Diagnostics and Mapping of Geoecological Situations in the Permafrost Zone of Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimating and Mapping the Landscape Sustainability
- Step 1.
- Selecting the main factors that influence landscape resistance to loadings (activation of cryogenic processes);
- Step 2.
- Creating a matrix table of influence factors, each of which is assigned a specific weight (qualimetric) coefficient (usually ranging from 0 to 1) depending on the contribution of the factor to the final grade;
- Step 3.
- Calculating the integral index of resistance to the activation of cryogenic processes in all landscapes;
- Step 4.
- Ranking all landscapes from the third to fifth stability gradation on the basis of their vulnerability to the mechanical impacts according to the calculated indexes;
- Step 5.
- Performing evaluative GIS mapping and spatial analysis of the territory according to the degree of sustainability.
- (3a)
- Expert assignment of integral index values (0–1) to each landscape on the basis of the evaluation of the actual intensity and the occurrence spectrum of the processes, as well as to the bioresource value;
- (3b)
- Analysis of the correlation with the purpose of sorting out secondary criteria and the production of a multiple regression equation for calculating the “total hazard score” (for example, the permafrost stability coefficient, PSC) for each landscape.
- Set the goal/define the problem;
- Determine the criteria (factors);
- Standardize the scores of the factors/criteria;
- Determine the weight of each factor;
- Aggregate the criteria;
- Validate/verify the result.
- Direct placement. The sum of all weights = 1. Apply with a small number of factors.
- Ranking factors in ascending/descending order of their properties.
- Assignment the significance coefficients to factors according to the regression equation.
- In the following example, we calculated the percentage values of the six chosen indicators using the geometric mean (not the sum), which is called the hazard coefficient Ch that corresponds to each landscape. The smaller the value of Ch, the more stable the landscape. Thus, two techniques for splitting all landscapes into clusters by their stability were tested: A simple point-summing method and calculation of the percentage geometric mean value.
- Figure 1 shows that the greatest risks to economic development in this region (in terms of destructive exogenous processes) are the landscapes classified in the righthand part of the figure. These risks include slightly dissected landscapes with an annual mean ground temperature between 0 and −1 °C, landscapes made of peat, landscapes with more than 50% ice content, and landscapes with vegetation that has low recoverability (covering less than 20%), which can increase the thickness of the seasonal freeze–thaw layer by more than double if their surface suffers mechanical damage.
2.2. Method of Estimating & Mapping Cryogenic Processes Activation
- Step 1.
- Linking raster images of remote sensing data and source maps to a working cartographic projection.
- Step 2.
- Digitization of source maps to obtain thematic electronic layers of various contents–landscapes, geological complexes, vegetation types, geomorphological objects of processes, etc.
- Step 3.
- Combining the thematic layers of the same content which were obtained from different sources in a single electronic coverage.
- Step 4.
- Editing of thematic layers–electronic maps of various content–in accordance with remote sensing data.
- Step 5.
- Linking electronic maps with databases of landscape, geological, geocryological, and other information and generating corresponding legends to maps.
- Step 6.
- Compilation of electronic and “paper” versions of thematic maps using the information and graphics capabilities of GIS programs (ArcInfo, MapInfo, etc.).
2.3. Basic Mapping Materials
3. Results
3.1. Evaluation of Geoecological Situation at Local Level
3.2. Assessment and Mapping of Geoecological Situations at the Regional Level
4. Discussion
- In geocryology, permafrost typization depends on the area it occupies. The permafrost distribution area is estimated as a percentage of the total landscape area: Continuous permafrost covers more than 90—95%, interrupted permafrost covers 50—95%, massive-island permafrost covers between 5% and 10—15%, and sporadic permafrost covers less than 5%.
- The annual mean temperature of the permafrost from less than −11 to 0 °C has separate scales for plains and mountains. The most frequently used temperature scale is divided into the ranges 0–1 °C, −1 to −2 (3) °C, −2 (3) to −5 °C, −5 to −10 °C, and below −10 °C (3).
