Exploring the Interplay Between Kidney Dysfunction and Cardiovascular Disease
Abstract
:1. Introduction
2. Molecular Mechanism of Development of Cardiovascular Disease in CKD Patients
- (a)
- Vascular Calcification: The mechanisms underlying vascular calcification in CKD include increased phosphate levels, abnormal calcium metabolism, and the role of inflammation. These contribute to arterial stiffness and increased cardiovascular risk in CKD patients [18].
- (b)
- Inflammation and Oxidative Stress: Chronic inflammation in CKD promotes oxidative stress, which damages endothelial cells and contributes to atherosclerosis. Cytokines and other inflammatory mediators play a significant role in this process, facilitating cardiovascular deterioration. More production of reactive oxygen species (ROS), and reduction in antioxidants in dialysis procedures also increase oxidative stress [19].
- (c)
- Alterations in Ion Channels: Changes in cardiac ion channels and repolarization processes can lead to arrhythmias in CKD patients. These alterations are influenced by electrolyte imbalances and the effects of uremic toxin. The uremic toxin also increases calcification in blood vessels and is responsible for inflammation [20].
- (d)
- Nitric Oxide Signaling: The role of nitric oxide (NO) in regulating vascular tone and its dysregulation in CKD leads to endothelial dysfunction, contributing to hypertension and cardiovascular complications. Impaired NO availability can result from oxidative stress and altered metabolic pathways in CKD patients. NO signaling and dysregulation leads to the development of CVD, which is described below in detail.
2.1. Role of Nitric Oxide in the Development of Cardiovascular Disease
2.2. Kidney Dysfunction and Atherosclerosis in Coronary Artery
2.3. Kidney Dysfunction and Septic Shock
2.4. Kidney Dysfunction and Reperfusion Injury
2.5. Effect of Nitric Oxide on Tubular Reabsorption in Chronic Kidney Disease (CKD)
2.6. Molecular Mechanism of Cardiorenal Syndrome
3. Chronic Complications Associated with CKD and Dialysis
3.1. Intradialytic Hypertension
3.2. Left Ventricular Hypertrophy (LVH)
3.3. Cardioprotective Role of Klotho
3.4. Valvular Heart Diseases
3.5. Heart Failure
3.6. SGLT2 Inhibitors and CKD-Associated Heart Failure
3.7. Arrhythmias
3.8. Dilated Cardiomyopathy in Diabetes Patients Associated with CKD
3.9. Coronary Heart Disease (CHD)
3.10. Obesity as a Risk Factor for Dialysis Patients
3.11. Uremic Toxins
3.12. Volume Overload
3.13. Acid–Base Balance
3.14. Dyslipidemia
3.15. Sclerostin as a Risk Factor for CKD and Cardiovascular Disease
3.16. Hemodialysis and Cardiovascular Risk
3.16.1. Diffuse Myocardial Interstitial Fibrosis
3.16.2. Macrovascular Changes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heart Disease and Stroke Statistics—2023 Update. Available online: https://professional.heart.org/en/science-news/heart-disease-and-stroke-statistics-2023-update (accessed on 13 December 2024).
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Bowry, A.D.K.; Lewey, J.; Dugani, S.B.; Choudhry, N.K. The Burden of Cardiovascular Disease in Low- and Middle-Income Countries: Epidemiology and Management. Can. J. Cardiol. 2015, 31, 1151–1159. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Kdigo–Kidney Disease|Improving Global Outcomes. Available online: https://kdigo.org/ (accessed on 29 December 2024).
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; De Zeeuw, D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and Classification of Chronic Kidney Disease: A Position Statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef]
- KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30675420/ (accessed on 11 October 2024).
- Chronic Kidney Disease—PAHO/WHO|Pan American Health Organization. Available online: https://www.paho.org/en/topics/chronic-kidney-disease (accessed on 16 December 2024).
