Patient Dietary Supplements Use: Do Results from Natural Language Processing of Clinical Notes Agree with Survey Data?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveys
2.2. Annotation
2.3. Machine Learning and Evaluation
2.4. Survey Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United States Department of Health Human Services, Centers for Disease Control Prevention, National Center for Health Statistics. National Health Interview Survey, 2012; Inter-University Consortium for Political and Social Research [Distributor]: Ann Arbor, MI, USA, 2016. [Google Scholar]
- Mishra, S.; Stierman, B.; Gahche, J.J.; Potischman, N. Dietary Supplement Use among Adults: United States, 2017–2018. 2021. Available online: https://stacks.cdc.gov/view/cdc/101131 (accessed on 18 February 2023).
- Cupp, M.J. Herbal remedies: Adverse effects and drug interactions. Am. Fam. Physician 1999, 59, 1239–1244. [Google Scholar] [PubMed]
- Tachjian, A.; Maria, V.; Jahangir, A. Use of Herbal Products and Potential Interactions in Patients With Cardiovascular Diseases. J. Am. Coll. Cardiol. 2010, 55, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.H.; Turner, L.M.; Lin, S.X.; Klaus, L.; Choi, L.Y.; Whitworth, J.; Ting, W.; Oz, M.C. Use of alternative medicine by patients undergoing cardiac surgery. J. Thorac. Cardiovasc. Surg. 2000, 120, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.J.; Stewart, R.L.; Merry, H.; Johnstone, D.E.; Cox, J.L. Use of complementary and alternative medical therapies in patients with cardiovascular disease. Am. Heart J. 2003, 145, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.J.; Bin, Y.S.; Kiat, H.; Chang, D.H.-T. The use of complementary and alternative medicine by people with cardiovascular disease: A systematic review. BMC Public Health 2012, 12, 299. [Google Scholar] [CrossRef] [PubMed]
- Loya, A.M.; Gonzalez-Stuart, A.; Rivera, J.O. Prevalence of Polypharmacy, Polyherbacy, Nutritional Supplement Use and Potential Product Interactions among Older Adults Living on the United States-Mexico Border A Descriptive, Questionnaire-Based Study. Drug Aging 2009, 26, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Ingraham, S.E.; Kopp, M.; Foraida, M.I.; Jazieh, A.-R. The incidence of potential interactions between dietary supplements and prescription medications in cancer patients at a Veterans Administration Hospital. Am. J. Clin. Oncol. 2006, 29, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.I.; Shehab, N.; Weidle, N.J.; Lovegrove, M.C.; Wolpert, B.J.; Timbo, B.B.; Mozersky, R.P.; Budnitz, D.S. Emergency Department Visits for Adverse Events Related to Dietary Supplements. N. Engl. J. Med. 2015, 373, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Ly, J.; Percy, L.; Dhanani, S. Use of dietary supplements and their interactions with prescription drugs in the elderly. Am. J. Health Syst. Pharm. 2002, 59, 1759–1762. [Google Scholar] [CrossRef] [PubMed]
- Archer, M.; Proulx, J.; Shane-McWhorter, L.; Bray, B.E.; Zeng-Treitler, Q. Development of an alert system to detect drug interactions with herbal supplements using medical record data. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2014; p. 249. [Google Scholar]
