Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. 2017. Available online: https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 15 June 2024).
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and novel approaches to treatment ‘Knowing the enemy’ the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; E Wool, E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Klockgether, J.; Cramer, N.; Wiehlmann, L.; Davenport, C.F.; Tümmler, B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front. Microbiol. 2011, 2, 150. [Google Scholar] [CrossRef]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence Factors of Pseudomonas aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef]
- Breidenstein, E.B.M.; De La Fuente-Núñez, C.; Hancock, R.E.W. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.-F.; Williams, B.J.; Blackwell, T.S.; Xie, C.-M. Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. Int. J. Med. Microbiol. 2012, 302, 63–68. [Google Scholar] [CrossRef]
- Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 2015, 6, 660. [Google Scholar] [CrossRef]
- Rada, A.M.; De La Cadena, E.; Agudelo, C.A.; Pallares, C.; Restrepo, E.; Correa, A.; Villegas, M.V.; Capataz, C. Genetic Diversity of Multidrug-Resistant Pseudomonas aeruginosa Isolates Carrying blaVIM–2 and blaKPC–2 Genes That Spread on Different Genetic Environment in Colombia. Front. Microbiol. 2021, 12, 663020. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. 2017, 364, fnx124. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Edward, E.A.; El Shehawy, M.R.; Abouelfetouh, A.; Aboulmagd, E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol. 2023, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Abril, D.; Marquez-Ortiz, R.A.; Castro-Cardozo, B.; Moncayo-Ortiz, J.I.; Escobar, N.M.O.; Rozo, Z.L.C.; Reyes, N.; Tovar, C.; Sánchez, H.F.; Castellanos, J.; et al. Genome plasticity favours double chromosomal Tn4401b-blaKPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone. BMC Microbiol. 2019, 19, 45. [Google Scholar] [CrossRef]
- Kos, V.N.; Déraspe, M.; McLaughlin, R.E.; Whiteaker, J.D.; Roy, P.H.; Alm, R.A.; Corbeil, J.; Gardner, H. The Resistome of Pseudomonas aeruginosa in Relationship to Phenotypic Susceptibility. Antimicrob. Agents Chemother. 2015, 59, 427–436. [Google Scholar] [CrossRef]
- Ministerio de Salud, M. Resolución 8430 de 1993. 1993, p. 19. Available online: https://www.minsalud.gov.co/sites/rid/lists/bibliotecadigital/ride/de/dij/resolucion-8430-de-1993.pdf (accessed on 20 July 2024).
- Ministerio de Protección Social, Resolución 2378 de 2008. 2008, p. 93. Available online: https://www.ins.gov.co/Normatividad/Resoluciones/RESOLUCION%202378%20DE%202008.pdf (accessed on 20 July 2024).
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 219. [Google Scholar] [CrossRef]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell. Infect. Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef]
- El-Baky, R.M.A.; Masoud, S.M.; Mohamed, D.S.; Waly, N.G.; Shafik, E.A.; Mohareb, D.A.; Elkady, A.; Elbadr, M.M.; Hetta, H.F. Prevalence and Some Possible Mechanisms of Colistin Resistance Among Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 323–332. [Google Scholar] [CrossRef]
- Cuello, M. Seguimiento Epidemiológico de los Perfiles Genómicos de Resistencia a antibióticos, en Aislamientos Clínicos de Pseudomonas aeruginosa Mediante Secuenciación de Genoma Completo (WGS). Universidad Nacional de Colombia. 2022. Available online: https://repositorio.unal.edu.co/handle/unal/84156 (accessed on 11 July 2024).