- Gonzalez Guerrico, A.M.; Lieske, J.; Klee, G.; Kumar, S.; Lopez-Baez, V.; Wright, A.M.; Bobart, S.; Shevell, D.; Maldonado, M.; Troost, J.P.; et al. Urinary CD80 Discriminates Among Glomerular Disease Types and Reflects Disease Activity. Kidney Int. Rep. 2020, 5, 2021–2031. [Google Scholar] [CrossRef]
- Jayachandran, M.; Yuzhakov, S.V.; Kumar, S.; Larson, N.B.; Enders, F.T.; Milliner, D.S.; Rule, A.D.; Lieske, J.C. Specific Populations of Urinary Extracellular Vesicles and Proteins Differentiate Type 1 Primary Hyperoxaluria Patients without and with Nephrocalcinosis or Kidney Stones. Orphanet J. Rare Dis. 2020, 15, 319. [Google Scholar] [CrossRef]
- Murdeshwar, H.N.; Anjum, F. Hemodialysis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Vadakedath, S.; Kandi, V. Dialysis: A Review of the Mechanisms Underlying Complications in the Management of Chronic Renal Failure. Cureus 2017, 9, e1603. [Google Scholar] [CrossRef]
- Tattersall, J.; Dekker, F.; Heimbürger, O.; Jager, K.J.; Lameire, N.; Lindley, E.; Van Biesen, W.; Vanholder, R.; Zoccali, C.; ERBP Advisory Board. When to Start Dialysis: Updated Guidance Following Publication of the Initiating Dialysis Early and Late (IDEAL) Study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2011, 26, 2082–2086. [Google Scholar] [CrossRef]
- Nemzoff, C.; Ahmed, N.; Olufiranye, T.; Igiraneza, G.; Kalisa, I.; Chadha, S.; Hakiba, S.; Rulisa, A.; Riro, M.; Chalkidou, K.; et al. Rapid Cost-Effectiveness Analysis: Hemodialysis versus Peritoneal Dialysis for Patients with Acute Kidney Injury in Rwanda. Cost Eff. Resour. Alloc. 2024, 22, 35. [Google Scholar] [CrossRef]
- Shaikh, M.; Woodward, M.; John, O.; Bassi, A.; Jan, S.; Sahay, M.; Taduri, G.; Gallagher, M.; Knight, J.; Jha, V. Utilization, Costs, and Outcomes for Patients Receiving Publicly Funded Hemodialysis in India. Kidney Int. 2018, 94, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Clark, S.; Wen, X. 5.52—Artificial Organs: Kidney. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, NJ, USA, 2011; pp. 685–698. ISBN 978-0-08-088504-9. [Google Scholar]
- Vervloet, M.G.; Sezer, S.; Massy, Z.A.; Johansson, L.; Cozzolino, M.; Fouque, D.; ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group. The Role of Phosphate in Kidney Disease. Nat. Rev. Nephrol. 2017, 13, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Arendshorst, W.J.; Vendrov, A.E.; Kumar, N.; Ganesh, S.K.; Madamanchi, N.R. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants 2024, 13, 1454. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, T.W.; Pawlak, K.; Karbowska, M.; Myśliwiec, M.; Pawlak, D. Indoxyl Sulfate—The Uremic Toxin Linking Hemostatic System Disturbances with the Prevalence of Cardiovascular Disease in Patients with Chronic Kidney Disease. BMC Nephrol. 2017, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Imig, J.D.; Roman, R.J. Nitric Oxide Modulates Vascular Tone in Preglomerular Arterioles. Hypertens. Dallas Tex 1979 1992, 19, 770–774. [Google Scholar] [CrossRef]
- Loscalzo, J.; Welch, G. Nitric Oxide and Its Role in the Cardiovascular System. Prog. Cardiovasc. Dis. 1995, 38, 87–104. [Google Scholar] [CrossRef]
- Cabral, P.D.; Garvin, J.L. TRPV4 Activation Mediates Flow-Induced Nitric Oxide Production in the Rat Thick Ascending Limb. Am. J. Physiol. Renal Physiol. 2014, 307, F666–F672. [Google Scholar] [CrossRef]
- Darby, W.G.; Potocnik, S.; Ramachandran, R.; Hollenberg, M.D.; Woodman, O.L.; McIntyre, P. Shear Stress Sensitizes TRPV4 in Endothelium-Dependent Vasodilatation. Pharmacol. Res. 2018, 133, 152–159. [Google Scholar] [CrossRef]
- Yadav, R.; Jaryal, A.K.; Mallick, H.N. Participation of Preoptic Area TRPV4 Ion Channel in Regulation of Body Temperature. J. Therm. Biol. 2017, 66, 81–86. [Google Scholar] [CrossRef]
- Toda, N.; Okamura, T. Modulation of Renal Blood Flow and Vascular Tone by Neuronal Nitric Oxide Synthase-Derived Nitric Oxide. J. Vasc. Res. 2011, 48, 1–10. [Google Scholar] [CrossRef]