- Ice content permafrost is estimated in parts or as a percentage. The most common ranges are less than 20%, 20—50%, and more than 50%.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tumel, V.F. About permafrost survey. Izv. AN USSR Ser. Geogr. Geophys. 1945, 9, 135–144. (In Russian) [Google Scholar]
- Kudryavtsev, V.A. Permafrost survey as the main type of permafrost research. In Permafrost Research; MSU: Moscow, Russia, 1961; pp. 3–10. (In Russian) [Google Scholar]
- Baranov, I.Y. Geocryological Map of the USSR at a Scale of 1:10,000,000; Explanatory note; Obruchev Permafrost Institute: Moscow, Russia, 1960. (In Russian) [Google Scholar]
- Webber, P.J.; Walker, D.A. Vegetation and landscape analysis at Prudhoe Bay, Alaska: A vegetation map of the Tundra Biom study area. In Ecological Investigations of the Tundra Biom in the Prudhoe Bay Region, Alaska; Special Report 2; Brown, J., Ed.; Biological Papers of the University of Alaska: Fairbanks, AK, USA, 1975; pp. 80–91. [Google Scholar]
- Everett, K.R.; Webber, P.J.; Walker, D.A.; Parkinson, R.J.; Braun, J. A geoecological mapping scheme for Alaskan coastal tundra. In Proceedings of the Third International Conference of Permafrost, Edmonton, AB, Canada, 10–13 July 1978; pp. 359–365. [Google Scholar]
- Melnikov, E.S.; Veisman, L.I.; Kritsuk, L.N.; Moskalenko, N.G.; Tagunova, L.N.; Todosiichuk, I.V. Landscape Indicators of Engineering Geocryological Condition of the North of the Western Siberia and Their Interpretive Signs; Nedra: Moscow, Russia, 1974. (In Russian) [Google Scholar]
- Drozdov, D.S. Assessment of Landscape Indication Reliability of Engineering and Geocryological Conditions During the Transition from Large to Medium Scale with Regional Works in Western Siberi. Earth’s Cryosphere 1997, 4, 35–41. [Google Scholar]
- Tumel, N.V. Permafrost Geoecology: Training Aid for Bachelors and Masters, 2nd ed.; Tumel, N.V., Zotova, L.I., Eds.; Yurite: Moscow, Russia, 2017; p. 220. ISBN 978-5-534-04227-6. (In Russian) [Google Scholar]
- Tumel, N.V.; Zotova, L.I. Ambiguity Landscape Indication Cryogenic Conditions in Different Scales Mapping Permafrost Zone of Russia. Engineering survey for construction. In Proceedings of the Fourteenth All-Russian Conference Survey Organizations on December 10–14 2018—“Geomarketing”, Moscow, Russia, 10–14 December 2018. (In Russian). [Google Scholar]
- Jorgenson, M.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.G.; Kanevskiy, M. Resilience and Vulnerability of Permafrost to Climate Change. Can. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Frost, G.V.; Dissing, D. Drivers of Landscape Changes in Coastal Ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 2018, 10, 1280. [Google Scholar] [CrossRef]
- Kokelj, S.; Trevor, C.; Tunnicliffe, J.; Segal, R.; Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 2017, 45, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wu, T.; Wang, P.; Li, R.; Xie, C.; Zou, D. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Sci. Total Environ. 2019, 650, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Frost, G.; Christopherson, T.; Jorgenson, M.; Liljedahl, A.; Macander, M.; Walker, D.; Wells, A. Regional Patterns and Asynchronous Onset of Ice-Wedge Degradation since the Mid-20th Century in Arctic Alaska. Remote Sens. 2018, 10, 1312. [Google Scholar] [CrossRef]
- Harris, C.; Vonder, M.; Isaksen, K.; Haeberli, W.; Sollid, L.; King, L.; Holmlund, P.; Dramis, F.; Guglielmin, M.; Palacios, D. Warming permafrost in European mountains. Global. Planet. Chang. 2003, 39, 215–225. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.; Shiklomanov, N.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol. 2011, 32, 1775–1781. [Google Scholar] [CrossRef]
- Marchenko, S.S.; Gorbunov, A.P.; Romanovsky, V.E. Permafrost warming in the Tien Shan Mountains, Central Asia. Glob. Planet. Chang. 2007, 56, 311–327. [Google Scholar] [CrossRef]
- Brown, J.; Hinkel, K.; Nelson, F. The circumpolar active layer monitoring (CALM) program: Research designs and initial results. Polar Geogr. 2000, 24, 166–258. [Google Scholar] [CrossRef]
