrence of Severe Myelosuppression: A Case Report. Int. J. Clin. Pharmacol. Ther. 2021, 59, 535–538. [Google Scholar] [CrossRef]
- Gu, J.; Lin, Y.; Wang, Y. Case Report: NUDT15 Polymorphism and Severe Azathioprine-Induced Myelosuppression in a Young Chinese Female with Systematic Lupus Erythematosus: A Case Analysis and Literature Review. Front. Pharmacol. 2023, 14, 1001559. [Google Scholar] [CrossRef] [PubMed]
- Ailing, Z.; Jing, Y.; Jingli, L.; Yun, X.; Xiaojian, Z. Further Evidence That a Variant of the Gene NUDT15 May Be an Important Predictor of Azathioprine-Induced Toxicity in Chinese Subjects: A Case Report. J. Clin. Pharm. Ther. 2016, 41, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Correa Jimenez, O.; Yunis, J.; Ballesteros, A.; Sarmiento-Urbina, I. Susceptibility to Thiopurine Toxicity by TPMT and NUDT15 Variants in Colombian Children with Acute Lymphoblastic Leukemia. Colomb. Med. 2021, 52, 1–10. [Google Scholar] [CrossRef]
- Kang, B.; Kim, T.J.; Choi, J.; Baek, S.-Y.; Ahn, S.; Choi, R.; Lee, S.-Y.; Choe, Y.H. Adjustment of Azathioprine Dose Should Be Based on a Lower 6-TGN Target Level to Avoid Leucopenia in NUDT15 Intermediate Metabolisers. Aliment. Pharmacol. Ther. 2020, 52, 459–470. [Google Scholar] [CrossRef]
- Chang, J.Y.; Park, S.J.; Jung, E.S.; Jung, S.-A.; Moon, C.M.; Chun, J.; Park, J.J.; Kim, E.S.; Park, Y.; Kim, T.-I.; et al. Genotype-Based Treatment with Thiopurine Reduces Incidence of Myelosuppression in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 2010–2018.e2. [Google Scholar] [CrossRef]
- Chao, K.; Huang, Y.; Zhu, X.; Tang, J.; Wang, X.; Lin, L.; Guo, H.; Zhang, C.; Li, M.; Yang, Q.; et al. Randomised Clinical Trial: Dose Optimising Strategy by NUDT15 Genotyping Reduces Leucopenia during Thiopurine Treatment of Crohn’s Disease. Aliment. Pharmacol. Ther. 2021, 54, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, L.; Sun, L.-R.; Zhang, L.; Wang, H.-M.; Liu, X.-T.; Yang, F.; Wu, K.-L.; Liang, Y.-L.; Zhao, B.-B.; et al. Individualized Use of 6-Mercaptopurine in Chinese Children with ALL: A Multicenter Randomized Controlled Trial. Clin. Pharmacol. Ther. 2024, 115, 213–220. [Google Scholar] [CrossRef]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.-H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef]
- Suarez-Kurtz, G.; Almeida, C.W.; Chapchap, E.; Schramm, M.T.; Ikoma-Coltutato, M.R.V.; Lins, M.M.; Fonseca, T.C.C.; Aguiar, T.F.; Emerenciano, M. Pharmacogenetic Testing for Thiopurine Drugs in Brazilian Acute Lymphoblastic Leukemia Patients. Clinics 2023, 78, 100214. [Google Scholar] [CrossRef]
- Moradveisi, B.; Muwakkit, S.; Zamani, F.; Ghaderi, E.; Mohammadi, E.; Zgheib, N.K. ITPA, TPMT, and NUDT15 Genetic Polymorphisms Predict 6-Mercaptopurine Toxicity in Middle Eastern Children with Acute Lymphoblastic Leukemia. Front. Pharmacol. 2019, 10, 916. [Google Scholar] [CrossRef]
- Zhang, F.; Amat, G.; Tang, Y.; Chen, R.; Tian, X.; Hu, W.; Chen, C.; Shen, S.; Xie, Y. NUDT15 Genetic Variants in Chinese Han, Uighur, Kirghiz, and Dai Nationalities. Front. Pediatr. 2022, 10, 832363. [Google Scholar] [CrossRef] [PubMed]
- Rehling, D.; Zhang, S.M.; Jemth, A.-S.; Koolmeister, T.; Throup, A.; Wallner, O.; Scaletti, E.; Moriyama, T.; Nishii, R.; Davies, J.; et al. Crystal Structures of NUDT15 Variants Enabled by a Potent Inhibitor Reveal the Structural Basis for Thiopurine Sensitivity. J. Biol. Chem. 2021, 296, 100568. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubis, I.S.; Anggadiredja, K.; Artarini, A.A.; Sari, N.M.; Suryawan, N.; Zazuli, Z. NUDT15 Pharmacogenetics in Acute Lymphoblastic Leukemia: Synthesizing Progress for Personalized Thiopurine Therapy. Med. Sci. 2025, 13, 112. https://doi.org/10.3390/medsci13030112
Lubis IS, Anggadiredja K, Artarini AA, Sari NM, Suryawan N, Zazuli Z. NUDT15 Pharmacogenetics in Acute Lymphoblastic Leukemia: Synthesizing Progress for Personalized Thiopurine Therapy. Medical Sciences. 2025; 13(3):112. https://doi.org/10.3390/medsci13030112
Chicago/Turabian StyleLubis, Isfahan Shah, Kusnandar Anggadiredja, Aluicia Anita Artarini, Nur Melani Sari, Nur Suryawan, and Zulfan Zazuli. 2025. "NUDT15 Pharmacogenetics in Acute Lymphoblastic Leukemia: Synthesizing Progress for Personalized Thiopurine Therapy" Medical Sciences 13, no. 3: 112. https://doi.org/10.3390/medsci13030112
APA StyleLubis, I. S., Anggadiredja, K., Artarini, A. A., Sari, N. M., Suryawan, N., & Zazuli, Z. (2025). NUDT15 Pharmacogenetics in Acute Lymphoblastic Leukemia: Synthesizing Progress for Personalized Thiopurine Therapy. Medical Sciences, 13(3), 112. https://doi.org/10.3390/medsci13030112