- Iring, A.; Jin, Y.-J.; Albarrán-Juárez, J.; Siragusa, M.; Wang, S.; Dancs, P.T.; Nakayama, A.; Tonack, S.; Chen, M.; Künne, C.; et al. Shear Stress-Induced Endothelial Adrenomedullin Signaling Regulates Vascular Tone and Blood Pressure. J. Clin. Investig. 2019, 129, 2775–2791. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Coresh, J.; Smith, J.C.; Eckfeldt, J.; Klag, M.J. Plasma Lipids and Risk of Developing Renal Dysfunction: The Atherosclerosis Risk in Communities Study. Kidney Int. 2000, 58, 293–301. [Google Scholar] [CrossRef]
- Ruan, X.Z.; Varghese, Z.; Moorhead, J.F. An Update on the Lipid Nephrotoxicity Hypothesis. Nat. Rev. Nephrol. 2009, 5, 713–721. [Google Scholar] [CrossRef]
- Goek, O.-N.; Köttgen, A.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. Association of Apolipoprotein A1 and B with Kidney Function and Chronic Kidney Disease in Two Multiethnic Population Samples. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2012, 27, 2839–2847. [Google Scholar] [CrossRef]
- Cohen, R.A.; Zitnay, K.M.; Haudenschild, C.C.; Cunningham, L.D. Loss of Selective Endothelial Cell Vasoactive Functions Caused by Hypercholesterolemia in Pig Coronary Arteries. Circ. Res. 1988, 63, 903–910. [Google Scholar] [CrossRef]
- Takahashi, M.; Yui, Y.; Yasumoto, H.; Aoyama, T.; Morishita, H.; Hattori, R.; Kawai, C. Lipoproteins Are Inhibitors of Endothelium-Dependent Relaxation of Rabbit Aorta. Am. J. Physiol. 1990, 258, H1–H8. [Google Scholar] [CrossRef]
- Mudd, J.O.; Borlaug, B.A.; Johnston, P.V.; Kral, B.G.; Rouf, R.; Blumenthal, R.S.; Kwiterovich, P.O. Beyond Low-Density Lipoprotein Cholesterol: Defining the Role of Low-Density Lipoprotein Heterogeneity in Coronary Artery Disease. J. Am. Coll. Cardiol. 2007, 50, 1735–1741. [Google Scholar] [CrossRef]
- Glauser, M.P.; Zanetti, G.; Baumgartner, J.D.; Cohen, J. Septic Shock: Pathogenesis. Lancet Lond. Engl. 1991, 338, 732–736. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe Sepsis and Septic Shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Stuehr, D.J.; Cho, H.J.; Kwon, N.S.; Weise, M.F.; Nathan, C.F. Purification and Characterization of the Cytokine-Induced Macrophage Nitric Oxide Synthase: An FAD- and FMN-Containing Flavoprotein. Proc. Natl. Acad. Sci. USA 1991, 88, 7773–7777. [Google Scholar] [CrossRef]
- Salvemini, D.; Korbut, R.; Anggård, E.; Vane, J. Immediate Release of a Nitric Oxide-like Factor from Bovine Aortic Endothelial Cells by Escherichia Coli Lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1990, 87, 2593–2597. [Google Scholar] [CrossRef] [PubMed]
- Valentine, V. The Role of the Kidney and Sodium-Glucose Cotransporter-2 Inhibition in Diabetes Management. Clin. Diabetes 2012, 30, 151–155. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.-Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Li, C.-J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 46, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent Hydroxyl Radical Production by Peroxynitrite: Implications for Endothelial Injury from Nitric Oxide and Superoxide. Proc. Natl. Acad. Sci. USA 1990, 87, 1620–1624. [Google Scholar] [CrossRef]
- Ortiz, P.A.; Garvin, J.L. Role of Nitric Oxide in the Regulation of Nephron Transport. Am. J. Physiol. Renal Physiol. 2002, 282, F777–F784. [Google Scholar] [CrossRef]
- Carlström, M. Nitric Oxide Signalling in Kidney Regulation and Cardiometabolic Health. Nat. Rev. Nephrol. 2021, 17, 575–590. [Google Scholar] [CrossRef]
- Garvin, J.L.; Herrera, M.; Ortiz, P.A. Regulation of Renal NaCl Transport by Nitric Oxide, Endothelin, and ATP: Clinical Implications. Annu. Rev. Physiol. 2011, 73, 359–376. [Google Scholar] [CrossRef]
- Satoh, N.; Nakamura, M.; Suzuki, A.; Tsukada, H.; Horita, S.; Suzuki, M.; Moriya, K.; Seki, G. Effects of Nitric Oxide on Renal Proximal Tubular Na+ Transport. BioMed Res. Int. 2017, 2017, 6871081. [Google Scholar] [CrossRef]
