Relationship Between Facial Melasma and Ocular Photoaging Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Sample Size Calculation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogbechie-Godec, O.A.; Elbuluk, N. Melasma: An Up-to-Date Comprehensive Review. Dermatol. Ther. 2017, 7, 305–318. [Google Scholar] [CrossRef]
- Bostan, E.; Cakir, A. The dermoscopic characteristics of melasma in relation to different skin phototypes, distribution patterns and wood lamp findings: A cross-sectional study of 236 melasma lesions. Arch. Dermatol. Res. 2023, 315, 1927–1938. [Google Scholar] [CrossRef]
- Dessinioti, C.; Katsambas, A. Melasma. In Hyperpigmentation; Taylor & Francis Group: Abingdon, UK, 2017; pp. 23–29. [Google Scholar] [CrossRef]
- Du, Y.; Doraiswamy, C.; Mao, J.; Zhang, Q.; Liang, Y.; Du, Z.; Vasantharaghavan, R.; Joshi, M.K. Facial skin characteristics and concerns in Indonesia: A cross-sectional observational study. Ski. Res. Technol. 2022, 28, 719–728. [Google Scholar] [CrossRef]
- Jadotte, Y.T.; Schwartz, R.A. Melasma: Insights and perspectives. Acta Dermatovenerol. Croat. 2010, 18, 124–129. [Google Scholar]
- Holmo, N.F.; Ramos, G.B.; Salomão, H.; Werneck, R.I.; Mira, M.T.; Miot, L.D.B.; Miot, H.A. Complex segregation analysis of facial melasma in Brazil: Evidence for a genetic susceptibility with a dominant pattern of segregation. Arch. Dermatol. Res. 2018, 310, 827–831. [Google Scholar] [CrossRef]
- Roberts, W.E. Pollution as a risk factor for the development of melasma and other skin disorders of facial hyperpigmentation—Is there a case to be made? J. Drugs Dermatol. 2015, 14, 337–341. [Google Scholar]
- Handel, A.C.; Lima, P.B.; Tonolli, V.M.; Miot, L.D.B.; Miot, H.A. Risk factors for facial melasma in women: A case-control study. Br. J. Dermatol. 2014, 171, 588–594. [Google Scholar] [CrossRef]
- Al-Sadek, T.; Yusuf, N. Ultraviolet radiation biological and medical implications. Curr. Issues Mol. Biol. 2024, 46, 1924–1942. [Google Scholar] [CrossRef]
- Verma, N.; Franchitto, M.; Zonfrilli, A.; Cialfi, S.; Palermo, R.; Talora, C. DNA Damage Stress: Cui Prodest? Int. J. Mol. Sci. 2019, 20, 1073. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, J.; Lu, J. Mechanisms of ultraviolet-induced melasma formation: A review. J. Dermatol. 2022, 49, 1201–1210. [Google Scholar] [CrossRef]
- Rodríguez-Arámbula, A.; Torres-Álvarez, B.; Cortés-García, D.; Fuentes-Ahumada, C.; Castanedo-Cázares, J.P. CD4, IL-17, and COX-2 are associated with subclinical inflammation in malar melasma. Am. J. Dermatopathol. 2015, 37, 761–766. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Q.; Xia, Y. New Mechanistic Insights of Melasma. Clin. Cosmet. Investig. Dermatol. 2023, 16, 429–442. [Google Scholar] [CrossRef]
- Artzi, O.; Horovitz, T.; Bar-Ilan, E.; Shehadeh, W.; Koren, A.; Zusmanovitch, L.; Mehrabi, J.N.; Salameh, F.; Isman Nelkenbaum, G.; Zur, E.; et al. The pathogenesis of melasma and implications for treatment. J. Cosmet. Dermatol. 2021, 20, 3432–3445. [Google Scholar] [CrossRef]