- Mackay, J.; Burn, C. The first 20 years (1978–1979 to 1998–1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 2002, 39, 1657–1674. [Google Scholar] [CrossRef]
- Zamolodchikov, D.G.; Kotov, A.N.; Karelin, D.V.; Razzhivin, V.Y. Active-Layer Monitoring in Northeast Russia: Spatial, Seasonal, and Interannual Variability. Polar Geogr. 2004, 28, 286–307. [Google Scholar] [CrossRef]
- Shiklomanov, N.I.; Nelson, F.E.; Streletskiy, D.A.; Hinkel, K.M.; Brown, J. The Circumpolar Active Layer Monitoring(CALM) Program: Data Collection, Management, and Dis-semination Strategies. In Proceedings of the Ninth International Conference on Permafrost, University of Alaska Fairbanks, Fairbanks, AK, USA, 29 June–3 July 2008; Kane, D.L., Fairbanks, H.K.M., Eds.; Institute of Northern Engineering, University of Alaska Fairbanks: Fairbanks, AK, USA, 2008; pp. 1647–1652. [Google Scholar]
- Zhang, Y.; Olthof, I.; Fraser, R.; Wolfe, S.A. A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections. Cryosphere 2014, 8, 2177–2194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; McLaughlin, J.W.; Leblon, B.; Ou, C. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat images in northern Ontario. Can. Int. J. Remote Sens. 2016, 37. [Google Scholar] [CrossRef]
- Bartsch, A.; Höfler, A.; Kroisleitner, C.; Trofaier, A.M. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote Sens. 2016, 8, 979. [Google Scholar] [CrossRef]
- Wu, X.; Nan, Z.; Cheng, G.; Zhao, S. Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Platea. Permafr. Periglac. Process. 2018, 29, 86–99. [Google Scholar] [CrossRef]
- Jorgenson, T.; Guido, M.G. Remote Sensing of Landscape Change in Permafrost Regions. Permafr. Periglac. Process. 2016, 9. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Chen, A.; Gusmeroli, A.; Zebker, H.; Zhang, T. Remote sensing measurements of thermokarst subsidence using InSAR. J. Geophys. Res. Earth Surf. 2015, 120, 1935–1948. [Google Scholar] [CrossRef] [Green Version]
- Grave, N.A.; Melnikov, P.I. Criteria and predictions of the permafrost landscapes stability. In Factors and Mechanisms for the Geosystems Stability; Institute of Geography, USSR Academy of Sciences: Moscow, Russia, 1989; pp. 163–171. (In Russian) [Google Scholar]
- Tumel, N.V.; Zotova, L.I.; Grebenets, V.I. Concept of Stability of Cryogenic Landscapes; Kasimov, N.S., Ed.; Geographical Scientific Schools of the Moscow University: Moscow, Russia, 2008; pp. 139–144. (In Russian) [Google Scholar]
- Garagulya, L.S. Classification of types of potential thermokarst and recommendations for its mapping. In Permafrost Studies. Issue XXI; Publishing House of Moscow State University: Moscow, Russia, 1983; pp. 73–86. (In Russian) [Google Scholar]
- Melnikov, E.S. Systematization of Natural Complexes. In Landscapes Permafrost Zone of the West Siberian Gas-Bearing Province; Publishing House “Science”: Novosibirsk, Russia, 1983; pp. 36–57. (In Russian) [Google Scholar]
- Fedorov, A.N. Permafrost Landscapes of Yakutia. Classification and Mapping Issues; Permafrost Institute: Yakutsk, Russia, 1991. (In Russian) [Google Scholar]
- Drozdov, D.S. Groups Identification of homogeneous natural-territorial complexes in engineering and geocryological mapping. In Proceedings of VSEGINGEO, Issue 147; VSEGINGEO Press: Moscow, Russia, 1982; pp. 66–71. (In Russian) [Google Scholar]
- Zotova, L.I. Geoecological mapping of the northern territories for various applied purposes. In Cartographic and Geoinformation Support of Regional Development Management; VII Scientific Conference: Irkutsk, Russia, 2002; pp. 95–98. (In Russian) [Google Scholar]
- Shpolyanskaya, N.A.; Zotova, L.I. Map of Potential Landscapes Stability of Western Siberia Cryolithozone; Moscow University Bulletin, Series 5. Geography; Moscow University Press: Moscow, Russia, 1994; pp. 56–65. (In Russian) [Google Scholar]
