Next Article in Journal
Method for Near-Real Time Estimation of Tsunami Sources Using Ocean Bottom Pressure Sensor Network (S-Net)
Previous Article in Journal
Machine Learning Methods for Seismic Hazards Forecast
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle

Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy)

1
Department of Engineering and Geology, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy
2
NLWKN-Coastal Research Station/Forschungsstelle Küste, An der Mühle 5, 26548 Norderney, Germany
3
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Via di Vigna Murata 605, 00143 Rome, Italy
*
Author to whom correspondence should be addressed.
Geosciences 2019, 9(7), 309; https://doi.org/10.3390/geosciences9070309
Received: 23 May 2019 / Revised: 8 July 2019 / Accepted: 10 July 2019 / Published: 12 July 2019
  |  
PDF [13005 KB, uploaded 12 July 2019]
  |  

Abstract

Geomorphological evolution, erosion and retreat processes that affect the rocky coasts of the mid-western Adriatic Sea (Abruzzo, Central Italy) are the subject of this research. This coastal sector, one of the few examples of clastic soft rock coasts in the Mediterranean Sea, is characterized by active, inactive and paleo cliffs, as well as coastal slopes, composed of the clayey-sandy-arenaceous-conglomeratic marine sequence (Early-Middle Pleistocene) covered by continental deposits (Late Pleistocene-Holocene). This study provides geomorphological and 3D modelling stability analyses of the cliffs of Torre Mucchia, Punta Lunga, Punta Ferruccio (Ortona, CH) and Punta Aderci (Vasto, CH), which are popular tourist sites included in natural reserve areas. They are representative of two main types of active cliffs on soft clastic rocks: cliffs on sandstone and cliffs on conglomerate with notches. In order to evaluate the processes and factors that induce cliffs to retreat and their recent evolution, the research was based on a DEM analysis (LIDAR 2 × 2 m data), aerial photos and an orthoimages interpretation, detailed geological–geomorphological surveys, and a structural analysis; field and remote investigations were combined with numerical modelling with a FLAC3D calculation code. Geological and geomorphological field data provided reliable 3D models, and FLAC3D numerical analyses allowed the definition of the most critical and/or failure areas, and the evaluation of the controlling factors, evolution mechanisms of the slopes and the sliding kinematics of gravitational instability phenomena. Different retreat mechanisms have been observed all along the investigated coastal sectors, induced by gravitational processes due to coastal erosion cycles at the foot of the cliffs, and controlled by lithological features and joints systems. The geomorphological analysis combined with the 3D modelling (i) showed that the retreat process of the cliffs is connected to translational slides and rockfalls (cliffs on sandstone), combined rockfalls, and topples (cliffs on conglomerate), largely controlled by main joints; (ii) defined the most critical areas along the cliffs. These results are of great interest in the assessment of hazard connected to potential sliding on the cliffs. Their implementation within Geographical Information Systems provides a valuable contribution to the integrated management of coastal areas, strongly improving the identification and prediction of landscape changes and supporting a new geomorphological hazards assessment, in areas of high tourism, as well as natural and cultural landscape value. View Full-Text
Keywords: rock coast; soft clastic rocks; active cliffs; landslides; numerical modelling; Adriatic Sea; Central Italy rock coast; soft clastic rocks; active cliffs; landslides; numerical modelling; Adriatic Sea; Central Italy
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Calista, M.; Mascioli, F.; Menna, V.; Miccadei, E.; Piacentini, T. Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geosciences 2019, 9, 309.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Geosciences EISSN 2076-3263 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top