- Golu, A.; Gheorghişor, I.; Bǎlǎşoiu, A.T.; Baltǎ, F.L.; Osiac, E.; Mogoantǎ, L.; Bold, A. The effect of ultraviolet radiation on the cornea—Experimental study. Rom. J. Morphol. Embryol. 2013, 54, 1115–1120. [Google Scholar]
- Balogun, M.M.; Ashaye, A.O.; Ajayi, B.G.K.; Osuntokun, O.O. Tear break-up time in eyes with pterygia and pingueculae in Ibadan. West Afr. J. Med. 2005, 24, 162–166. [Google Scholar] [CrossRef]
- Hua, Z.; Shi, R.; Han, X.; Li, G.; Lv, L.; Jianimuhan, N.; Ma, D.; Cai, L.; Hu, F.; Yang, J. miR-1273h-5p protects the human corneal epithelium against UVR-induced oxidative stress and apoptosis: Role of miR-1273h-5p in climatic droplet keratopathy. Exp. Eye Res. 2023, 233, 109536. [Google Scholar] [CrossRef]
- MacFarlane, E.R.; Donaldson, P.J.; Grey, A.C. UV light and the ocular lens: A review of exposure models and resulting biomolecular changes. Front. Ophthalmol. 2024, 4, 1414483. [Google Scholar] [CrossRef]
- Hamba, N.; Gerbi, A.; Tesfaye, S. Histopathological effects of ultraviolet radiation exposure on the ocular structures in animal studies—Literature review. Transl. Res. Anat. 2021, 22, 100086. [Google Scholar] [CrossRef]
- Gallagher, R.P.; Lee, T.K. Adverse effects of ultraviolet radiation: A brief review. Prog. Biophys. Mol. Biol. 2006, 92, 119–131. [Google Scholar] [CrossRef]
- Majdi, M.; Milani, B.Y.; Movahedan, A.; Wasielewski, L.; Djalilian, A.R. The Role of Ultraviolet Radiation in the Ocular System of Mammals. Photonics 2014, 1, 347–368. [Google Scholar] [CrossRef]
- Yam, J.C.; Kwok, A.K. Ultraviolet light and ocular diseases. Int. Ophthalmol. 2014, 34, 383–400. [Google Scholar] [CrossRef]
- Detert, H.; Hedlund, S.; Anderson, C.; Rodvall, Y.; Festin, K.; Whiteman, D.; Falk, M. Validation of sun exposure and protection index (SEPI) for estimation of sun habits. Cancer Epidemiol. 2015, 39, 986–993. [Google Scholar] [CrossRef]
- de Abreu, L.; Ramos-e-Silva, M.; Quintella, L.P.; Buçard, A.M.; Bravo, B.S.F.; de Almeida, A.M.; Moreira, A.C.M.S. Dermoscopic classification of melasma: Concordance study and correlation with the melanophages count. J. Cosmet. Dermatol. 2022, 21, 5887–5894. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.G.; Hynan, L.S.; Bhore, R.; Riley, F.C.; Guevara, I.L.; Grimes, P.; Nordlund, J.J.; Rendon, M.; Taylor, S.; Gottschalk, R.W. Reliability assessment and validation of the Melasma Area and Severity Index (MASI) and a new modified MASI scoring method. J. Am. Acad. Dermatol. 2011, 64, 78–83e72. [Google Scholar] [CrossRef]
- Serra, H.M.; Holopainen, J.M.; Beuerman, R.; Kaarniranta, K.; Suárez, M.F.; Urrets-Zavalía, J.A. Climatic droplet keratopathy: An old disease in new clothes. Acta Ophthalmol. 2015, 93, 496–504. [Google Scholar] [CrossRef]
- Jiryis, B.; Toledano, O.; Avitan-Hersh, E.; Khamaysi, Z. Management of Melasma: Laser and Other Therapies—Review Study. J. Clin. Med. 2024, 13, 1468. [Google Scholar] [CrossRef]