- Drozdov, D.S.; Korostelev, Y.V.; Malkova, G.V.; Melnikov, E.S. The set of eco-geologic digital maps of the Timan-Pechora province. In Proceedings of the Permafrost: 8th International Conference on Permafrost, ICOP, Zurich, Russia, 21–25 July 2003; pp. 205–210. [Google Scholar]
- Torgovkin, Y.I. Landscape Indication and Mapping Permafrost Conditions of the Lena River Basin. Ph.D. Thesis, Permafrost Institute, Yakutsk, Russia, 2005. (In Russian). [Google Scholar]
- Fedorov, A.N.; Gorokhov, A.N.; Makarov, V.S.; Vasilyev, N.F. Landscape mapping of the Central Aldan gold-bearing region using GIS technologies. Probl. Reg. Ecol. 2008, 2, 128–131. (In Russian) [Google Scholar]
- Drozdov, D.S. Mapping and remote sensing of natural and technogenic geosystems in West Siberia. In Proceedings of the Yamal Land-Cover Land-Use Change Workshop, Moscow, Russia, 28–30 January 2008; Project NNG6GE00A funded by NASA Land-Cover Land-Use Change (LCLUC) Program. pp. 36–37. [Google Scholar]
- Drozdov, D.S.; Maikova, G.V.; Romanovsky, V.; Drozdov, D.S.; Malkova, G.V.; Romanovsky, V.E.; Vasiliev, A.A.; Leibman, M.O.; Sadurtdinov, M.R.; Ponomareva, O.E.; et al. Digital Maps of Permafrost Zone and Assesement of Current Trends of Criosphere Changes. In Proceedings of the X International Symposium on Permafrost Engineering, Book of Abstracts; Zhang, R.V., Ed.; Institute of permafrost them: Magadan, Russia, 2017; pp. 32–33. ISBN 978-5-93254-173-9. [Google Scholar]
- Drozdov, D.S.; Malkova, G.V.; Romanovskij, V.E.; Vasil’ev, A.A.; Lejbman, M.O.; Sadurtdinov, M.R.; Ponomareva, O.E.; Pendin, V.V.; Gorobcov, D.N.; Ustinova, E.V. Digital Maps of Permafrost Zone and estimation of Modern First Name in the Permafrost Zone. In Actual Problems of Permafrost; Collection of Reports Extended Meeting of the Scientific Council on Earth Cryology RUS. 15–16 May 2018; T. 1. Part 4; KDU University Book: Moscow, Russia, 2018; pp. 295–301. ISBN 978-5-91304-811-0. [Google Scholar]
- Fedorov, A.; Vasilyev, N.F.; Torgovkin, Y.I.; Shestakova, A.A.; Varlamov, S.P.; Zheleznyak, M.; Shepelev, V.V.; Konstantinov, P.Y.; Kalinicheva, S.S.; Basharin, N.I.; et al. Permafrost-Landscape Map of the Republic of Sakha (Yakutia) on a Scale 1:1,500,000. Geosciences 2018, 8, 465. [Google Scholar] [CrossRef]
- Melnikov, E.S.; Moskalenko, N.G.; Voitsekhovskaya, I.V.; Kritsuk, L.N.; Chekrygina, S.N. Map of the Natural Complexes of the North of Western Siberia; Gosgeodezia USSR: Moscow, Russia, 1991. [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. Permafrost-landscape differentiation Russian permafrost zone as the basis of ecological and geological studies. Eng. Geol. 2008, 2, 11–14. (in Russian). [Google Scholar]
- Melnikov, E.S. Landscapes of the Permafrost Zone of West-Siberian Gas-Bearing Province; Nauka: Novosibirsk, Russia, 1983; p. 165. (In Russian) [Google Scholar]
- Melnikov, E.S.; Moskalenko, N.G. Map of Natural Systems in the North of Western Siberia for Geocryological Forecasting and Planning Environmental Measures During Mass Construction. (VSEGINGEO, 1991); Scale 1:1,000,000; Head Department of Geodesy and Cartography: Moscow, Russia, 1991.
- Melnikov, E.S.; Grechishchev, S.E. (Eds.) Permafrost and Development of Oil-Gas Regions; GEOS Publisher: Moscow, Russia, 2002; p. 402. ISBN 5-89118-260-2. (In Russian) [Google Scholar]
- Kasimov, N.S.; Kotlyakov, V.M.; Krasnikov, D.N.; Krayukhin, A.N.; Tikunov, V.S. National Atlas of the Arctic. Geogr. Environ. Sustain. 2018, 11. [Google Scholar] [CrossRef]
- Bosikov, N.P.; Vasiliev, I.S.; Fedorov, A.N. Permafrost Landscapes of Reclaimed Zone of Leno-Aldan Interfluve; Permafrost Institute: Yakutsk, Russia, 1985. (In Russian) [Google Scholar]
- Fedorov, A.N.; Botulu, T.A.; Varlamov, S.P.; Vasiliev, I.S.; Gribanova, S.P.; Dorofeev, I.V.; Klimovsky, I.V.; Samsonova, V.V.; Soloviev, P.A. Permafrost Landscapes in Yakutia. Explanation Note to the Permafrost-Landscape Map of the Yakut ASSR at a 1:2,500,000 Scale; GUGK: Novosibirsk, Russia, 1989. (In Russian) [Google Scholar]