- Aroca, K.J.; Gutiérrez, S.J.; Benítez-Campo, N.; Correa, A. Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms 2024, 12, 1116. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Jiménez, A.; Llamas, M.A.; Marcos-Torres, F.J. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2023, 24, 11895. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Yao, C.; Ding, Y.; Hu, H.; Qian, G.; He, M.; Deng, X. The transcriptional regulators of virulence for Pseudomonas aeruginosa: Therapeutic opportunity and preventive potential of its clinical infections. Genes Dis. 2023, 10, 2049–2063. [Google Scholar] [CrossRef]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Abdulhaq, N.; Nawaz, Z.; Zahoor, M.A.; Siddique, A.B. Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI J. 2020, 19, 201–208. [Google Scholar] [CrossRef]
- Hassuna, N.A.; Mandour, S.A.; Mohamed, E.S. Virulence Constitution of Multi-Drug-Resistant Pseudomonas aeruginosa in Upper Egypt. Infect. Drug Resist. 2020, 13, 587–595. [Google Scholar] [CrossRef]
- Fournier, D.; Carrière, R.; Bour, M.; Grisot, E.; Triponney, P.; Muller, C.; Lemoine, J.; Jeannot, K.; Plésiat, P.; the GERPA Study Group. Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob. Agents Chemother. 2021, 65, e01117-20. [Google Scholar] [CrossRef]
- Torrens, G.; van der Schalk, T.E.; Cortes-Lara, S.; Timbermont, L.; del Barrio-Tofiño, E.; Xavier, B.B.; Zamorano, L.; Lammens, C.; Ali, O.; Ruzin, A.; et al. Susceptibility profiles and resistance genomics of Pseudomonas aeruginosa isolates from European ICUs participating in the ASPIRE-ICU trial. J. Antimicrob. Chemother. 2022, 77, 1862–1872. [Google Scholar] [CrossRef]
- Oliver, A.; Rojo-Molinero, E.; Arca-Suarez, J.; Beşli, Y.; Bogaerts, P.; Cantón, R.; Cimen, C.; Croughs, P.D.; Denis, O.; Giske, C.G.; et al. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin. Microbiol. Infect. 2024, 30, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Almaghrabi, R.S.; Macori, G.; Sheridan, F.; McCarthy, S.C.; Floss-Jones, A.; Fanning, S.; Althawadi, S.; Mutabagani, M.; Binsaslloum, A.; Alrasheed, M.; et al. Whole genome sequencing of resistance and virulence genes in multi-drug resistant Pseudomonas aeruginosa. J. Infect. Public Health 2024, 17, 299–307. [Google Scholar] [CrossRef]
- Sultan, M.; Arya, R.; Kim, K.K. Roles of Two-Component Systems in Pseudomonas aeruginosa Virulence. Int. J. Mol. Sci. 2021, 22, 12152. [Google Scholar] [CrossRef] [PubMed]
- Saeli, N.; Jafari-Ramedani, S.; Ramazanzadeh, R.; Nazari, M.; Sahebkar, A.; Khademi, F. Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect. Dis. 2024, 24, 680. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Rahbar, M.; Hamidi-Farahani, R.; Asgari, A.; Esmailkhani, A.; Dashti, Y.M.; Soleiman-Meigooni, S. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb. Pathog. 2021, 153, 104789. [Google Scholar] [CrossRef]
- Jeukens, J.; Freschi, L.; Kukavica-Ibrulj, I.; Emond-Rheault, J.; Tucker, N.P.; Levesque, R.C. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa. Ann. N. Y. Acad. Sci. 2019, 1435, 5–17. [Google Scholar] [CrossRef]
- El-Far, A.; Samir, S.; El-Gebaly, E.; Omar, M.; Dahroug, H.; El-Shenawy, A.; Soliman, N.S.; Gamal, D. High Rates of Aminoglycoside Methyltransferases Associated with Metallo-Beta-Lactamases in Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Clinical Isolates from a Tertiary Care Hospital in Egypt. Infect. Drug Resist. 2021, 14, 4849–4858. [Google Scholar] [CrossRef]
- Ahmed, O.B. Detection of Antibiotic Resistance Genes in Pseudomonas aeruginosa by Whole Genome Sequencing. Infect. Drug Resist. 2022, 15, 6703–6709. [Google Scholar] [CrossRef]
- Cabot, G.; López-Causapé, C.; Ocampo-Sosa, A.A.; Sommer, L.M.; Domínguez, M.; Zamorano, L.; Juan, C.; Tubau, F.; Rodríguez, C.; Moyà, B.; et al. Deciphering the Resistome of the Widespread Pseudomonas aeruginosa Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing. Antimicrob. Agents Chemother. 2016, 60, 7415–7423. [Google Scholar] [CrossRef]