- Castrop, H.; Schießl, I.M. Physiology and Pathophysiology of the Renal Na-K-2Cl Cotransporter (NKCC2). Am. J. Physiol.-Ren. Physiol. 2014, 307, F991–F1002. [Google Scholar] [CrossRef]
- Tojo, A.; Onozato, M.L.; Fujita, T. Role of Macula Densa Neuronal Nitric Oxide Synthase in Renal Diseases. Med. Mol. Morphol. 2006, 39, 2–7. [Google Scholar] [CrossRef]
- Wilcox, C.S.; Welch, W.J.; Murad, F.; Gross, S.S.; Taylor, G.; Levi, R.; Schmidt, H.H. Nitric Oxide Synthase in Macula Densa Regulates Glomerular Capillary Pressure. Proc. Natl. Acad. Sci. USA 1992, 89, 11993–11997. [Google Scholar] [CrossRef] [PubMed]
- Kousa, O.; Mullane, R.; Aboeata, A. Cardiorenal Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.A.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef] [PubMed]
- Chahal, R.S.; Chukwu, C.A.; Kalra, P.R.; Kalra, P.A. Heart Failure and Acute Renal Dysfunction in the Cardiorenal Syndrome. Clin. Med. 2020, 20, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Bucharles, S.G.E.; Wallbach, K.K.S.; de Moraes, T.P.; Pecoits-Filho, R. Hypertension in Patients on Dialysis: Diagnosis, Mechanisms, and Management. J. Bras. Nefrol. 2019, 41, 400–411. [Google Scholar] [CrossRef]
- Lange, P.S.; Langley, B.; Lu, P.; Ratan, R.R. Novel Roles for Arginase in Cell Survival, Regeneration, and Translation in the Central Nervous System. J. Nutr. 2004, 134, 2812S–2817S. [Google Scholar] [CrossRef]
- Inrig, J.K. Intradialytic Hypertension: A Less-Recognized Cardiovascular Complication of Hemodialysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2010, 55, 580–589. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Lin, T.-Y.; Hung, S.-C.; Liu, P.-Y.; Hung, W.-C.; Tsai, W.-C.; Tsai, Y.-C.; Delicano, R.A.; Chuang, Y.-S.; Kuo, M.-C.; et al. Differences in the Microbial Composition of Hemodialysis Patients Treated with and without β-Blockers. J. Pers. Med. 2021, 11, 198. [Google Scholar] [CrossRef]
- Słabiak-Błaż, N.; Piecha, G. Endogenous Mammalian Cardiotonic Steroids—A New Cardiovascular Risk Factor?—A Mini-Review. Life 2021, 11, 727. [Google Scholar] [CrossRef]
- Inserra, F.; Forcada, P.; Castellaro, A.; Castellaro, C. Chronic Kidney Disease and Arterial Stiffness: A Two-Way Path. Front. Med. 2021, 8, 765924. [Google Scholar] [CrossRef]
- Chue, C.D.; Townend, J.N.; Steeds, R.P.; Ferro, C.J. Arterial Stiffness in Chronic Kidney Disease: Causes and Consequences. Heart Br. Card. Soc. 2010, 96, 817–823. [Google Scholar] [CrossRef]
- Sibal, L.; Agarwal, S.C.; Home, P.D.; Boger, R.H. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr. Cardiol. Rev. 2010, 6, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.L.; Plesner, L.L.; Warming, P.E.; Mortensen, O.H.; Iversen, K.K.; Heaf, J.G. FGF23 in Hemodialysis Patients Is Associated with Left Ventricular Hypertrophy and Reduced Ejection Fraction. Nefrologia 2019, 39, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.J.; Wu, M.-S. Fibroblast Growth Factor 23: A Possible Cause of Left Ventricular Hypertrophy in Hemodialysis Patients. Am. J. Med. Sci. 2009, 337, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Ganau, A.; Devereux, R.B.; Roman, M.J.; de Simone, G.; Pickering, T.G.; Saba, P.S.; Vargiu, P.; Simongini, I.; Laragh, J.H. Patterns of Left Ventricular Hypertrophy and Geometric Remodeling in Essential Hypertension. J. Am. Coll. Cardiol. 1992, 19, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Movahed, M.R.; Ramaraj, R.; Manrique, C.; Hashemzadeh, M. Left Ventricular Hypertrophy Is Independently Associated with All-Cause Mortality. Am. J. Cardiovasc. Dis. 2022, 12, 38–41. [Google Scholar]
- Leifheit-Nestler, M.; Haffner, D. How FGF23 Shapes Multiple Organs in Chronic Kidney Disease. Mol. Cell. Pediatr. 2021, 8, 12. [Google Scholar] [CrossRef]
- Zhang, J.; Kumar, S.; Jayachandran, M.; Herrera Hernandez, L.P.; Wang, S.; Wilson, E.M.; Lieske, J.C. Excretion of Urine Extracellular Vesicles Bearing Markers of Activated Immune Cells and Calcium/Phosphorus Physiology Differ between Calcium Kidney Stone Formers and Non-Stone Formers. BMC Nephrol. 2021, 22, 204. [Google Scholar] [CrossRef]