- Stoddard, G.J.; Archer, M.; Shane-McWhorter, L.; Bray, B.E.; Redd, D.F.; Proulx, J.; Zeng-Treitler, Q. Ginkgo and warfarin interaction in a large veterans administration population. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2015; p. 1174. [Google Scholar]
- Gundlapalli, A.V.; Redd, D.; Gibson, B.S.; Carter, M.; Korhonen, C.; Nebeker, J.; Samore, M.H.; Zeng-Treitler, Q. Maximizing clinical cohort size using free text queries. Comput. Biol. Med. 2015, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Manohar, N.; Arsoniadis, E.; Wang, Y.; Adam, T.J.; Pakhomov, S.V.; Melton, G.B. Evaluating Term Coverage of Herbal and Dietary Supplements in Electronic Health Records. AMIA Annu. Symp. Proc. 2015, 2015, 1361–1370. [Google Scholar] [PubMed]
- Arnaud, É.; Elbattah, M.; Gignon, M.; Dequen, G. NLP-Based Prediction of Medical Specialties at Hospital Admission Using Triage Notes. In Proceedings of the 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), Victoria, BC, Canada, 9–12 August 2021; pp. 548–553. [Google Scholar]
- Elbattah, M.; Arnaud, É.; Gignon, M.; Dequen, G. The Role of Text Analytics in Healthcare: A Review of Recent Developments and Applications. Healthinf 2021, 5, 825–832. [Google Scholar]
- Fan, Y.D.; He, L.; Zhang, R. Evaluating Automatic Methods to Extract Patients’ Supplement Use from Clinical Reports. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1258–1261. [Google Scholar]
- Schutte, D.; Vasilakes, J.; Bompelli, A.; Zhou, Y.; Fiszman, M.; Xu, H.; Kilicoglu, H.; Bishop, J.R.; Adam, T.; Zhang, R. Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature. J. Biomed. Inform. 2022, 131, 104120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Schutte, D.; Bian, J.; Zhang, R. Deep learning models in detection of dietary supplement adverse event signals from Twitter. JAMIA Open 2021, 4, ooab081. [Google Scholar] [CrossRef] [PubMed]
- VA Informatics and Computing Infrastructure (VINCI). Available online: https://www.hsrd.research.va.gov/for_researchers/vinci/ (accessed on 9 May 2023).
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques. In Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
Washington DC VA Medical Center | VA West Haven Healthcare System | VA Salt Lake City Healthcare System | |
---|---|---|---|
Age: | 32–88 (61.5) | 32–88 (59.1) | 24–93 (64.7) |
Gender | |||
Female: | 20 (15%) | 13 (11%) | 7 (5%) |
Male: | 110 (85%) | 101 (88%) | 125 (95%) |
Race | |||
Black: | 105 (81%) | 41 (36%) | 9 (7%) |
White: | 16 (12%) | 67 (58%) | 115 (87%) |
Other: | 1 (1%) | 2 (2%) | 8 (6%) |
Unknown: Ethnicity | 8 (6%) | 5 (4%) | 0 (0%) |
Hispanic: | 1 (1%) | 3 (3%) | 9 (7%) |
Non-Hispanic: | 123 (94%) | 107 (93%) | 123 (93%) |
Unknown: | 6 (5%) | 5 (4%) | 0 (0 %) |
Washington DC VA Medical Center | VA West Haven Healthcare System | VA Salt Lake City Healthcare System | |
---|---|---|---|
Aloe Vera | 13 | 0 | 0 |
Black Cohosh | 2 | 0 | 0 |
Calcium | 0 | 7 | 7 |
Chondroitin | 2 | 8 | 7 |
Cinnamon | 11 | 0 | 2 |
Coenzyme Q | 2 | 6 | 7 |
Cranberry | 18 | 0 | 0 |
DHEA | 1 | 1 | 5 |
Echinacea | 3 | 2 | 2 |
Evening Primrose | 1 | 0 | 0 |
Fish Oil | 31 | 13 | 9 |
Flaxseed | 1 | 1 | 1 |
Folic Acid | 10 | 1 | 6 |
Garlic | 23 | 15 | 7 |
Ginger | 13 | 1 | 1 |
Ginkgo Biloba | 7 | 6 | 10 |
Ginseng | 10 | 6 | 11 |
Glucosamine | 3 | 17 | 10 |
Goldenseal | 3 | 0 | 0 |
Green Tea | 41 | 1 | 2 |
Iron | 0 | 3 | 5 |
Magnesium | 0 | 8 | 4 |
Melatonin | 3 | 15 | 22 |
Multivitamins | 45 | 49 | 49 |