- Khunger, N.; Kandhari, R.; Singh, A.; Ramesh, V. A Clinical, Dermoscopic, Histopathological and Immunohistochemical Study of Melasma and Facial Pigmentary Demarcation Lines in the Skin of Color. Dermatol. Ther. 2020, 33, e14099. [Google Scholar] [CrossRef]
- Soliman, W.; Mohamed, T.A. Spectral Domain Anterior Segment Optical Coherence Tomography Assessment of Pterygium and Pinguecula. Acta Ophthalmol. 2012, 90, 461–465. [Google Scholar] [CrossRef]
- dos Reis, G.M.; de Júnior, A.P.R.; e Silva, K.S.F.; Rodrigues, D.A.; Gomes, M.C.S.; Martins, J.V.M.; da Costa, I.R.; Freitas, G.A.; Moura, K.K.O. Pterygium in Patients from Goiânia, Goiás, Brazil. Genet. Mol. Res. 2015, 14, 6182–6188. [Google Scholar] [CrossRef]
- Lam, D.; Rao, S.K.; Ratra, V.; Liu, Y.; Mitchell, P.; King, J.; Tassignon, M.-J.; Jonas, J.; Pang, C.P.; Chang, D.F. Cataract. Nat. Rev. Dis. Primers 2015, 1, 15014. [Google Scholar] [CrossRef]
- Cicinelli, M.V.; Buchan, J.C.; Nicholson, M.; Varadaraj, V.; Khanna, R.C. Eliminating Cataract Blindness: Progress and Challenges. Lancet 2023, 401, 377–389. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Kim, I.K. Clinical Characteristics and Current Treatment of Age-Related Macular Degeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a017178. [Google Scholar] [CrossRef]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef]
- Ferris, F.L.; Davis, M.D.; Clemons, T.E.; Lee, L.Y.; Chew, E.Y.; Lindblad, A.S.; Milton, R.C.; Bressler, S.B.; Klein, R. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch. Ophthalmol. 2005, 123, 1570–1574. [Google Scholar] [CrossRef]
- Maheshwari, S. Pterygium-induced corneal refractive changes. Indian J. Ophthalmol. 2007, 55, 383–386. [Google Scholar] [CrossRef]
- Mimura, T.; Usui, T.; Mori, M.; Yamamoto, H.; Obata, H.; Yamagami, S.; Funatsu, H.; Noma, H.; Honda, N.; Amano, S. Pinguecula and contact lenses. Eye 2010, 24, 1685–1691. [Google Scholar] [CrossRef]
- Viso, E.; Gude, F.; Rodríguez-Ares, M.T. Prevalence of pinguecula and pterygium in a general population in Spain. Eye 2011, 25, 350–357. [Google Scholar] [CrossRef]
- Koo, E.; Chang, J.R.; Agrón, E.; Clemons, T.E.; Sperduto, R.D.; Ferris Iii, F.L.; Chew, E.Y. Ten-year incidence rates of age-related cataract in the Age-Related Eye Disease Study (AREDS): AREDS report no. 33. Ophthalmic Epidemiol. 2013, 20, 71–81. [Google Scholar] [CrossRef]
- Kuang, T.M.; Tsai, S.Y.; Liu, C.J.L.; Ko, Y.C.; Lee, S.M.; Chou, P. Seven-year incidence of age-related cataracts among an elderly Chinese population in Shihpai, Taiwan: The Shihpai Eye Study. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6409–6415. [Google Scholar] [CrossRef]
- Ahmed, A.; Malik, T.G.; Kayani, H. Prevalence of different types of age related cataract: A hospital based study. Pak. J. Med. Health Sci. 2016, 10, 1088–1090. [Google Scholar]
- Vrensen, G.F.J.M. Early cortical lens opacities: A short overview. Acta Ophthalmol. 2009, 87, 602–610. [Google Scholar] [CrossRef]