- Dolgusevs, M.; Jain, N.; Savicka, O.; Vangravs, R.; Bodrenko, J.; Bergmanis, E.; Zemite, D.; Selderina, S.; Reinis, A.; Rozentale, B. Genomic and phenotypic inconsistencies in Pseudomonas aeruginosa resistome among intensive care patients. Front. Cell. Infect. Microbiol. 2024, 14, 1335096. [Google Scholar] [CrossRef]
- Pelegrin, A.C.; Palmieri, M.; Mirande, C.; Oliver, A.; Moons, P.; Goossens, H.; van Belkum, A. Pseudomonas aeruginosa: A clinical and genomics update. FEMS Microbiol. Rev. 2021, 45, fuab026. [Google Scholar] [CrossRef]
Strain | Class | Antibiotic | MIC | Interpretation |
---|---|---|---|---|
544,871 572,897 629,590 635,020 637,345 645,441 547,256 1 | Beta-lactam/betalactamase inhibitor | Piperacillin/Tazobactam | >=128 | R |
Ceftazidime/Avibactam | >=16 | R | ||
Cephalosporins | Cefazolin | >=64 | R | |
Ceftazidime | >=64 | R | ||
Cefepime | >=64 | R | ||
Monobactam | Aztreonam | >=64 | R | |
Carbapenems | Meropenem | >=16 | R | |
Aminoglycosides | Amikacin | >=64 | R | |
Fluoroquinolones | Ciprofloxacin | >=4, 2 1 | R, I 1 | |
Glycylcyclines | Tigecycline | >=8 | R |
Virulence Genes | |||||
---|---|---|---|---|---|
Subcategory | Number of Genes | Group/System | Number of Genes | % Virulence | % of Total |
Secretion Systems | 85 | T6SS | 39 | 31.37% | 23.16% |
T3SS | 33 | ||||
T2SS | 11 | ||||
Sec | 1 | ||||
T2SS/T4P | 1 | ||||
Motility | 49 | Flagellar system | 42 | 18.08% | 13.35% |
Chemotaxis | 7 | ||||
Accession | 43 | type IVPili | 24 | 15.87% | 11.72% |
Fimbrias Cup | 10 | ||||
Tad System | 9 | ||||
Biofilm | 32 | Alginate | 23 | 11.81% | 8.72% |
Amyloid formation | 5 | ||||
Rhamnolipids | 3 | ||||
Amyloid fibers | 1 | ||||
Siderophores | 17 | Pyoverdine | 17 | 6.27% | 4.63% |
Toxins | 7 | Phospholipases | 3 | 2.58% | 1.91% |
T3SS | 2 | ||||
T6SS | 1 | ||||
Exotoxin A | 1 | ||||
Quorum Sensing | 5 | Las System | 2 | 1.85% | 1.36% |
Rhl system | 2 | ||||
Signaling | 1 | ||||
Other mechanisms | 33 | Biosynthesis | 8 | 12.18% | 8.99% |
Has system | 4 | ||||
Phenazines | 3 | ||||
HCN | 2 | ||||
Protease | 2 | ||||
Elastases | 2 | ||||
T3SS | 2 | ||||
T6SS | 2 | ||||
Others | 8 | ||||
Total virulence | 271 | 271 | 100% | 73.8% | |
Resistance genes | |||||
Subcategory | Number of Genes | Group/System | Number of Genes | % resistance | % of total |
Efflux pumps | 33 | MexGHI-OpmD | 4 | 80.5% | 8.99% |
MexAB-OprM | 3 | ||||
MexCD-OprJ | 3 | ||||
MexEF-OprN | 3 | ||||
MuxABC-OpmB | 3 | ||||
Other Mex systems | 18 | ||||
β-lactamases | 4 | Oxacillinases | 1 | 9.76% | 1.09% |
Class B | 1 | ||||
Carbapenemases | 1 | ||||
Metallo-β-lactamases | 1 | ||||
Modifying enzymes | 2 | Aminoglycosides | 1 | 4.88% | 0.54% |
Chloramphenicol | 1 | ||||
Other mechanisms | 2 | LPS modification | 1 | 4.88% | 0.54% |
Resistance to sulfonamides | 1 | ||||
Total resistance | 41 | 42 | 100.0% | 11.2% | |
Regulatory genes | |||||
Subcategory | Number of Genes | Group/System | Number of Genes | % of regulators | % of total |
Two-component systems | 8 | GacS/GacA | 3 | 47.1% | 2.18% |
CprRS | 2 | ||||
ParRS | 1 | ||||
Cpx | 1 | ||||
BasRS/PmrAB | 1 | ||||
Transcriptional regulators | 5 | Two-component system | 2 | 29.41% | 1.36% |
AMPc | 1 | ||||
Catabolic repressor | 1 | ||||
MexR | 1 | ||||
Sigma factors | 2 | RpoN | 1 | 11.76% | 0.54% |
RpoS | 1 | ||||
Post-transcriptional regulators | 1 | RsmA | 1 | 6% | 0.3% |
Metabolism | 1 | Carbon control | 1 | 6% | 0.3% |
Total | 17 | 17 | 100.0% | 4.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajaro-Castro, N.; Diaz-Morales, E.; Hoyos, K.; Ibañez-Bersinger, C. Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa. Med. Sci. 2025, 13, 6. https://doi.org/10.3390/medsci13010006
Pajaro-Castro N, Diaz-Morales E, Hoyos K, Ibañez-Bersinger C. Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa. Medical Sciences. 2025; 13(1):6. https://doi.org/10.3390/medsci13010006
Chicago/Turabian StylePajaro-Castro, Nerlis, Erick Diaz-Morales, Kenia Hoyos, and Cristhian Ibañez-Bersinger. 2025. "Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa" Medical Sciences 13, no. 1: 6. https://doi.org/10.3390/medsci13010006
APA StylePajaro-Castro, N., Diaz-Morales, E., Hoyos, K., & Ibañez-Bersinger, C. (2025). Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa. Medical Sciences, 13(1), 6. https://doi.org/10.3390/medsci13010006