- Fedorov, A.N.; Botulu, T.A.; Vasiliev, I.S.; Varlamov, S.P.; Gribanova, S.P.; Dorofeev, I.V. Permafrost-Landscape Map of the Yakut ASSR, Scale 1:2,500,000, 2 Sheets; Melnikov, P.I., Ed.; Gosgeodezia: Moscow, Russia, 1991. [Google Scholar]
- Shestakova, A.A. Mapping of the Permafrost Landscapes Taking into Account Vegetation Succession (for Example of the Prilensky Plateau). Ph.D. Thesis, Permafrost Institute, Yakutsk, Russia, 2011. (In Russian). [Google Scholar]
- Zotova, L.I.; Konischev, V.N.; Marahtanov, V.P.; Solomatin, V.I.; Tumel, N.V.; Chigir, V.G. Critical Environmental Situations in the Cryolithozone; Tikhonov, A.N., Sadovnichy, V.A., Eds.; Izd-vo Mosk. un-ta: Moscow, Russia, 1995; pp. 185–194. ISBN 5-211-03524-0. [Google Scholar]
- Geoecology of the North; Solomatin, V.I. (Ed.) Publishing House of MSU: Moscow, Russia, 1992. (In Russian) [Google Scholar]
- Tumel, N.V. Activation of Dangerous Cryogenic Processes. Geography, Society, Environment. Volume 1: Structure, Dynamics and Evolution of Natural Systems; Kasimov, N.S., Ed.; Gorodets Publising House: Moscow, Russia, 2004; pp. 344–357. (In Russian) [Google Scholar]
- Tumel, N.V.; Zotova, L.I. Cryolithozone Geosystems Response on Anthropogenic Impacts. Arctic, Subarctic: Mosaic, contrast, variability of the Cryosphere: Proceeding of the International Conference; Melnikov, V.P., Drozdov, D.S., Eds.; Epoha Publishing House: Tyumen, Russia, 2015; pp. 379–382. ISBN 978-59906392-0-1. [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. Ecological Atlas of Russia; SPb: CJSC Karta Publishing House: Moscow, Russia, 2002; pp. 50–54. (In Russian) [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. National Atlas of Russia. Volume 2: Nature, Ecology. Section “Snow. Ice. Permafrost”; Roskartografiya: Moscow, Russia, 2007; pp. 240–242. ISBN 5-85120-216-5. (In Russian) [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. Ecological Atlas of Russia; LLC Feoriya: Moscow, Russia, 2017; pp. 183–188. ISBN 978-5-91796-034-0. (In Russian) [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. Atlas of the Yamalo-Nenets Autonomous Area; Federal State Unitary Enterprise Omsk Cartographical Factory: Omsk, Russia, 2004. (In Russian) [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. Atlas of Khanty-Mansi Autonomous Okrug. Volume II. Nature. Ecology; LLC NPF TalkaTDV: Moscow, Russia, 2004; Volume 59, pp. 53–57. (In Russian) [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. Siberia, Atlas of Asian Russia; Feoriya: Novosibirsk, Russia, 2007; ISBN 5-287-00413-3. (In Russian) [Google Scholar]
- Tumel, N.V.; Koroleva, N.A. The Russian Arctic in the 21st Century: Natural Challenges and Risks of Development; Atlas Publishing: Moscow, Russia, 2013; pp. 54–69. (In Russian) [Google Scholar]
- Multi-Criteria Analysis: A Manual. Department for Communities and Local Government (DCLG), 2009. Available online: http://www.communities.gov.uk/publications/corporate/multicriteriaanalysismanual (accessed on 20 April 2019).
- Korobov, V.B. Expert Methods in Geography and Geoecology; Pomorsky State University: Arkhangelsk, Russia, 2008; p. 244. [Google Scholar]
- Gubaydullin, M.G.; Korobov, V.B.; Konovalova, N.V. Formalization of the Environment Characteristics by Means of GIS Technology for Oil Fields Development. Neftepromyslovoe Delo 2002, 11, 39–44. [Google Scholar]
- Gubaidullin, M.G.; Kolosov, D.F.; Kalashnikov, A.V.; Burkov, D.V. Assessing the Impact of Oil and Gas Facilities in the Soil and Vegetation of the Southeastern Part of the Bolshezemelskaya Tundra; SAFU: Arkhangelsk, Russia, 2017; p. 188. ISBN 978-5-261-01264-1. [Google Scholar]
- Zotova, L.I.; Dedyusova, S.Y. Evaluation of Critical Ecological Situations in the Tyumen Northern Cryolithozone under Economic Development. In Proceedings of the Tenth International Conference on Permafrost; Melnikov, P.I., Ed.; The Northern Publisher: Salekhard, Russia, 2012; Volume 2, pp. 543–548. ISBN 978-5905911-02-6. [Google Scholar]
- Natural Hazards of Russia. Geocryological Dangers of Russia. Thematic Volume; Garaguly, L.C.; Yershov, E.D. (Eds.) Publishing company “CROOK”: Moscow, Russia, 2000; p. 316. (In Russian) [Google Scholar]