- Israfilova, G.Z. “Important players” in the development of age-related cataracts (literature review). Oftalmologiya 2019, 16, 21–26. [Google Scholar] [CrossRef]
- Haddad, N.; Andrianou, X.D.; Makris, K.C. A scoping review on the characteristics of human exposome studies. Curr. Pollut. Rep. 2019, 5, 378–393. [Google Scholar] [CrossRef]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef]
- Ding, E.; Wang, Y.; Liu, J.; Tang, S.; Shi, X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum. Genom. 2022, 16, 54. [Google Scholar] [CrossRef]
- Sudhibrabha, S.; Exell, R.H.B.; Sukawat, D. Ultraviolet forecasting in Thailand. Sci. Asia 2006, 32, 107–114. [Google Scholar] [CrossRef]
- Buntoung, S.; Pattarapanitchai, S.; Wattan, R.; Masiri, I.; Promsen, W.; Tohsing, K.; Janjai, S. An investigation of solar erythemal ultraviolet radiation at two sites in tourist attraction areas of Thailand. In Proceedings of the AIP Conference Proceedings, Berlin, Germany, 6–10 August 2012; pp. 844–847. [Google Scholar]
- Janjai, S.; Kirdsiri, K.; Masiri, I.; Nunez, M. An investigation of solar erythemal ultraviolet radiation in the tropics: A case study at four stations in Thailand. Int. J. Climatol. 2010, 30, 1893–1903. [Google Scholar] [CrossRef]
- Christidis, N.; Manomaiphiboon, K.; Ciavarella, A.; Stott, P.A. 25. The Hot and Dry April of 2016 in Thailand. Am. Meteorol. Soc. 2018, 99, 25. [Google Scholar] [CrossRef]
- Rodchuen, M.; Chongcharoen, S.; Bunyatisai, W. Trend and Pattern in Average Monthly Maximum Temperatures in Thailand from 1986 to 2015. Am. J. Appl. Sci 2020, 17, 20–35. [Google Scholar] [CrossRef]
- Miyashita, H.; Hatsusaka, N.; Shibuya, E.; Mita, N.; Yamazaki, M.; Shibata, T.; Ishida, H.; Ukai, Y.; Kubo, E.; Sasaki, H. Association between ultraviolet radiation exposure dose and cataract in Han people living in China and Taiwan: A cross-sectional study. PLoS ONE 2019, 14, e0215338. [Google Scholar] [CrossRef]
- Jang, H.-J.; Kang, J.-G. Correlation Between Sunlight Exposure Time and Cataract Prevalence in Korean Adults. Appl. Sci. 2024, 14, 10707. [Google Scholar] [CrossRef]
- Kinoshita, K.; Kodera, S.; Hatsusaka, N.; Egawa, R.; Takizawa, H.; Kubo, E.; Sasaki, H.; Hirata, A. Association of nuclear cataract prevalence with UV radiation and heat load in lens of older people -five city study. Environ. Sci. Pollut. Res. 2023, 30, 123832–123842. [Google Scholar] [CrossRef] [PubMed]
- Kodera, S.; Hirata, A.; Miura, F.; Rashed, E.A.; Hatsusaka, N.; Yamamoto, N.; Kubo, E.; Sasaki, H. Model-based approach for analyzing prevalence of nuclear cataracts in elderly residents. Comput. Biol. Med. 2020, 126, 104009. [Google Scholar] [CrossRef]
- Borges-Rodríguez, Y.; Morales-Cueto, R.; Rivillas-Acevedo, L. Effect of the ultraviolet radiation on the lens. Curr. Protein Pept. Sci. 2023, 24, 215–228. [Google Scholar] [CrossRef]
- Zeller, K.; Mühleisen, S.; Shanmugarajah, P.; Fehler, N.; Haag, R.; Hessling, M. Influence of Visible Violet, Blue and Red Light on the Development of Cataract in Porcine Lenses. Medicina 2022, 58, 721. [Google Scholar] [CrossRef]