- Zou, D.; Wu, W.; He, Y.; Ma, S.; Gao, J. The Role of Klotho in Chronic Kidney Disease. BMC Nephrol. 2018, 19, 285. [Google Scholar] [CrossRef]
- Kanbay, M.; Demiray, A.; Afsar, B.; Covic, A.; Tapoi, L.; Ureche, C.; Ortiz, A. Role of Klotho in the Development of Essential Hypertension. Hypertension 2021, 77, 740–750. [Google Scholar] [CrossRef]
- Neyra, J.A.; Hu, M.C. Potential Application of Klotho in Human Chronic Kidney Disease. Bone 2017, 100, 41–49. [Google Scholar] [CrossRef]
- Eder, P.; Molkentin, J.D. TRPC Channels As Effectors of Cardiac Hypertrophy. Circ. Res. 2011, 108, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Rroji, M.; Figurek, A.; Spasovski, G. Should We Consider the Cardiovascular System While Evaluating CKD-MBD? Toxins 2020, 12, 140. [Google Scholar] [CrossRef]
- Marin, J.M.; Agusti, A.; Villar, I.; Forner, M.; Nieto, D.; Carrizo, S.J.; Barbé, F.; Vicente, E.; Wei, Y.; Nieto, F.J.; et al. Association between Treated and Untreated Obstructive Sleep Apnea and Risk of Hypertension. JAMA 2012, 307, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, I.A.; Abrahams, C. Sclero-Calcific Mitral Valve Changes in Patients with Chronic Renal Failure on Haemodialysis. J. R. Coll. Physicians Lond. 1987, 21, 143–147. [Google Scholar]
- Hoevelmann, J.; Mahfoud, F.; Lauder, L.; Scheller, B.; Böhm, M.; Ewen, S. Valvular Heart Disease in Patients with Chronic Kidney Disease. Herz 2021, 46, 228–233. [Google Scholar] [CrossRef]
- Adam, E.L. Progression of Valvular Heart Disease in Dialysis Patients: How to Stop It? J. Bras. Nefrol. 2024, 46, e2024E005. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Njoroge, J.N.; Teerlink, J.R. Pathophysiology and Therapeutic Approaches to Acute Decompensated Heart Failure. Circ. Res. 2021, 128, 1468–1486. [Google Scholar] [CrossRef]
- Segall, L.; Nistor, I.; Covic, A. Heart Failure in Patients with Chronic Kidney Disease: A Systematic Integrative Review. BioMed Res. Int. 2014, 2014, 937398. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Liu, Y.-Y.; Li, J.; Zhang, Y.-Y.; Ding, Y.-F.; Peng, Y.-R. Gualou Xiebai Decoction Ameliorates Cardiorenal Syndrome Type II by Regulation of PI3K/AKT/NF-κB Signalling Pathway. Phytomed. Int. J. Phytother. Phytopharm. 2024, 123, 155172. [Google Scholar] [CrossRef] [PubMed]
- Cice, G.; Ferrara, L.; Di Benedetto, A.; Russo, P.E.; Marinelli, G.; Pavese, F.; Iacono, A. Dilated Cardiomyopathy in Dialysis Patients--Beneficial Effects of Carvedilol: A Double-Blind, Placebo-Controlled Trial. J. Am. Coll. Cardiol. 2001, 37, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Park, E.-G.; Kim, S.; Kim, S.G.; Hahn, S.; Kim, N.H. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2019, 9, 13009. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Solini, A. SGLT2 Inhibition in Diabetes Mellitus: Rationale and Clinical Prospects. Nat. Rev. Endocrinol. 2012, 8, 495–502. [Google Scholar] [CrossRef]
- Scheen, A.J. Pharmacodynamics, Efficacy and Safety of Sodium-Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs 2015, 75, 33–59. [Google Scholar] [CrossRef]
- Jung, C.H.; Jang, J.E.; Park, J.-Y. A Novel Therapeutic Agent for Type 2 Diabetes Mellitus: SGLT2 Inhibitor. Diabetes Metab. J. 2014, 38, 261–273. [Google Scholar] [CrossRef]
- Piperidou, A.; Sarafidis, P.; Boutou, A.; Thomopoulos, C.; Loutradis, C.; Alexandrou, M.E.; Tsapas, A.; Karagiannis, A. The Effect of SGLT-2 Inhibitors on Albuminuria and Proteinuria in Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Hypertens. 2019, 37, 1334–1343. [Google Scholar] [CrossRef]
- Sternlicht, H.K.; Bakris, G.L. Reductions in Albuminuria with SGLT2 Inhibitors: A Marker for Improved Renal Outcomes in Patients without Diabetes? Lancet Diabetes Endocrinol. 2020, 8, 553–555. [Google Scholar] [CrossRef]
- Zeng, X.; Tian, Y.; Liang, X.; Wu, X.; Yao, C.; Chen, X. SGLT2i Relieve Proteinuria in Diabetic Nephropathy Patients Potentially by Inhibiting Renal Oxidative Stress Rather than through AGEs Pathway. Diabetol. Metab. Syndr. 2024, 16, 46. [Google Scholar] [CrossRef]