- Marahtanov, V.P. Evaluation of anthropogenic impacts on the cryolithozone landscapes. In Natural-Anthropogenic Processes and Environmental Risk; Izd. House Gorodets: Moscow, Russia, 2004; pp. 113–119. ISBN 5-9584-0072-X. [Google Scholar]
- Gavrilova, M.K.; Fedorov, A.N.; Varlamov, S.P.; Skachkov, Y.B.; Vasilyev, I.S.; Torgovkin, I.I.; Skryabin, P.N.; Konstantinov, P.Y.; Ugarov, I.S. Influence of Climate on the Development of Permafrost Landscapes of Central Yakutia; IMZ Siberian Branch of the Russian Academy of Science: Yakutsk, Russia, 1996; p. 152. (In Russian) [Google Scholar]
- Shpolyanskaya, N.A.; Zotova, L.I. Development of the North: How to keep balance in nature. Ecol. Life 2010, 11, 66–73. (In Russian) [Google Scholar]
- Simonov, Y.G. Numerical Scores in Applied Geographical Research and the Way of Their Development; Moscow University Bulletin. Series 5. Geography; Moscow University Press: Moscow, Russia, 1997; pp. 7–10. (In Russian) [Google Scholar]
- Zotova, L.I. Theoretical and applied aspects of expert geoecological assessment of the hazard of economic development within the new educational program. In Proceedings of the Fourth Conference of Geocryologists of Russia. Vol. 3. P. 9. Environmental Issues of the Cryolithozone; MSU Publishing House: Moscow, Russia, 2011; pp. 224–231. (In Russian) [Google Scholar]
- Korobov, V.B. Some problems of applying expert methods in practice, scientific dialogue, natural history, ecology. Nat. Sci. 2013, 3, 94–108. [Google Scholar]
- Saaty, T.L. Decision Making. Hierarchy Analysis Method; Radio and Communication: Moscow, Russia, 1989; p. 316. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Beekeeping sites suitability analysis integrating GIS and MCE techniques. In Spatial Analysis and Modeling in Geographical Transformation Process: GIS-Based Applications; Murayama, Y., Thapa, R.B., Eds.; Springer Science +Business Media B.V.: Dordrecht, The Netherlands, 2011; ISBN 978-94-007-0670-5. [Google Scholar]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Maria Cerreta, I.D.; Giuliano, P. Landscape Services Assessment: A Hybrid Multi-Criteria Spatial Decision Support System (MC-SDSS). Sustainability 2017, 9, 1311. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin, Germany, 2015. [Google Scholar]
- Multi-Language Glossary of Permafrost and Related Ground-Ice Terms; Robert, O.; Everdingen, V. (Eds.) The Arctic Institute of North America, The University of Calgary: Calgary, AB, Canada, 1998; (revised 2005); Available online: https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (accessed on 10 May 2019).
- Geophysics of Hazardous Natural Processes. Set of Rules 115.13330.2016 (revised version 22-01-95). Available online: http://docs.cntd.ru/document/456054202 (accessed on 12 May 2019).
- Tumel, N.V.; Vostokova, A.V.; Koroleva, N.A. Mapping of Seasonal Freezing and Thawing Within the USSR; Moscow University Bulletin. Series 5. Geography; Moscow University Press: Moscow, Russia, 1989; pp. 30–37. (In Russian) [Google Scholar]
- Feldman, G.M. Forecast Temperature of Frozen Ground and the Development of Cryogenic Processes; Science: Novosibirsk, Russia, 1977; p. 254. (In Russian) [Google Scholar]
- Geocryologic Map of the USSR. Scale 1:2, 500,000 Million; Yershov, E.D. (Ed.) State Cartographic Factory: Vinnytsia, Ukraine, 1991. (In Russian) [Google Scholar]
- Geocryologic Map of the USSR. Scale 1:5, 000, 000; Under the editorship of I. Ya. Baranov. GUGK: Moscow, Russia, 1977. (In Russian)
- Brown, J.; Ferrians, O.J., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. [Indicate Subset Used]; NSIDC—National Snow and Ice Data Center: Boulder, CO, USA, 2002. [Google Scholar]
- Cryolithologic Map of the USSR (for Area of Permafrost) 1:4 Million; Popov, A.I. (Ed.) Federal Agency for Geodesy and Cartography: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Gruber, S. Derivation and Analysis of a High-solution Estimate of Global Permafrost Zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef]