- Kelly-Pérez, I.; Bruce, N.C.; Berriel-Valdos, L.R. Effect of cataracts on scattering of light in the eye. In Proceedings of the SPIE—The International Society for Optical Engineering, Puebla, Mexico, 15–19 August 2011. [Google Scholar]
- Dhiyantari, N.P.A.R.; Hermawan, D. Apoptosis of The Lens Epithelial Cells After Ultraviolet-B Exposure as a Proposed Pathogenesis of Senile Cataract: Literature Review. Pharmacogn. J. 2024, 16, 989–992. [Google Scholar] [CrossRef]
- Francis Simpanya, M.; Ansari, R.R.; Leverenz, V.; Giblin, F.J. Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea Pig/UVA model for nuclear cataract. Photochem. Photobiol. 2008, 84, 1589–1595. [Google Scholar] [CrossRef]
- Ling, X.; Zhu, L.; Yan, Y.; Qian, H.; Kang, Z.; Ye, W.; Xie, Z.; Xue, C. Ferulic Acid Protects Human Lens Epithelial Cells Against UVA-Induced Oxidative Damage by Downregulating the DNA Demethylation of the Keap1 Promoter. J. Biochem. Mol. Toxicol. 2024, 38, e70031. [Google Scholar] [CrossRef]
- Ji, Y.; Cai, L.; Zheng, T.; Ye, H.; Rong, X.; Rao, J.; Lu, Y. The mechanism of UVB irradiation induced-apoptosis in cataract. Mol. Cell. Biochem. 2015, 401, 87–95. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhang, G.; Kang, L.; Guan, H. Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin. Epigenet. 2016, 8, 62. [Google Scholar] [CrossRef]
- Furukawa, J.Y.; Martinez, R.M.; Morocho-Jácome, A.L.; Castillo-Gómez, T.S.; Pereda-Contreras, V.J.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Skin impacts from exposure to ultraviolet, visible, infrared, and artificial lights—A review. J. Cosmet. Laser Ther. 2021, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nahhas, A.F.; Abdel-Malek, Z.A.; Kohli, I.; Braunberger, T.L.; Lim, H.W.; Hamzavi, I.H. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. Photodermatol. Photoimmunol. Photomed. 2019, 35, 420–428. [Google Scholar] [CrossRef]
- Sarkar, R.; Jagadeesan, S.; Basavapura Madegowda, S.; Verma, S.; Hassan, I.; Bhat, Y.; Minni, K.; Jha, A.; Das, A.; Jain, G.; et al. Clinical and epidemiologic features of melasma: A multicentric cross-sectional study from India. Int. J. Dermatol. 2019, 58, 1305–1310. [Google Scholar] [CrossRef]
- Willis, I. Cutaneous heat: A potential environmental factor in the development of melasma. Cosmet. Dermatol. 2004, 17, 387–390. [Google Scholar]
- Gu, W.J.; Ma, H.J.; Zhao, G.; Yuan, X.Y.; Zhang, P.; Liu, W.; Ma, L.J.; Lei, X.B. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes. Arch. Dermatol. Res. 2014, 306, 583–590. [Google Scholar] [CrossRef]
- Sarkany, R. Sun protection strategies. Medicine 2017, 45, 444–447. [Google Scholar] [CrossRef]
- Modenese, A.; Gobba, F. Cataract frequency and subtypes involved in workers assessed for their solar radiation exposure: A systematic review. Acta Ophthalmol. 2018, 96, 779–788. [Google Scholar] [CrossRef]