- Usman, M.S.; Siddiqi, T.J.; Anker, S.D.; Bakris, G.L.; Bhatt, D.L.; Filippatos, G.; Fonarow, G.C.; Greene, S.J.; Januzzi, J.L.; Khan, M.S.; et al. Effect of SGLT2 Inhibitors on Cardiovascular Outcomes Across Various Patient Populations. J. Am. Coll. Cardiol. 2023, 81, 2377–2387. [Google Scholar] [CrossRef]
- Genovesi, S.; Vincenti, A.; Rossi, E.; Pogliani, D.; Acquistapace, I.; Stella, A.; Valsecchi, M.G. Atrial Fibrillation and Morbidity and Mortality in a Cohort of Long-Term Hemodialysis Patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2008, 51, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Tumlin, J.A.; Roy-Chaudhury, P.; Koplan, B.A.; Costea, A.I.; Kher, V.; Williamson, D.; Pokhariyal, S.; Charytan, D.M.; MiD investigators and Committees. Relationship between Dialytic Parameters and Reviewer Confirmed Arrhythmias in Hemodialysis Patients in the Monitoring in Dialysis Study. BMC Nephrol. 2019, 20, 80. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.-H.; Tang, C.; Li, G.-L.; Luobu, C.; Qing, D.; Ma, Z.-H.; Qu, J.-F.; Suolang, L.; Liu, L.-J. Mineral and Bone Disorder in Hemodialysis Patients in the Tibetan Plateau: A Multicenter Cross-Sectional Study. Ren. Fail. 2019, 41, 636–643. [Google Scholar] [CrossRef]
- Shah, N.; Gada, J.V.; Billa, V.S.; Kothari, J.P.; Bichu, S.D.; Usulumarty, D.H.; Khaire, S.S.; Varthakavi, P.K.; Bhagwat, N.M. Targeting Predialysis Glucose up to 180 Mg/Dl Reduces Glycemic Variability in End Stage Diabetic Nephropathy. Indian J. Endocrinol. Metab. 2022, 26, 439–445. [Google Scholar] [CrossRef]
- Ghaderian, S.B.; Hayati, F.; Shayanpour, S.; Beladi Mousavi, S.S. Diabetes and End-Stage Renal Disease; a Review Article on New Concepts. J. Ren. Inj. Prev. 2015, 4, 28–33. [Google Scholar] [CrossRef]
- Aoki, J.; Ikari, Y. Cardiovascular Disease in Patients with End-Stage Renal Disease on Hemodialysis. Ann. Vasc. Dis. 2017, 10, 327–337. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Adamczak, M.; de Oliveira, R.B.; Massy, Z.A.; Sarafidis, P.; Agarwal, R.; Mark, P.B.; Kotanko, P.; Ferro, C.J.; et al. Cardiovascular Complications in Chronic Kidney Disease: A Review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 2023, 119, 2017–2032. [Google Scholar] [CrossRef]
- Alalawi, F.; Bashier, A. Management of Diabetes Mellitus in Dialysis Patients: Obstacles and Challenges. Diabetes Metab. Syndr. 2021, 15, 1025–1036. [Google Scholar] [CrossRef]
- Burlacu, A.; Genovesi, S.; Basile, C.; Ortiz, A.; Mitra, S.; Kirmizis, D.; Kanbay, M.; Davenport, A.; van der Sande, F.; Covic, A.; et al. Coronary Artery Disease in Dialysis Patients: Evidence Synthesis, Controversies and Proposed Management Strategies. J. Nephrol. 2021, 34, 39–51. [Google Scholar] [CrossRef]
- Zuidema, M.Y.; Dellsperger, K.C. Myocardial Stunning with Hemodialysis: Clinical Challenges of the Cardiorenal Patient. Cardiorenal Med. 2012, 2, 125–133. [Google Scholar] [CrossRef]
- Diwan, T.S.; Cuffy, M.C.; Linares-Cervantes, I.; Govil, A. Impact of Obesity on Dialysis and Transplant and Its Management. Semin. Dial. 2020, 33, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Elagizi, A.; Lavie, C.J.; O’Keefe, E.; Marshall, K.; O’Keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. Oxidative Stress and Acute Kidney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers—Interventions, and Future Perspectives. Oxid. Med. Cell. Longev. 2017, 2017, 6193694. [Google Scholar] [CrossRef]
- Locatelli, F.; Canaud, B.; Eckardt, K.-U.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative Stress in End-Stage Renal Disease: An Emerging Threat to Patient Outcome. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2003, 18, 1272–1280. [Google Scholar] [CrossRef]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Dounousi, E.; Mertens, P.R. Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 3081856. [Google Scholar] [CrossRef]