- Osterkamp, T.E. Thermal State of Permafrost in Alaska during the Fourth Quarter of the Twentieth Century (Plenary Paper). In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; Volume 2, pp. 1333–1338. [Google Scholar]
- Drozdov, D.S.; Malkova, G.V.; Melnikov, V.P. Recent Advances in Russian Geocryological Research: A Contribution to the International Polar Year. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; Volume 1, pp. 379–384. [Google Scholar]
- Romanovsky, V.E.; Smith, S.L.; Christiansen, H.H. Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007–2009: A synthesis. Permafr. Periglac. Proc. 2011, 21, 106–116. [Google Scholar] [CrossRef]
- Smith, S.L.; Romanovsky, V.E.; Lewkowicz, A.G.; Burn, C.R.; Allard, M.; Clow, G.D.; Yoshikawa, K.; Throop, J. Thermal State of Permafrost in North America—A Contribution to the International Polar Year. Permafr. Periglac. Proc. 2010, 21, 117–135. [Google Scholar] [CrossRef]
- Christiansen, H.H.; Etzelmüller, B.; Isaksen, K.; Juliussen, H.; Farbrot, H.; Humlum, O.; Johansson, M.; Ingeman-Nielsen, T.; Kristensen, L.; Hjort, J.; et al. The Thermal State of Permafrost in the Nordic area during the International Polar Year. Permafr. Periglac. Proc. 2010, 21, 156–181. [Google Scholar] [CrossRef]
- Tarnocai, C.J.; Kimble, D.; Swanson, S.; Goryachkin, Y.M.; Naumov, V.; Stolbovoi, B.; Jakobsen, G.; Broll, L.; Montanarella, A.; Arnalds, O.; et al. Northern Circumpolar Soils Map, Version 1. [Indicate Subset Used]; Research Branch, Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2002. [Google Scholar]
- Circumpolar Arctic Vegetation Map (CAVM), Scale 1:7,500,000. Walker. Available online: https://www.geobotany.uaf.edu/cavm/ (accessed on 10 August 2018).
- Drozdov, D.S.; Malkova, G.V.; Korostelev, Y.V. Landscape Map of the Russian Arctic Coastal Zone, Version 1. [Indicate Subset Used]; NSIDC—National Snow and Ice Data Center: Boulder, CO, USA, 2003. [Google Scholar]
- Walker, D.A.; Raynolds, M.K. Circumpolar Arctic Vegetation, Geobotanical, Physiographic Maps, 1982–2003; ORNL DAAC: Oak Ridge, TN, USA, 2018. [CrossRef]
- Landscape Map of the USSR. 1:4,000,000; Isachenko, A.G. (Ed.) GUGK: Moscow, Russia, 1988. (In Russian) [Google Scholar]
- Geocryology of the USSR. Central Siberia; Ershov, E.D. (Ed.) Nedra: Moscow, Russia, 1989; p. 463. (In Russian) [Google Scholar]
- Geocryology of the USSR. Western Siberia; Ershov, E.D. (Ed.) Nedra: Moscow, Russia, 1989; p. 454. ISBN 5-247-00432-9. (In Russian) [Google Scholar]
- Zotova, L.I.; Koroleva, N.A.; Dedyusova, S.Y. Evaluation and Mapping of Crisis Ecological Situations in the Territories of Gas-Field Development in the Cryolithozone; Moscow University Bulletin. Series 5. Geography; Moscow University Press: Moscow, Russia, 2007; pp. 54–59, (in Russian with English summary). [Google Scholar]
- Kochurov, B.I.; Tumel, N.V.; Zotova, L.I. Ecodiagnostics of dangerous geoecological situations in the economic development of the cryolithozone. Region. Environ. Issues 2015, 4, 157–164, (in Russian with English summary). [Google Scholar]
- Leibman, M.O. Cryogenic landslides on the Yamal Peninsula, Russia: Preliminary observations. Permafr. Periglac. Process. 1995, 6, 259–264. [Google Scholar] [CrossRef]
- Leibman, M.; Khomutov, A.; Kizyakov, A. Cryogenic landslides in the West-Siberian plain of Russia: Classification, mechanisms, and landforms. In Landslides in Cold Regions in the Context of Climate Change; Springer: Cham, Switzerland, 2014; pp. 143–162. [Google Scholar]
- Ukraintseva, N. Vegetation Response to Landslide Spreading and Climate Change in the West Siberian Tundra. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; Volume 2, pp. 1793–1798. [Google Scholar]
- Ermokhina, K.A.; Myalo, E.G. Phytoindication mapping of landslide disturbances in the Central Yamal. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya 2013, 139–146. (In Russia) [Google Scholar] [CrossRef]