- Ahmad Essa, F.H.; Ahmed Issa, N.H.; Ahmad Jabali, H.M.; Abusharha, A.A.; Abduh Numan, F.S.; Omar Alaqsam, A.S.; Hadi Tomaihi, L.S.; Ahmad Erwi, H.A.; Mohmmed Rashed, M.A.; Dohal, G.Y.; et al. Advancements in Cataract Management: Innovations in Diagnosis, Treatment, and Outcomes-Nursing Interventions. Egypt. J. Chem. 2024, 67, 1851–1862. [Google Scholar] [CrossRef]
- Jansone-Langina, Z.; Solomatin, A.; Solomatins, M.; Krumina, G. Quality of life assessment for nuclear, cortical, posterior subcapsular patients before and after cataract surgery. J. Optom. 2024, 17, 100489. [Google Scholar] [CrossRef]
- Sever, Ö.; Horozoğlu, F. Early retinal changes after uncomplicated mild and hard cataract surgery. East. J. Med. 2018, 23, 1–5. [Google Scholar] [CrossRef]
- Getachew, E.; Kamal, K.; Young, K.; Xiang, D.; Semenov, Y.; Mostaghimi, A.; Theodosakis, N. Seasonal patterns in melasma incidence and correlation to Google Trends search volume: A cross-sectional analysis. Res. Sq. 2023. [Google Scholar] [CrossRef]
Characteristics | n (%) |
---|---|
Median age, years (IQR) | 64.0 (17.0) |
Female | 226 (71.7) |
Ethnicity | |
Thai | 315 (100.0) |
Median BMI, kg/m2 (IQR) | 24.2 (4.7) |
Fitzpatrick skin type | |
Type III | 194 (61.6) |
Type IV | 101 (32.1) |
Type V | 20 (6.3) |
Microtrauma | 139 (44.1) |
Hypertension | 111 (35.2) |
Diabetes mellitus | 51 (16.2) |
Dyslipidemia | 132 (41.9) |
Thyroid disorders | 12 (3.8) |
Dry eye | 40 (12.7) |
Related medications | |
Statins | 126 (40.0) |
Anticonvulsants | 1 (0.3) |
Smoking | 17 (5.4) |
Alcohol consumption | 29 (9.2) |
Family history of melasma | 118 (37.5) |
Wearing sunglasses when outdoors | |
Never | 130 (41.3) |
Rarely | 20 (6.3) |
Sometimes | 60 (19.0) |
Often | 9 (2.9) |
Always | 96 (30.5) |
Median SEPI Part I (IQR) | 6.0 (6.0) |
Median SEPI Part II (IQR) | 4.0 (7.0) |
Ocular Condition | B | OR | 95% CI | p Value |
---|---|---|---|---|
Pinguecula | 0.344 | 1.411 | 0.826–2.411 | 0.207 |
Pterygium | 0.482 | 1.620 | 0.985–2.664 | 0.058 |
Nuclear cataract | 1.175 | 3.239 | 1.966–5.336 | <0.001 |
Cortical cataract | 0.292 | 1.339 | 0.721–2.488 | 0.355 |
Posterior subcapsular cataract | 0.115 | 1.122 | 0.414–3.041 | 0.821 |
Age-related macular degeneration | 0.327 | 1.387 | 0.360–5.338 | 0.635 |
Characteristics | B | OR | 95% CI | p Value |
---|---|---|---|---|
Age (years) | −3.353 | 0.035 | 0.010–0.119 | <0.001 |
Gender (female = 1, male = 2) | 0.680 | 1.974 | 1.497–2.602 | 0.181 |
BMI (kg/m2) | −0.935 | 0.393 | 0.086–1.800 | 0.027 |
Fitzpatrick skin type | ||||
Type III | NA | 1.000 | NA | NA |
Type IV | 0.414 | 1.513 | 0.891–2.568 | 0.126 |
Type V | 1.140 | 3.127 | 0.885–11.048 | 0.077 |
Microtrauma (yes = 1, no = 0) | 0.405 | 1.499 | 0.920–2.443 | 0.103 |
Hypertension (yes = 1, no = 0) | 0.672 | 1.958 | 1.153–3.324 | 0.013 |
Diabetes mellitus (yes = 1, no = 0) | 0.598 | 1.818 | 0.889–3.719 | 0.101 |
Dyslipidemia (yes = 1, no = 0) | 0.856 | 2.354 | 1.411–3.926 | 0.001 |
Thyroid disorders (yes = 1, no = 0) | −0.091 | 0.913 | 0.268–3.108 | 0.885 |
Dry eye (yes = 1, no = 0) | 0.077 | 1.080 | 0.524–2.226 | 0.835 |