- Brady, T.M. The Role of Obesity in the Development of Left Ventricular Hypertrophy Among Children and Adolescents. Curr. Hypertens. Rep. 2016, 18, 3. [Google Scholar] [CrossRef]
- Yadav, R.; Swetanshu; Singh, P. The Molecular Mechanism of Obesity: The Science behind Natural Exercise Yoga and Healthy Diets in the Treatment of Obesity. Curr. Probl. Cardiol. 2024, 49, 102345. [Google Scholar] [CrossRef]
- Yadav, R.; Nigam, A.; Mishra, R.; Gupta, S.; Chaudhary, A.A.; Khan, S.-U.-D.; Almuqri, E.A.; Ahmed, Z.H.; Rustagi, S.; Singh, D.P.; et al. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med. Sci. 2024, 12, 55. [Google Scholar] [CrossRef]
- Moradi, H.; Sica, D.A.; Kalantar-Zadeh, K. Cardiovascular Burden Associated with Uremic Toxins in Patients with Chronic Kidney Disease. Am. J. Nephrol. 2013, 38, 136–148. [Google Scholar] [CrossRef]
- Vanholder, R.; Baurmeister, U.; Brunet, P.; Cohen, G.; Glorieux, G.; Jankowski, J.; European Uremic Toxin Work Group. A Bench to Bedside View of Uremic Toxins. J. Am. Soc. Nephrol. JASN 2008, 19, 863–870. [Google Scholar] [CrossRef]
- Wojtaszek, E.; Oldakowska-Jedynak, U.; Kwiatkowska, M.; Glogowski, T.; Malyszko, J. Uremic Toxins, Oxidative Stress, Atherosclerosis in Chronic Kidney Disease, and Kidney Transplantation. Oxid. Med. Cell. Longev. 2021, 2021, 6651367. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Osaka, M.; Higuchi, Y.; Nishijima, F.; Ishii, H.; Yoshida, M. Indoxyl Sulfate Induces Leukocyte-Endothelial Interactions through up-Regulation of E-Selectin. J. Biol. Chem. 2010, 285, 38869–38875. [Google Scholar] [CrossRef] [PubMed]
- Schepers, E.; Glorieux, G.; Dou, L.; Cerini, C.; Gayrard, N.; Louvet, L.; Maugard, C.; Preus, P.; Rodriguez-Ortiz, M.; Argiles, A.; et al. Guanidino Compounds as Cause of Cardiovascular Damage in Chronic Kidney Disease: An in Vitro Evaluation. Blood Purif. 2010, 30, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Copur, S.; Tanriover, C.; Yavuz, F.; Galassi, A.; Ciceri, P.; Cozzolino, M. The Pathophysiology and Management of Vascular Calcification in Chronic Kidney Disease Patients. Expert Rev. Cardiovasc. Ther. 2023, 21, 75–85. [Google Scholar] [CrossRef]
- Martínez-Mármol, R.; Mohannak, N.; Qian, L.; Wang, T.; Gormal, R.S.; Ruitenberg, M.J.; Vanhaesebroeck, B.; Coulson, E.J.; Meunier, F.A. P110δ PI3-Kinase Inhibition Perturbs APP and TNFα Trafficking, Reduces Plaque Burden, Dampens Neuroinflammation, and Prevents Cognitive Decline in an Alzheimer’s Disease Mouse Model. J. Neurosci. 2019, 39, 7976. [Google Scholar] [CrossRef]
- Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. JASN 2017, 28, 2491. [Google Scholar] [CrossRef]
- Assimon, M.M.; Wenger, J.B.; Wang, L.; Flythe, J.E. Ultrafiltration Rate and Mortality in Maintenance Hemodialysis Patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2016, 68, 911–922. [Google Scholar] [CrossRef]
- Wu, C.-C.; Zheng, C.-M.; Lin, Y.-F.; Lo, L.; Liao, M.-T.; Lu, K.-C. Role of Homocysteine in End-Stage Renal Disease. Clin. Biochem. 2012, 45, 1286–1294. [Google Scholar] [CrossRef]
- Vashistha, T.; Kalantar-Zadeh, K.; Molnar, M.Z.; Torlén, K.; Mehrotra, R. Dialysis Modality and Correction of Uremic Metabolic Acidosis: Relationship with All-Cause and Cause-Specific Mortality. Clin. J. Am. Soc. Nephrol. CJASN 2013, 8, 254–264. [Google Scholar] [CrossRef]
- Raikou, V.D.; Kyriaki, D. Association between Low Serum Bicarbonate Concentrations and Cardiovascular Disease in Patients in the End-Stage of Renal Disease. Diseases 2016, 4, 36. [Google Scholar] [CrossRef]
- Pandya, V.; Rao, A.; Chaudhary, K. Lipid Abnormalities in Kidney Disease and Management Strategies. World J. Nephrol. 2015, 4, 83–91. [Google Scholar] [CrossRef] [PubMed]
- European Association for Cardiovascular Prevention & Rehabilitation; Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.-R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; et al. ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef]