Potassium | 0 | 2 | 1 |
Protein | 0 | 1 | 5 |
Saw Palmetto | 2 | 2 | 2 |
St Johnś wort | 1 | 1 | 1 |
Turmeric | 6 | 1 | 2 |
Vitamin A | 0 | 1 | 3 |
Vitamin B | 27 | 22 | 32 |
Vitamin C | 30 | 9 | 10 |
Vitamin D | 40 | 27 | 39 |
Vitamin E | 21 | 7 | 2 |
Yohimbe | 2 | 0 | 0 |
Zinc | 0 | 1 | 2 |
keywords | acidophilus, aloe, astragalus, biotin, calcium, cholecalciferol, chondroitin, cinnamon, coenzyme, cranberry, crea, creat, creatine, creatinin, creatinine, creatining, creatnine, cvitamin, cyancobalamin, cyanocobalamin, cyanocobalamine, cyanocobalmin, dhea, digitalis, echinacea, ergocalciferol, fe, ferr, fiber, fish, fishoil, flex, flexion, flx, folic, garlic, ginger, ginkgo, ginko, ginseng, glucosamine, irn, iron, krill, licorice, magnesium, melatonin, mlfolic, multivitamin, multivitamins, multivits, niacin, oregano, palmetto, potasium, potass, potassium, potassuim, pottasium, pyridoxine, retinal, riboflavin, tea, thaimine, thiamin, thiamine, thistle, tumeric, turmeric, vera, viamin, viatmin, vit, vita, vitamin, vitamine, vitd, vitmain, vits, willow, yeast, zinc, zn |
categories | aloe vera, astragalus, biotin, calcium, chondroitin, cinnamon, coenzyme Q10, cranberry, creatine, curcumin, dhea, digitalis, echinacea, fiber, fish oil, folic acid, garlic, ginger, ginkgo biloba, ginseng, glucosamine, iron, licorice, magnesium, melatonin, multivitamin, oregano, palmetto, potassium, probiotic, tea, thiamine, thistle, vitamin A, vitamin B12, vitamin B2, vitamin B3, vitamin B6, vitamin C, vitamin D2, vitamin D3, willow, yeast, zinc |
Class | Precision | Recall | F1 |
---|---|---|---|
Yes | 0.929 | 0.928 | 0.929 |
No | 0.892 | 0.894 | 0.893 |
Weighted Avg. | 0.914 | 0.914 | 0.914 |
Snippet | Keywords | Class |
---|---|---|
(14) INSULIN,GLARGINE,HMN 100 UNT/ML INJ ACTIVE Give: 12 UNITS SC QDAY (15) LACTOBACILLUS ACIDOPHILUS/SPOROGENES TAB ACTIVE Give: 1 TABLETS PO TID (16) MELATONIN 5MG SL CAP/TAB ACTIVE Give: 5MG SL | acidophilus, melatonin | Yes (all) |
sulfate 325 mg po qday with food *Folic acid 1 mg po qday *Glargine insulin 45 units SC qday *Lactobacillus acidophilus/sporogenes 1 tab po TID *Melatonin 5 mg po SL QHS prn sleep/insomnia *Omeprazole 20 mg po BID AC | folic acid, acidophilus, melatonin | Yes (all) |
10.9 and 34.3. Platelets normal at 198,000. Chemistry shows a glucose of 164, chloride 109, and normal creatinine of 0.97. Calcium is 8.1. Protein 6.2. Blood alcohol level is at 284.2. TSH is within normal limits. Acetaminophen and salicylate levels are | calcium, creatinine | No (all) |
250 ML expires: 08/12/2016 IV STD PROTOCOL NO LOADING DOSE@1 Instructions too long. See order details for full text. ATORVASTATIN CALCIUM 40MG TAB Give: 40MG PO QPM *INSULIN,ASPART 100UN/ML VIAL 10ML INJ Give: PER PROTOCOL SC QID-INSULIN | calcium | No |
Steroid injection helped x 6-8 weeks. Does not take anything for pain. Osteopenia. Dexa 2016. Followed by BHT. Currently on cholecalciferol. PTSD. Having some anger issues. Feels frustrated more easily. Wants to go up on his fluoxetine dose. Says he has | cholecalciferol | Yes |
100 mg po q day and triameterene 37.5/HCTZ 25 mg po q day Diabetes: Lantus 30 units twice daily, drinking cranberry juice lately for uti, hasn’t been checking blood sugars Only smoked short time as a teenager PMH: Adenomatous polyp of | cranberry | Yes |