Related medications | ||||
Statins (yes = 1, no = 0) | 0.814 | 2.257 | 1.345–3.786 | 0.002 |
Anticonvulsants (yes = 1, no = 0) | NA | NA | NA | NA |
Smoking (yes = 1, no = 0) | 0.419 | 1.520 | 0.483–4.786 | 0.474 |
Alcohol consumption (yes = 1, no = 0) | 0.020 | 1.020 | 0.447–2.328 | 0.962 |
Family history of melasma (yes = 1, no = 0) | −0.429 | 0.651 | 0.400–1.059 | 0.084 |
Wearing sunglasses when outdoors (yes = 1, no = 0) | −0.237 | 0.789 | 0.484–1.285 | 0.342 |
Presence of melasma (yes = 1, no = 0) | 1.175 | 3.238 | 1.964–5.338 | <0.001 |
SEPI Part I | 0.028 | 1.028 | 0.972–1.089 | 0.332 |
SEPI Part II | 0.040 | 1.041 | 0.979–1.106 | 0.189 |
Characteristics | B | Adjusted OR | 95% CI | p Value |
---|---|---|---|---|
Age (years) | 0.074 | 1.080 | 1.050–1.110 | <0.001 |
Gender (female = 1, male = 2) | 0.718 | 2.050 | 0.888–5.010 | 0.102 |
BMI (kg/m2) | 0.067 | 1.070 | 0.995–1.150 | 0.073 |
Fitzpatrick skin type | ||||
Type III | NA | 1.000 | NA | NA |
Type IV | −0.150 | 0.861 | 0.440–1.690 | 0.660 |
Type V | 0.714 | 2.040 | 0.476–12.200 | 0.378 |
Microtrauma (yes = 1, no = 0) | 0.205 | 1.230 | 0.681–2.230 | 0.496 |
Hypertension (yes = 1, no = 0) | −0.302 | 0.739 | 0.363–1.500 | 0.401 |
Diabetes mellitus (yes = 1, no = 0) | −0.086 | 0.918 | 0.407–2.180 | 0.840 |
Dyslipidemia (yes = 1, no = 0) | 0.258 | 1.290 | 0.404–4.340 | 0.668 |
Thyroid disorders (yes = 1, no = 0) | −0.041 | 0.960 | 0.243–4.340 | 0.955 |
Dry eye (yes = 1, no = 0) | 0.247 | 1.280 | 0.563–3.060 | 0.565 |
Related medications | ||||
Statins (yes = 1, no = 0) | 0.064 | 1.070 | 0.302–3.600 | 0.919 |
Anticonvulsants (yes = 1, no = 0) | NA | NA | NA | NA |
Smoking (yes = 1, no = 0) | 0.316 | 1.370 | 0.333–6.630 | 0.674 |
Alcohol consumption (yes = 1, no = 0) | −0.536 | 0.585 | 0.178–2.000 | 0.382 |
Family history of melasma (yes = 1, no = 0) | −0.207 | 0.813 | 0.442–1.500 | 0.506 |
Wearing sunglasses when outdoors (yes = 1, no = 0) | −0.655 | 0.519 | 0.268–0.978 | 0.046 |
Presence of melasma (yes = 1, no = 0) | 0.951 | 2.590 | 1.410–4.770 | 0.002 |
SEPI Part I | −0.112 | 0.894 | 0.773–1.030 | 0.130 |
SEPI Part II | 0.047 | 1.050 | 0.902–1.220 | 0.538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udomwech, L.; Eden, C.; Tawanwongsri, W. Relationship Between Facial Melasma and Ocular Photoaging Diseases. Med. Sci. 2025, 13, 61. https://doi.org/10.3390/medsci13020061
Udomwech L, Eden C, Tawanwongsri W. Relationship Between Facial Melasma and Ocular Photoaging Diseases. Medical Sciences. 2025; 13(2):61. https://doi.org/10.3390/medsci13020061
Chicago/Turabian StyleUdomwech, Lunla, Chime Eden, and Weeratian Tawanwongsri. 2025. "Relationship Between Facial Melasma and Ocular Photoaging Diseases" Medical Sciences 13, no. 2: 61. https://doi.org/10.3390/medsci13020061
APA StyleUdomwech, L., Eden, C., & Tawanwongsri, W. (2025). Relationship Between Facial Melasma and Ocular Photoaging Diseases. Medical Sciences, 13(2), 61. https://doi.org/10.3390/medsci13020061