- Cebrian, A.; Escobar, C.; Aranda, U.; Palacios, B.; Capel, M.; Sicras, A.; Sicras, A.; Hormigo, A.; Manito, N.; Botana, M.; et al. The 2021 European Society of Cardiology Cardiovascular Disease Prevention Guidelines: Adding Albuminuria to the SCORE Scale Increases the Prevalence of Very High/High Cardiovascular Risk among Patients with Chronic Kidney Disease. Clin. Kidney J. 2022, 15, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.G.; Sutherland, M.K.; Geoghegan, J.C.; Yu, C.; Hayes, T.; Skonier, J.E.; Shpektor, D.; Jonas, M.; Kovacevich, B.R.; Staehling-Hampton, K.; et al. Osteocyte Control of Bone Formation via Sclerostin, a Novel BMP Antagonist. EMBO J. 2003, 22, 6267–6276. [Google Scholar] [CrossRef]
- Balemans, W.; Ebeling, M.; Patel, N.; Van Hul, E.; Olson, P.; Dioszegi, M.; Lacza, C.; Wuyts, W.; Van Den Ende, J.; Willems, P.; et al. Increased Bone Density in Sclerosteosis Is Due to the Deficiency of a Novel Secreted Protein (SOST). Hum. Mol. Genet. 2001, 10, 537–543. [Google Scholar] [CrossRef]
- Koos, R.; Brandenburg, V.; Mahnken, A.H.; Schneider, R.; Dohmen, G.; Autschbach, R.; Marx, N.; Kramann, R. Sclerostin as a Potential Novel Biomarker for Aortic Valve Calcification: An in-Vivo and Ex-Vivo Study. J. Heart Valve Dis. 2013, 22, 317–325. [Google Scholar]
- Kalousová, M.; Dusilová-Sulková, S.; Kuběna, A.A.; Zakiyanov, O.; Tesař, V.; Zima, T. Sclerostin Levels Predict Cardiovascular Mortality in Long-Term Hemodialysis Patients: A Prospective Observational Cohort Study. Physiol. Res. 2019, 68, 547–558. [Google Scholar] [CrossRef]
- Gross, M.-L.; Ritz, E. Hypertrophy and Fibrosis in the Cardiomyopathy of Uremia--beyond Coronary Heart Disease. Semin. Dial. 2008, 21, 308–318. [Google Scholar] [CrossRef]
- López, B.; González, A.; Hermida, N.; Laviades, C.; Díez, J. Myocardial Fibrosis in Chronic Kidney Disease: Potential Benefits of Torasemide: New Strategies to Prevent Cardiovascular Risk in Chronic Kidney Disease. Kidney Int. 2008, 74, S19–S23. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac Fibrosis. Cardiovasc. Res. 2020, 117, 1450–1488. [Google Scholar] [CrossRef]
- Georgianos, P.I.; Pikilidou, M.I.; Liakopoulos, V.; Balaskas, E.V.; Zebekakis, P.E. Arterial Stiffness in End-Stage Renal Disease—Pathogenesis, Clinical Epidemiology, and Therapeutic Potentials. Hypertens. Res. 2018, 41, 309–319. [Google Scholar] [CrossRef] [PubMed]
- London, G.M.; Marchais, S.J.; Guerin, A.P. Arterial Stiffness and Function in End-Stage Renal Disease. Adv. Chronic Kidney Dis. 2004, 11, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Bhoopalan, S.V.; Huang, L.J.; Weiss, M.J. Erythropoietin Regulation of Red Blood Cell Production: From Bench to Bedside and Back. F1000Research 2020, 9, F1000 Faculty Rev-1153. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, R.; Abubakar, A.K.; Mishra, R.; Gupta, S.; Maurya, N.K.; Kashyap, V.K.; Rustagi, S.; Singh, D.P.; Kumar, S. Exploring the Interplay Between Kidney Dysfunction and Cardiovascular Disease. Med. Sci. 2025, 13, 80. https://doi.org/10.3390/medsci13020080
Yadav R, Abubakar AK, Mishra R, Gupta S, Maurya NK, Kashyap VK, Rustagi S, Singh DP, Kumar S. Exploring the Interplay Between Kidney Dysfunction and Cardiovascular Disease. Medical Sciences. 2025; 13(2):80. https://doi.org/10.3390/medsci13020080
Chicago/Turabian StyleYadav, Rajesh, Aqsa Kaim Abubakar, Richa Mishra, Saurabh Gupta, Neelesh Kumar Maurya, Vivek Kumar Kashyap, Sarvesh Rustagi, Deependra Pratap Singh, and Sanjay Kumar. 2025. "Exploring the Interplay Between Kidney Dysfunction and Cardiovascular Disease" Medical Sciences 13, no. 2: 80. https://doi.org/10.3390/medsci13020080
APA StyleYadav, R., Abubakar, A. K., Mishra, R., Gupta, S., Maurya, N. K., Kashyap, V. K., Rustagi, S., Singh, D. P., & Kumar, S. (2025). Exploring the Interplay Between Kidney Dysfunction and Cardiovascular Disease. Medical Sciences, 13(2), 80. https://doi.org/10.3390/medsci13020080