Veteran actively engaged in the Therapeutic Lunch Group today from 1130 to noon. 30 veterans shared a lunch of baked fish, french fries, and mixed vegetables. Lunch was planned, prepared, served and cleaned up by veterans. Besides lunch this is an | fish | No |
obstruction in the subclavian vessel. Subsequently attempted placement of non-cut 4.5Fr. SL PICC, hoping that the presence of the tapered flex tip on the catheter would be able to overcome the narrowing. This was also unsuccessful. Finally after 40 minutes of | flex | No |
-broth or strained broth-based soups -popsicles without pieces of fruit or fruit pulp -water -clear sodas, such as ginger ale, Sprite, or 7-up -sports drinks Try to choose 3 to 5 different varieties of clear liquids for each meal. | ginger | No |
DYSPHAGIA, PHARYNGEAL PHASE Insomnia, unspecified (ICD-9-CM 780 Ch DVT/Embl Low Ext Therap Drug Monitor Celiac Disease * (ICD-9-CM 579.0/57 Iron Deficiency Anemia Hypoventilation * (ICD-9-CM 786.09) Gastroesophageal Reflux Disorder * CHRONC PERIODONTITIS NOS Anticoagulants | iron | No |
of previous experiences with sedation or analgesia: none REVIEW OF SYSTEM (pertinent to procedure): as per HPI ALLERGIES: SULFA DRUGS, NIACIN CURRENT MEDICATIONS: Active Outpatient Medications (including Supplies): ACCU-CHEK AVIVA PLUS(GLUCOSE) TEST STRIP USE 1 STRIP FOR ACTIVE TESTING BLOOD GLUCOSE | niacin | No |
Supplement Category | Precision | Recall | F1 |
---|---|---|---|
Calcium | 0.81 | 0.84 | 0.83 |
Chondroitin | 0.78 | 0.64 | 0.70 |
Creatine | 0.77 | 0.76 | 0.77 |
Fiber | 0.80 | 0.67 | 0.73 |
fish oil | 0.79 | 0.50 | 0.61 |
folic acid | 0.70 | 0.27 | 0.39 |
Iron | 0.81 | 0.68 | 0.74 |
Magnesium | 0.81 | 0.67 | 0.73 |
Melatonin | 0.68 | 0.50 | 0.58 |
Multivitamin | 0.91 | 0.26 | 0.40 |
Potassium | 0.76 | 0.67 | 0.71 |
Tea | 0.72 | 0.66 | 0.69 |
Thiamine | 0.78 | 0.33 | 0.47 |
vitamin A | 0.77 | 0.65 | 0.71 |
vitamin B12 | 0.94 | 0.28 | 0.43 |
vitamin D2 | 0.88 | 0.47 | 0.61 |
vitamin D3 | 0.94 | 0.28 | 0.43 |
micro-avg | 0.79 | 0.60 | 0.68 |
macro-avg | 0.80 | 0.54 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redd, D.; Workman, T.E.; Shao, Y.; Cheng, Y.; Tekle, S.; Garvin, J.H.; Brandt, C.A.; Zeng-Treitler, Q. Patient Dietary Supplements Use: Do Results from Natural Language Processing of Clinical Notes Agree with Survey Data? Med. Sci. 2023, 11, 37. https://doi.org/10.3390/medsci11020037
Redd D, Workman TE, Shao Y, Cheng Y, Tekle S, Garvin JH, Brandt CA, Zeng-Treitler Q. Patient Dietary Supplements Use: Do Results from Natural Language Processing of Clinical Notes Agree with Survey Data? Medical Sciences. 2023; 11(2):37. https://doi.org/10.3390/medsci11020037
Chicago/Turabian StyleRedd, Douglas, Terri Elizabeth Workman, Yijun Shao, Yan Cheng, Senait Tekle, Jennifer H. Garvin, Cynthia A. Brandt, and Qing Zeng-Treitler. 2023. "Patient Dietary Supplements Use: Do Results from Natural Language Processing of Clinical Notes Agree with Survey Data?" Medical Sciences 11, no. 2: 37. https://doi.org/10.3390/medsci11020037
APA StyleRedd, D., Workman, T. E., Shao, Y., Cheng, Y., Tekle, S., Garvin, J. H., Brandt, C. A., & Zeng-Treitler, Q. (2023). Patient Dietary Supplements Use: Do Results from Natural Language Processing of Clinical Notes Agree with Survey Data? Medical Sciences, 11(2), 37. https://doi.org/10.3390/medsci11020037