- Tishkov, A.A. Nature protection and conservation. In The Physical Geography of Northern Eurasia. Oxford Regional Environments; Shahgedanova, M., Ed.; Oxford University Press: Oxford, UK, 2002; pp. 227–245. [Google Scholar]
- Tishkov, A. Conservation of Russian Arctic Biodiversity. Geogr. Environ. Sustain. 2012, 5, 48–63. [Google Scholar] [CrossRef]
Permafrost | Vegetation | Factors Influence on Cryogenic Processes | |||
---|---|---|---|---|---|
Ice Content (Rock Volume Fraction) & Types of Ground Ice | The Average Annual Temperature °C | Distribution | Protective Properties | Self-Healing Vegetation | |
less 0.1 | below −10 | rare island | the arctic tundra - weak | the arctic tundra - bad | weak |
0.1–0.2 | −5…−10 | island | typical tundra - moderate | forest-tundra - moderate | moderate |
0.2–0.4 Epigenetic massive ice | −3…−5 0…+2 | massive island | south tundra - good | taiga - good | average |
0.4–0.6 polygonal ice wedge, frost heave mound | −3…−1 | discontinuous | forest-tundra and taiga - significant | tundra - significant | strong |
more 0.6 polygonal wedge & massive ice sheet, frost heave mound | 0…−1 | continuous | marsh landscapes - the greatest | marsh landscapes - the greatest | very strong |
Processes | Speed | Recurrence | |||||
---|---|---|---|---|---|---|---|
Slow (1 Point) | Average (2 Points) | Quickly (3 Points) | Catastrophic (4 Points) | Rarely (1 Point) | Periodically (2 Points) | Annually (3 Points) | |
Thermoerosion, m/year | less 5 | 5–30 | 30–100 | ||||
Thermoabrasion, m/year | less 0.5 (small lakes) | 0.5–2 (large lakes) | 2–5 (sea shores) | less 10 (reservoirs) | |||
Thermokarst, m/year | less 0.05 | 0.05–0.1 | 0.1–0.15 | 0.15–1.0 | |||
Solifluction, m/year | less 0.2 | 0.2–10 | more 10 | m/day | |||
Frost heave, m/year | less 0.05 | 0.05–0.1 | 0.1–0.5 | >0.5 | |||
Icing formation | every 5 years | every 2–5 years | every year | ||||
Frost cracking | every 5–10 years | every 3–5 years | every year | ||||
Kurums, m/year | less 0.01 | 1–3 | 4–10 | more 10 |
Processes | The Impact of Cryogenic Processes on Landscapes | |||
---|---|---|---|---|
Not (0 Points) | Poor (1 Points) | Moderate (2 Points) | Strong (3 Points) | |
Thermoerosion | + | + | ||
Thermoabrasion | + | + | ||
Thermokarst | + | + | + | |
Solifluction | + | + | + | |
Frost heave | + | |||
Icing formation | + | + | + | |
Frost cracking | + | + | ||
Kurums | + | + |
Processes | The Accidents Emergence Danger | |||
---|---|---|---|---|
Not (0 Points) | Poor (1 Points) | Moderate (2 Points) | Dangerous (3 Points) | |
Thermoerosion | + | + | ||
Thermoabrasion | + | + | ||
Thermokarst | + | + | + | |
Solifluction | + | + | ||
Frost heave | + | + | ||
Icing formation | + | + | + | |
Frost cracking | + | + | ||
Kurums | + | + |
Processes | Attenuation Rate | Engineering Protection | ||||||
---|---|---|---|---|---|---|---|---|
Not (0 Points) | Slow (1 Points) | Moderate (2 Points) | Fast (3 Points) | Not (0 Points) | Bad (1 Points) | Available (2 Points) | Good (3 Points) | |
Thermoerosion | + | + | + | + | + | |||
Thermoabrasion | + | + | + | + | ||||
Thermokarst | + | + | + | + | + | |||
Solifluction | + | + | + | + | + | |||
Frost heave | + | + | + | |||||
Icing formation | + | + | + | + | ||||
Frost cracking | + | + | + | + | ||||
Kurums | + | + | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumel, N.; Zotova, L. Diagnostics and Mapping of Geoecological Situations in the Permafrost Zone of Russia. Geosciences 2019, 9, 353. https://doi.org/10.3390/geosciences9080353
Tumel N, Zotova L. Diagnostics and Mapping of Geoecological Situations in the Permafrost Zone of Russia. Geosciences. 2019; 9(8):353. https://doi.org/10.3390/geosciences9080353
Chicago/Turabian StyleTumel, Nellie, and Larisa Zotova. 2019. "Diagnostics and Mapping of Geoecological Situations in the Permafrost Zone of Russia" Geosciences 9, no. 8: 353. https://doi.org/10.3390/geosciences9080353
APA StyleTumel, N., & Zotova, L. (2019). Diagnostics and Mapping of Geoecological Situations in the Permafrost Zone of Russia. Geosciences, 9(8), 353. https://doi.org/10.3390/geosciences9080353